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Today, we will start a structural equation modeling part 1.
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That is measurement model, SEM that is structural equation modeling, measurement model.
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Now, let me see the content of today’s presentation. That we will start with conceptual model,
then the assumptions of the model, then how to estimate the model parameters and model

adequacy test, followed by a case study.
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You see in last class.



(Refer Slide Time: 01:07)

,3,,(
e s

Hn i
L ?: '% Mn).
_ fevamibv Lhwahn = '\

obls

| have explained that measure structural equation modeling has two component, one is

!
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measurement, and another one is structural component. The measurement component is
essentially a confirmatory factor analysis, and structural part or we can say the structural model
is equivalent to your path model or path analysis. Both the model those measurement as well as
structural path, there are three important steps, one is model identification, then parameter

estimation and model adequacy test.

This is true for structural part, also in this lecture we will consider the measurement part which is

confirmatory factor analysis.
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Measurement Model: CFA

So, let us start with a conceptual model first. You see here, in last class | have shown you similar
diagram and you see there are three factors (1, {2 and {3 and each of the factors are manifested
by a different variables starting from X1, X2, X3 for {1, X4 and X5 for {2 and X6, X7, X8 for
£3. So, in confirmatory factor analysis the basis is that, that there are hidden constructs which are
this or latent construct, other you can say hidden variable also that 1, {2, {3 which are the causes

of some manifest variable like X1, X2, X3 to X8 by putting this arrogate.

For example, from (1 to X1, {1 to X2 and {1 to X3 we are restricting the model here in such a
sense that we know that {1 is manifested by X1, X2 and X3, this manifest variable. Similarly, {2
is manifested by X4 and X5. Similarly, {3 is manifested by X6, X7 and X8, another issue here
that these hidden construct or latent construct or latent variable they co-vary in the sense that if
{1 change there may be change of (2, there may be change of {3 when the correlation component

is there.

So, these type of, this is a typical structure of confirmatory factor model and other issues here,
apart from this correlation between the constructs which is denoted by ¢ this one $21, this is
$31, this curvature line, this curvature line is basically $32. Now, we are saying X1 is caused by



{1 and as a result a causal linkage is given, {1 to X1 and the parameter which basically depicting
the relationship between (1 and X1 is A11.

Earlier, I also told you this A11, this 11 the suffix comes that X1 from X1 this 1 is taken and {1 1
is taken okay. So, it is not possible that the variability of X1 will be fully explained by (1. So
there is possibility of some other variables or hidden causes which may affect X1 or we can say
the errors part, noise part and all those things are considered by 1. So, in the same manner you
have to explain X1, X2, X3 and up to X8.

What | said verbally, this is depicted in equation form. We are saying X1 is represented by A1 or
{1 + &1. If you think from the regression line point of view you will be getting this equation
okay. So, in the same manner there are, as there are 8X variables, so you are getting 8 linear
equations and collectively if you write in matrix form then that will be X8 x 1 equal to that A
which is a matrix of the dimension 8 x 3 and which you can see here 8 x 3 dimensions here.
Because (1, (2, (3 that 3 and 8X variables, this 8 plus this {+ § this one. So, this is the matrix

form equation for this particular example.
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Measurement Model: Assumptions

Xy = Aty + 6,
rh 6 BT 7T ] Assumptions
e E(&)=0
Cov(X)=2 Cov(d) = 0. that 1s symelric
Cov(&)=4¢,., d=N (0,6)
Cov(d) = U Cov(&,0)=0

Mt 4, IT Kharsaout



Now, we can go for a general equation from there.
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That means what | means to say here the general equation will be X p x 1 where we are saying,

there are P number of manifest variables and which can be represented by this manner, the A
which is a matrix of matrix relating P manifest variable to m factors. And this m factors are
denoted by like this m x 1 and definitely for every manifest variable there will be an error. So,

this is the equation for confirmatory factor model.

And in fact if you see the recall that factor analysis you have found out there also similar
relationship, but there are, there is difference okay, difference in the structure of the model then
the model assumption in the covariance structure. So, what are the assumption here, we assume
that the expected value of § = 0, that mean the noise variable, the arrow terms that mean is 0 and
covariance of §, this one is your 0, or you can write 06, also sometimes 64 and it is symmetric

okay.

