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Good morning, we will continue factor analysis that is the third lecture on factor analysis. 
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In first lecture, we have described the conceptual model and we have given some examples. In 

second lecture, we discussed about the model estimations that is from principle component 

analysis point of view from principle factor method point of view. Also, we have discussed about 

the maximum likelihood method point of view. This lecture will start with model adequacy test, 

model adequacy test then followed by your factor rotation, followed by factor scores.  

 

Then I will show you Spass exploratory factor analysis and if time permits I will go for 

confirmatory factor analysis that only basics so under model adequacy test. 
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I have already discussed the Correlation matrix .I said that if there are substantial correlation 

coefficients Ó0.30, then you go for factor analysis means suppose you have a large data matrix 

and correlation coefficient matrix is p xp. There are large numbers of values, large number of 

values having more than 0.3. Second is Bartlettôs sphere city test, Bartlettôs sphere city test uses 

this formulation that you find out the correlation matrix. 

 

First take the determinant of it and take logarithm of this, then you multiply with this, in this 

ultimately follows ɢ
2
distributions with p x p -1 / 2 degrees of freedom. Now, if this quantity, if 



this quantity is more than the tabulated values then the hypothesis is that no factorization 

possible. That factorization not possible that is not true here, so we will reject null hypothesis in 

this case. Then, another one is that large sample test which is likelihood ratio test large sample 

Likelihood ratio test. 
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So we will again give you the Bartlett procedure here, here the null hypothesis is that the co 

population covariance matrix is coming from the factor model, we are able to reproduce from the 

factor model. This population covariance matrix, it is correct and H1 is that sigma is any other 

positive definite matrix. So, this is my step one that means set the hypothesis, your step two you 

have to find out the statistics appropriate test statistics, what is your test statistics. 

 

As I told you that it is the locality likelihood ratio, so -2 log this capital ɚ, this ɚ is not this capital 

ɚ. So, in this case this is basically, similar to this Wilks ɚ what you have seen earlier that similar 

to Wilks ɚ type of things. So, if I write like not ɚ here if I write that this is our let it is w. So, we 

are creating this and that one is -2 log deter log determinant of that  ×⅞ by determinant of Sn 

where Sn is n -1 /n x S that is the sample covariance matrix for n >m very large tends to infinity 

and S n become S. 



 

So for large sample size you can use S determinant here determinant of S then once I know, so 

that means what is my test statistics here my test statistics is -2 log determinant of × by 

determinant of Sn. Then you have to find out that what is the sampling distribution sampling 

distribution of the test statistics test statistics, now Bartlett says that that m log determinant of 

×/Sn. So, please keep in mind that we are writing the estimate value here × this one because this 

is what is our random variable random component here.  

 

So this follows ɢ
2 

distribution with half of p - m
2
 - p plus m, those degrees of freedom. So, first 

this hypothesis related to the population then sample statistics related to the estimates then your 

sampling distribution related to the estimate. Now, you have to take the decision, decision will be 

reject H0 if this quantity if I write this total quantity as DÓ ɢ
2 

½ p-1
2
 ï p + m that Ŭ for maybe 

usually Ŭ will be 0.  

 

So, we will reject a 0 for this condition, what does it mean you are saying no it is not that the 

factor model is notable to reproduce the population covariance matrix. So, if you want to have 

your factor model acceptable then H0 should be accepted. Now, this is from the hypothesis 

distinct point of view correlation matrix Bartlett test, all those things we have discussed. 
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Next issue is that number of factors to be retained, how many factors you will get. So, it is 

similar to principal component analysis where we have seen that number of component to be 

kept by several means for example, percentage cumulative variance explained. Then we have 

also given you Eigen value criteria from much it may be Eigen value criteria, when you use R 

matrix then screed plot is there. Similar things, similar many things here explained there for 

example, let we have p variables we have extracted, let it be two factor three factors. You know 

the loadings, if I say then you know the Eigen values here this is 2j, 3j, 3j = 1 to pF
2
. So, you find 

out the percentage, what percentage it is, what percentage it is, what percentage it is, and then 

you find out the cumulative percentage.  

 

Set a criteria criterion, let you want the cumulative percentage, it should be Ó90 % are these three 

factors you are considering able to explain this. If yes, this factor model is good and you can 

keep three factors, now screen plot also you have seen earlier screen plot what is in that, this 

Eigen value will satisfy factor one factor two like this Eigen value. Suppose, your values are 

coming like this, so this is your elbow, so you keep three factors and Eigen value when you use 

R matrix. 

 



So, for those Eigen values which are more than 1thatyou consider at least 1, that one variable, 

variability will be explained by this. So, this is similar to usual component analysis, how to keep, 

how many fact components you want to keep. As we have discussed earlier. 
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Factor analysis has two important purposes, two important purposes, what are those two? One is 

your definitely dimension reduction, second one is interpret-ability. By interpret-ability, we want 

to mean that we will be able to provide name to each of the factors correct. So, how to provide 

name for example, consider that we have three factors here and there are several variables like 

this and when you have seen the loadings that use lambda values.  

 

You may find might have found out a situation similar to this where these loadings are high, 

where with factor one these loadings are high with factors two. These loadings are higher factor 

three, but other loadings like x1, x2, x3 loadings on factor two as well as factor three are very 

small negligible. That means, we can ignore those loadings under such situation what we can say 

that x1, x2, x3 is creating factor one x4, x5 is creating factor two x6, x7, x8 is creating factor three. 

 

 



Then we can probably name these factors considering what are these variables what is the nature 

of these variables the name will be common to this three for F1. This two for F2, this three for F3 

can you get this structure immediately when you draw when you basically conduct exploratory 

factor analysis. The way we have discussed by any of the method maybe your principal 

component, analysis method, principal factor method, your maximum likelihood method anyone 

of the method you have extracted, sorry estimated. 

 

The factors parameters models are available are you getting this or not it may so happen that you 

will not get this structure under such situation it is desirable to rotate the factor in such a manner 

that that the loading of some of the variables. On a particular factor that F1 that factor that will be 

maximum whereas, the loadings of other variables will be minimum. Similarly, if you want to 

find some other set of x excluding the ones we have consider for the F1 that which will be highly 

loaded with F2 and very low loading with other factors. So this can be possible through factor 

rotation, so in order to understand this fully I will first show you one example.  
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See this is the results obtained by Maxwell and Lawley 1971 paper, they have conducted factor 

analysis of responses of two twenty students under six variables Gaelic, English History, 

arithmetic, algebra and geometry can the factor loadings were extracted two factors factor 

loadings and commonalities, and like this. Now, if you see this loadings Gaelic is equally loaded 

almost equally loaded with factor 1 and factor 2 because the loading value is 0.553 for factor 1 

0.429 for factor2.  

 

Similarly English also definitely English has certain higher loading on factor1 little lower, but it 

is not negligible loading for History. Again, equal pattern almost for arithmetic yes there is 

higher loading for factor 1 and definitely from compared to 0.74, 0.27 is import a less, but none 

of the loadings here if you find that our geo in that sense none of the variables are not loaded 

with the two factors considered keeping in mind that this negative symbol here, given this is not 

an issue here. 

 

Basically, it may be the negatively loaded or positively loaded, but they are loaded. So, under 

this condition if we want to see. 
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