So, if I say like this will be P x P. So, this you variance component of § of diagonal in the

covariance that will be equal, that is why symmetric and & is multivariate normal with mean 0



and covariance matrix 68, or you can write 6 also okay. Another important issue here is that
assumption is that covariance between ( the manifest, sorry the latent construct and the arrow
term related to the manifest variable, they are 0 okay. So, this is our your assumptions related to

confirmatory factor model. Now, there as | told you there are covariance structure.
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Measurement model: Identification
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Over identification

t=pm+mm+1)/2+p t<p(p+l)

So, the covariance structure of your see covariance structure, first one is covariance of X, this
will be > P x P. There will be covariance structure for the ¢ latent construct this one will be @
which is again m x m matrix diagonal not diagonal this is symmetric matrix. Then covariance of
& which we say 0 , x , okay it is mostly assumed as diagonal matrix, assumed as diagonal not

necessary always it will be diagonal, but it is assumed like this.

So, you have seen earlier in your exploiting factoring, also we have written x = 6 { + I think we
had A C + 6 means this A replace 5. Now, if you find out the covariance of x then ultimately what
you will be finding out you will be finding out something like this plus covariance of this 6. This
is 0 in x and this @ was not there in excusive factor, it was I if @ = I then it is orthogonal factor

analysis. So, this is null set that covariance structure and the relationship between this, okay.



So, now let us stick to come to the model identification part, what | mean to say hereby model

identification if you clearly look into the model.
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And the parameters that to be estimated as well as the information, what is available there must
be sufficient necessity and sufficiency of the information available to estimate the parameters of

the confirmatory factor model. Okay so, in order to do so.
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Measurement model: Identification

Cov(X)=X=( u\‘(/\; +3) No of non-redundant elements in
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Total number of parameters (t) to be estimated

Apxnr  grim(m+1)/2 t > p(p+1)/2: Under identification

0, p (assuming diagonal matrix) ,— p(p+1)/2: Uniquely identified
A

: Over identification

t=pm+mm+1)/2+p t<p(p+l)

You should now let us find out that what are the parameters we require to be estimated if you see

this slide you will see that we have few parameters to be estimated.
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From in CFA 1 is your A which is p x m matrix so, these many parameter sto be estimated, there
is @ which is also a p x p matrix which is p x p matrix, but being symmetric it has @ is m x m
matrix. | am sorry @ is m x m matrix which is symmetric matrix. So, numbers of parameters will
be m (m+1)/ 2 to be estimated and then there is 6  as I told you that 6 6 what is this 0 6.

This is 9, this is 0 0 so, 0 & or 0 so there if we assume that it is diagonal then there will be p
number of parameters to be estimated. So we require to estimate A, we require to estimate @ we
require to estimate 0 0 here in case of A p x m, this number of parameters @ m(m + 1)/ 2, this
number of parameter 6 & p number or parameters are there. So then in total the number of
parameters to be estimated, number of parameter to be estimated we can write p (m + 1)/ 2 +p

okay.

Now, what you require to know that if t suppose t = 50. If we require to estimate p 50 parameters
and you require at least 50 simultaneous equations, getting me. So now, what information we

have in case of confirmatory factor analysis.
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We have only one information that is X which is the variance, co variance matrix of X that is co
variance matrix of X. Now, how many unique or non-redundant elements, this is also symmetric
matrix. So, it has number of non redundant element equals to p( p +1)/ 2. Now, see this what
type of situation will occur we require to estimate p number of parameters, it may so happen that
number of parameters to be estimated is greater than number of independent non redundant
elements in p. That is the available information, it may so happen thatt=p ( p +1)/ 2. It may so
happen thatt<p (p +1)/ 2.

Now, the first case, this is model cannot be identified. This is model is unidentified or under
identified, unidentified this case number of parameters or the number of unknowns and knows
are equal. This is uniquely identified case and this case this is over identified, because we have
more information available over identified case. So, at least this two are necessary if you have
this case type of situation which is uniquely estimated. If you have this over estimation that is the
desirable one overestimate is the desirable one. This condition, particularly this two, if this two

conditions are either of the two is satisfying you are saying that necessary condition is satisfied.



Necessary condition which is also known as ordered condition, okay but ordered condition alone

is not sufficient.
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This is necessary condition necessity is satisfied there is another condition called rank condition,

because then you will see that we have basically talking about the matrices. So, the rank
condition, rank of my matrix is important issue here and it is little bit complicated one also. Rank
conditions also per value you have to satisfy then the rank condition is the sufficient condition
and for example, is given that Wiley in 1973 that is the reference. Now, order conditions satisfy

the necessity and rank conditions satisfied the sufficiency.
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Measurement model: Estimation
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Let us assume that it is done in the sense model e is identified, if model is identified. The next
step is how to estimate the model.
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So, estimation of model parameters, okay. So you have seen that we assume that ultimately that
X, the manifest variable is normally distributed. It is the primitive multivariate normal py variable
p, p humber of variable are there, multivariate normal with mean 0 and variance, co variance
matrix . Then for any observation multivariate observation X; you can write that this is the PDF

P25 determinant to the ¥z e

can be written like this, 2
Then X- e, e is to write that is Xi — p is zero here. So Xi — u™ that means Xi transpose 6™ Xi this
is the multivariate normal distribution per density function for a particular multivariate
observation. Now we collect in observation | = 1 to n, we want to know the log first the
likelihood. So, likelihood if you see this equation you find you see the there is only one

parameter which is ¢ and p is 0.

So only one parameter is there so we can write log of likelihood of o not log likelihood of &
which can be written as multiple equation of thisi =1 to n f(xi) which will be multiplying I = X
=1,X1,X2..... X n, then the resultant will be like this 1/(2IT )™? .Then determinant to the
power n by 2 then e¥?then sum | = 1 to n. Then Xi' o™ Xi that is what will be the likelihood.



And it is customary to take log likelihood. So if you take log likelihood then what you get, You
get —np/2 log 211 for this term, -n/2 log this for this term -1/2 1 =1 to nXi' o™ Xi. So obviously
this from our we want to estimate this ¢ that parameters it will be will go for some optimization
root and there this constant term in the equation has whether you had keep it or do not keep it
this is immaterial. So we remove this constant term, so you can write this as —n/2 log of this plus

half of | can write like this —n/2 into this minus. So minus half of this Xi' this xi, okay.
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So let me write a phrase that log of 1, this 6 = -n/2 log determinant 6 — % Xi' 6> Xi. Now this
term can be written like this —n/2 log this minus if I write n/2 then summation i = 1 to n. This can
be written like this, this can be written like this 1/ n I am teaching because | have considered n
here. So this one can be written like this, write again you write like this like this, then I come to
R. R form n/2 —n/2.

We can write this quantity as tracel by trace of 1/xi' xi o™ this, this is possible. Now 1/nXi" this
is nothing but variance, covariance matrix of the sample provided, n is large, 1/n — 1/n become

same. So with modeling equation we can write like this —n/2 then this is trace of s ™. This one is



—n/2 log of this plus trace of s o™, okay. So this is your log likelihood. Now see what is the

condition here in our estimation here.

Actually this procedure is like this, you will from the model from the model covariance of X,
your A @, A 146 5. From this you will get covariance Xo that is ¢ in terms of model parameter
you collect sample then you get the covariance matrix also, so from sample there will be S. S is
the again p x g that sample covariance matrix there, what we want to do? We want to match this

two.

This two, suppose a condition is such that S = o then if I put here what I can write, Log of 1(S)
this can be written like this, this log of S determinant of S plus trace of SS™*. Now S S™ 1, so you
can write like this, this log(s) plus sum of the diagonal elements of the matrix | that is p, okay. So

this is your equation number 1.
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Now another one is we have already seen, the likelihood one this equal to —n/2 log of this plus
trace of this, this is our equation 2. So what you want, we want to find out parameters. Now this

o this will be in terms of model parameter S here and here when we are talking about S it is



basically the numerical values and here it is in terms of model parameters like A ® and all those

things.

So we will create a function now that we want to minimize that we are saying F 0 which is
nothing but S - ¢ 0 of this nature which I am saying not exactly which will be of this nature. So
then we can write like this FO = log L(s) - log L(c) which if you write this is —n/2 log of
determinant of S + p + n/ 2 log of determent of o plus trace of S this trace of S ¢™*. So this one

you can write minus that n/2.

Then log of determinant of ¢ + trace of S o™* — log(S) determent S - p we want to minimize this
function. So keeping this constant n/2 again is of no use. So final equation will be for our
estimation is this log of determinant of ¢ + trace of S 6™ — log (s — p). This is the equation which
want to minimize, okay. So its null issue you have to use Newton Rapson or similar method,

Newton Rapson similar method of numerical that optimization part, okay.

So this is what is in the nut shell the parameter estimation in place of confirmatory factor

analysis which is basically our measurement model.
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Measurement model: Estimation
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You see here this is the theta log o theta trace of this is the case ignoring the constant so

ultimately minimize this one using Newton Rapson or Gauss algorithms okay.
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Role of personnel and socio-technical factors
in work injuries in mines
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Source: Paul and Maiti (2008)
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Now let us see that whatever mathematics we have described now can it be put into a case study
as a real life example | will show you the example here which | have shown you earlier also in
the in last in the first class of structural equation modeling | have shown you this one but there
what | have done actually | have given you a glimpse of this things just like scrawling down the
slide because just the glimpse of what is this not will describe in detail that what is this

measurement model and with the same case study okay.

So the case study as you know it is a role of personal and socio technical factors in work injuries
in mines and a study based on employee’s perceptions and you can see that the source is Paul

and Maiti 2008 it is published in the ergonomics.
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A case study: variables

Demographics Safe Work
*Age (X1) Behaviar (Xa8)
*Experience

Work Hazards
1 *Physical Hazards (X16)
sProduction Presaure (X317)

i
*Nagative | /2 W Job Dis-
Affactivity (X5) Waork satisfaction (X1}
*Depression (X6)

oﬂislvTok-ﬂng;! ] . Social Suppart

*Ca-Warker Support (X13)

Safaty Envirenmaent
| sSupervisory Support (Xa3)

eSafety Training (X&) |
*Safety practice (Xg) Job Stress (Xax)
*SEAM (X10)

sManagement Worker Interaction (Xa4)

Okay so let us start like this we have several manifest variables here there are 18 manifest
variables for example age, experience, impulsivity, negative, affectivity, depression, risk taking
safety training, safety practice, safety equipment, availability, maintenance, job stress like this
we are wondering that how | am saying these are manifest variable although most of the things
cannot be observed so actually what happen for every of the variable we ask several questions
and then those questions are summed into a particular quantity and then that summed up values

we have taken as the value for each of the variable.

For each of the observations or individuals who participated in this study so in that sense it is
manifested means observed in that sense otherwise its two layer questions actual it was like this

only one questions.
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Then there sum to this manifest variables what we are saying there sum then further level of
aggression actually suppose there are question 1 to let it be 150 then there are manifest variable
like (1 like there are 18 then this again it is aggregated into what I can say these are X; sorry
these are X; to Xjg related to X;; to some X; let it be Xi 9 so this level of aggression is done here
so we are taking in this level of aggregation we are considering here this is manifest variable but

you may start from here to here that will be combos some we have this so the same thing.
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Case Study: CFA
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If you write in the confirmatory factor analysis form it will be something like this you see all the

this covariance structure between this 9 {, { variables it is not pictorially shown because of space

concept otherwise this will be this and then what will happen we will immediately you can go

for.
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Case Study: CFA — Model Identification

A 18,  ¢:45; 0,:18

S =18x(18+1)/2=171
1=18+45+18=81 B

The model is over-identifiedast=81 <171

Malti, IEM, 1T ¥

The equations also for this getting me so like I am giving one equation only here if | want to

know what isXj.
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Then this is nothing I can write A 1 1 {1 + 83 if you consider this here A 11 {1 + 61 similarly this
one Ay 1 {1 + so xp will be Ay 1 {3 + &, if you consider X3 so X3 is ultimately it is the single
indicator manifest variable for the constant { 2 so X3 can be written like this that 3 2 { 2+ 6 3 so
in the same manner as there are X 18 so you will be able to write X 18 come to this one Xig is
again a single indicator for (g so this is your A 18 9 {9 + & 18 so you can write in matrix form

when you write in matrix form you will be getting a equation in matrix form equation.

We said X equal to A { + 8 this equation you can find out here we havel8 cross 1 this will also be
18 x 1this is our 9 x 1 so this will be 18 x9 so this type of equation you can find out okay now let
us see the model identification for this case you just see that A part that how many A s are there
youcountl, 2,3,4,5,6,7,8,9, 10,11, 12, 13, 14, 15,16, 17, 18 so 18 A so we have written A18
because others are 0 for example A3 1 if you give one linkage here A3 1 that is 0 because it is a

confirmatory we know what are the manifest variable coming out of the hidden constructs .

There are how many Xig x so how many ® 9 ® So m into m x m into m +1 by 2 m into m + 1 by
2 s0 9 into 10 by 2 that will be 45 so you have A that is your 18 then your = related variables will
be 45 7 related parameters will be 45 theta & again 18 6 1 to 6 18 so our t is18 + 45 + 18 that is



81 now what is the unique elements there we have 18 manifest variable cross 18 so 18 x19 by 2
this will be 171 now t equal to 81 it is much less than 171 the model is over identified it is a good

case so and necessity.
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Sample and data

Random and independent samples
Accident group of workers (n=150)
Non-accident group of workers (n=150)
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Condition you satisfied and sufficiency we have not tested here that says the software they test
all those things now let us see that data part the data part is actually random independent
sampling first we have taken accident group of workers followed by with frequency matching

non accident group of workers where all together 300 observations.
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CFA: Model Estimation
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So immediately as I told you that how many independent non redundant element in your o
matrix this is the case this is from sample these are all co relation matrix now question is what
we want we want basically to minimize this function and in this matrix is basically for S that is
sample co variance matrix but actually we have taken correlation now question comes whether
co variance or correlation it all depends on the purpose of the study in our purpose of the study
we are more interested in the pattern of the relationship.

Then the original strength of relationship between latent variable and your manifest variable we
are more interested in the pattern of the relationships and not the original value so when you are
interested in the pattern of the relationship R is a variable R matrix should be used that is

correlation matrix should be used.
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Case Study: CFA Parameters

A, =099 A, =082 A, =1.00;

Ay =0.70; A, =0.72; A, =0.40; 1, =0.78;
A, =0.61; A, =085 2,,=0.70; A .=1.00;
Ay =048; A, =0.88 4,,=0.90;

Aoy =1.00; 4, =071 A, =065 A, =1.00;
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CFA: Model Estimation
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Now, through definitely this is F 0, this is the function which is to be minimized and we have

used this software, in this case LISREL linear structural relations.
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LIS rEL

So this software we use and ultimately this is what is the all the parameters.



(Refer Slide Time: 40:36)

Case Study: CFA Parameters

A, =099 A, =082 A, =1.00;

A =0.70; A, =0.72; A, =0.40; 4, =0.78;
Ay, =0.61; A, =0.85; A,,=0.70; A, . =1.00;
Ay =048; A, =0.88 4,,=0.90;

Aoy =1.00; 4, =071 A, =065 A, =1.00;

Which is estimated you can see.
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Sample and data

Random and independent samples
Accident group of workers (n=150)
Non-accident group of workers (n=150)
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Case Study: CFA — Model Identification
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(=18145+18=81

The model is over-identified as t = 81 < 171
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Case Study: CFA

If you go back A1, A 2 1, X 3 2, A 4 3 like this and you see that A 3 2. What is the value of A 3 2?
Here, A 3 2is 1 because this one indicator with one constant, we assume that this is the manifest

variable itself is the construct, understood?
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Case Study: Output Correlation Matrix

Demographic 1.00

Work injury 029" 1.00
Kugative persanality 010" 0.41° 100
Safety environmern  0.04 .0.42° .0.99°
Job stress 003 017 086" 073 1.00

Sochl support 0.06 030" 0.01° 082" 0.75° 1.00

loh dissatsisction 007 031" 065 082" 0.7 100

Work hazards 037" 030" 0.67° 077" 0.8 .0.78° 073 1.00

Safe work bebwdor 004 .0.22° .0.51° 049" .0.26° 048" 029" 026" 1.00

-

ndicates o.0f probability level of significance

So that will be the, what is the output of this measurement model. See ultimately we are talking
about long back I think this one,
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A case study: variables
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These things when we have clubbed into this factors these are all the factors or constructs latent
constructs this Xi 1 to Xi 9 these are not arbitrary Xi 1 to Xi 9, they have some meaning.
Actually X;, X if you see that age and experience then demographics, this is the this is Xi 1
impulsivity negativity all four are clubbed to the weather Xi 2 value. Actually the negative

personality is given here. | think this Xi 3, X 1, X 2, X 3. X 3 is work injuries.

It is kept as it is what X 3, Xis is the negative personality, and then Xi4 is your safety
environment. Again Xi 5 is job stress, Xi 6 is social support, Xi 7 is job dissatisfaction, Xi 8 is
work hazards, Xi 9 is safe work behavior. So, these are all latent variables in this sense now we
also want to know the co relation matrix between latent variables which is the output of this

measurement model.

You see that demographic work injuries negative personality, these are the latent constants and
this is your correlation matrix in then there are little star is there. This star indicates point 0.05
probability level of significance. | think all are significant here except this value 0.04, 0.01 some

other value, but essentially we are interested from measurement model to know that what is the



correlation matrix of the latent constructs or factors what we are going to evaluate or estimate,

getting me?
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Case Study: CFA Parameters

A, =099; A, =082 A, =1.00;

A =0.70; A, =0.72; A, =0.40; A, =0.78:
A, =061; 4, =0.85; 4,,=0.70; 4, ,=1.00;
A, =048 A.. =088 2. =0.90;

Ay =1.00; 4, =071 A, =065 A, =1.00;

That is what we have done and we have done this with the help of this, this A values and the Xi

and the error term.
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Case Study: Output Correlation Matrix

Demographic 1.00

Work injury 029" 1.00

Kugative persanality 010" 0.41° 100
Safety environmern  0.04 .0.42° 099" 100

Job stress 003 017 086" 073 1.00

Sochal support 0.06 030" -0.81" 0.8 0.75° 1.00

Job dissatisisction  0.07  0.31° 065" -0.7%° 062° -0.70° 100
Work hazards 017" 030" 0.67° -0.77° 063" .0.76° 073" 1.00

Safe work belsedcr 00 .0.22° .0.51° 049" .0.26° 048" 029 026" 1,00

-

ndicates o.0f probability level of significance

You are getting these values. And this will be this is a value, you want this is very, very
important one because this will be used in structural model as input to structural model in

structural equation modeling, | told you. That structural equation modeling two parts SEM has
two parts.
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Measurement model and structural model the output of this will be input to this, fine?
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Model Adequacy Tests

*Chi-square
Absclute E *Chi-square/DoF
“GF
l» *RMR/RMSEA
| ‘ r— {’r--JFI
Indmx wialive | «TLI
«CF)
+RNI/BFI

But | would consider. The structural measurement model would I consider measurement model
as | said or not. If the model is not fit, if it is not adequate enough hen the correlation matrix
between the constructs generated they are not good. Also, we have doubt about those correlation
values, we cannot abruptly accept this one. Now, in model adequacy test, in last class also | told
you that fit index there are three types of fit index, absolute fit index, relative fit index and

parsimonious fit index.

Under absolute fit index % chi square degree of freedom. So, absolute fit index, relative and
parsimonious we are discussing about and absolute fit index there are many indices like y?, y*/by
degree of freedom, goodness of fit index, root mean square, residual root means square. That is
RMR RMSEA standard error approximation, then relative fit index. These are the standard
indices available in any literature related to structural equation modeling and most of the, why
most, | think almost all the indices are based on chi square value. So, we will discuss little of
this.
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Absolute Fit Indices

Absolute fitindices
15 the rezidual or unexplained varlance remaining after model fitting appreciable?
(they are abzolute becavze they impose no baseline for any particular data set)

Chi-square test
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For example, absolute fit index what it does? It answers this question is the residual or
unexplained variance remaining after model fitting appreciable. So, we do something like this.
There will be two that hypothesis null and alternate hypothesis. Null hypothesis is we are saying
that o = o0 theta, that actually that what you have estimated, that is correct and alternatively you

are saying no, they are not correct.

So, then this we will define one quantity called 5°, which is n - 1 x F6, that FO you have seen that
the minimization function, so that value you have after estimation. So, x* that n - 1 F6 this
follows this y’distribution with new degrees of freedom, where new can be estimated like this, p
intop + 1/ 2 -t, that is number of non-redundant elements minus number of parameters to be

estimated.

That is what more degrees of freedom available here and you will find out that what y*value you
get that should be as small as possible, because if for perfect fit FO will be0, the n -1 x F0 that it
will be 0. So, 0 is the ideal value, but it will all depends on sample size, also n - 1.Now, see that
you will never get this your 6 will be 0, because you are doing the numerical way of

optimization, numerical optimization where some convergence value will be there.



Now, if n is sufficiently large what will happen? This value will become large. So, what you
want to how do then justify that whether the model is fit or not. One way is that this value should
be as small as possible and other one is you go by %°/ degree of freedom. So, it is recommended
in the later lecture that essentially the ¥ distribution is such that the expected value of ¥*nu is nu

because that is the degree of freedom.

Because it is a parameter in x> we use the degree of freedom only. So, actually the y* by the
degree of freedom should be 1, but is not recommended what is said that 225 is the
recommended value above 35constraints. Now, if you use G F | that is goodness of fit index
which is similar to R? square in multiple regression, you can remember or recollect that R*~ 1 -
SSE / SST.

Now, you see this formulation here, that way we have written here that 1 - trace of this by this.
So, this is total variability and this one is the error term. It is similar to R? and this G F | value
varies fromO to 1 and it is desirable that G F | is greater than 0.90. So, in your model when
develop a measurement model the software will give you the G F | value, if you find out that the

G F I value is 0.9 or more, that it is good.

It is desirable, but if it is less than0.9 what you will do? You will not consider the error model it
all depends on the system for which you are developing the model. I am telling you even 0.8 also
you can consider, absolutely no problem. If you think that the dynamics and is huge the volatility

IS more, many other issues you have to take into consideration.
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Absolute Fit Indices

Absolute fitindices
15 the rezidual or unexplained varlance remaining after model fitting appreciable?
(they are abzolute becavze they impose no baseline for any particular data set)

Chi-square test
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Now, another index is RMR, | think this is something where each of the value of the S matrix
and each of the corresponding value of the estimated matrix, that sigma basically you take S then
you estimate sigma and by that process in between the parameters are also estimated. Now, the

values sigma and S values, S this values and sigma estimated, this values are here, getting me?

Now, if you take this and this what is the difference? Take this, this is the difference? So, we will
take this, what is the difference? These differences are squared here you see what we have done
S J K minus sigma J K this is the estimated one square by p into p + 1, that is the non-redundant
part. 2 is given because that twice of this, this by 2 p x p +1 / 2.So, this quantity should be also as
low as possible. It varies from 0 to 1 and RMR should be less than 0.05 and for RMSEA root

mean square error approximation, this is the modulus of ¥* minus its degrees of freedom by n - 1.

It is seen that 0.03 to 0.08in this range this lays and this range also says substantial increment
then relative fit index. Now, how well does a particular model do in explaining a set of observed
data compared with a range of other possible models. Here what you do? You creates nested

model, several models and then you compare one model with other and then you say which



model is better. And based on this you create a index and that index talks about your model

adequacy or otherwise we can say improvement in terms of model adequacy.

Here, most of mostly we will consider null model that is the worst fit model which is known as
null model, where we think that the covariance matrix is diagonal. Only diagonal means variance
part is there of diagonal elements as 0.Now, if you say that X y* for the null model is %> 0 and y?
for the proposed model is x* nu, where nu is the degrees of freedom. Then you are in a position to
develop or | can say quantify, this indices like NFlis x*0 - ¥* nu/y* 0 and all these indices this
values lie between 0 to 1. And it is desirable that they will be greater than 0.09, sorry 0.90 then

CFI comparative fit index, thatis 1 - ¢ y*nu-nu/y* 0 - nu 0.

And TLI you have seen this, this also in the similar manner you see. Ultimately they take into
consideration the chi square value of the proposed model and a worse pit model which is known
as null model and the comparative indices are developed and higher the index value, it is better

0.9 or more is required.
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Parsimony Fit Indices

The parzimony fit indices capture the goodness of fit of a proposed mode
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Then your parsimony fit index, it is similar to adjust R square S A square in you regression and it
basically talks about the par parameter fit for parameter is estimates and AGFI here you just see
that the top upper portion or the denominator here is divided by the degrees of freedom and
numerator is also divided by the degrees of freedom what we have done in calculating R A
square, this value should lay between 0 and 1 and AGFI greater than0.90 is desirable. Then
parsimonious non fit index which is nu by nu zero NFI, and where this is nu is the degree of

freedom proposed model and like this, okay?
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Case Study: Goodness of Fit Indices

Parameter | Valuas
RMR 0.08
GFl
NFI .87

1.5
IFI .94 .

Now, let us see the goodness of fit indices for the case studies here, some of the fit indices | have
given there are others. So, ¥ degree of freedom of 99, * value is 257.24, if you divide by 99, this
is almost100. So, it will be around y* by degree of freedom is around 2.6. So, it is good because
aim is to do 5 root mean square residual 0.06which is little more than 0.05, CFl is 0.98very good
more than 0.90, NFI 0.97 more then0.90, CFI is 0.99 and IFI is 0.99.

So, essentially then »* is 257.24 y* by degree of freedom is around 2.6, RMR is 0.06, GFI is 0.98

like this. This model is very good, fit model.
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Pioneers

Karl Joreskog Dag Sérbom
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Now, see that who has basically worked in this, who are the pioneers that Karl Joreskog and Dag
Sorbom, I think in around 1978 probably they have developed this software. First that listener

came, | think in 1989 and its remarkable development in this field and we all are tremendously

benefited.
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What | can tell you further that for you have to understand the structural equation modeling. |
might say that Joreskog, Sorbom this LISREL 8, structural equation medaling with SIMPLIS
command language. This man, this manual is very good and you can go through and is a lot of
publications by Joreskog, Soorbom. Others is the Hayduk is one person who has written a book,
this and this is a very good book also in addition there are many other books available in

structural equation modeling. So finally let me just summarize to my today is lecture.
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We said that structural equation modeling has two parts, one is measurement model
measurement model, and another one is structural model. So, measurement model is nothing but
confirmatory factor analysis structural model is actually path analysis. Now, we have discussed
details of CFA in terms of its identification, what | say that under identification there will be

necessary condition.

There will be sufficient condition, this two must be satisfied in necessary condition is known as
order condition and this one is known as rank condition. Other one sufficient condition is known
as rank condition and in this order condition we say the number of parameters to be estimated
must be less than number of non-redundant elements in the covariance matrix. Then this is over

identification case and it is a desirable case, then we have shown you the estimation parameter.

Estimation, now | said that parameter estimation it is basically a function you minimize, which is
basically log of determinant of o plus trace of S ¢ inverse - log of determinant of S -p. This
function is minimized through Newton Rawson or similar method and then the parameters are

estimated and the actually we have sample data in terms of S or R. And we have the population



value in terms of 60. We try to match this two and using this function the better, the best match

is considered and then you corresponding the 0 value, these are used.

Now, 0 is function of many things like A, like your y like your 6 d. So these are 6, means 60
means so many things are there. Any combinations that are what you are trying to estimate
because from co relation matrix to here, co relation matrix or covariance to co variance matrix,
one to one, and this correspondence you are doing. This is parameter estimation, once parameters
are estimated then you can test the parameters values, this lambda using simple t test whether it

is significant or not.

But apart from this is the another important output from this CFA is after parameter estimation is
your co relation matrix of the latent correlation or covariance latent construct which is very, very
important, because this will be the input to the structural model. Then what | have given you? |
have given you what are the model adequacy tests. So under model adequacy we have seen that

absolute test and then your comparative test or relative test.

Another one is parsimonious, absolute is similar to R?> RA?, where the actual variance explain is
considered in comparative case we compare with different model and parsimonious, it is
basically fit part parameter estimated and finally I have shown you a case study for all of you.
The case study is there if you are interested please go through Paul P and J Maiti, the synergic
role of socio technical and personal characteristics in mines, published in ergonomics in 2008.

Thank you very much.
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