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Good morning today we will discuss principal component analysis. 
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Principal component analysis PCA so let us see the content of today’s presentation. 
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First we will describe the basic concepts prevailing with principal component analysis. Then we 

will see that how principal component can be extracted from a given data set. Then we will go 

for sampling distribution of Eigen values and Eigen vectors. You will see that Eigen value, Eigen 

vector decomposition of the covariance or correlation matrix is the means for extracting principal 

component. Then followed by model adequacy test, then we will describe one case study. I think 

it requires around two hour of lecture first hour we will try to complete up to that extracting 

principal components.  
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So, what is principal component analysis so, principal component analysis is a data reduction 

technique.  
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Data reduction technique it is extensively used and developed by developed by Hotelling H in 

1933 and it is the  data reduction is done with two prospective in mind, one is that lowered 

dimension, second one is orthogonal orthogonality of the new dimensions. Orthogonality of the 

new dimensions okay new or transformed dimensions, which are basically PCS principal 

component. So, let us now go for the very simple two dimensional plot for example, let our 

dataset is X, which basically composed of n x 2 that means m measurements on 2 variables. So, 

like this, so this one is variable x1 and variable x2 then this one x11, x21.  

 

So, like this xn1, then x12, x22 like this, xn2 okay if you plot the data is here suppose this axis x1, 

this is x2. now, if you plot the data let us assume that the data is like this data plot looks like this 

okay  now if you compute the covariance matrix of x. you will be getting as we are talking about 

data, so we have collected a sample in that sense you have to write this will be s11, s12 , s12, s22. 

So, 2 x 2 matrix so this scattered diagram shows that there is a relationship between x1 and x2 so, 

if you calculate correlation matrix between for x, what will happen you will get certain 

correlation coefficient.  

 



This will be your correlation matrix 2 x 2 you will find out that r12 to that will be as you now, 

that correlation coefficient varies from- 1 to + 1 and here x2 and x1 the relationship is positive. So 

you will get it is a quite large value may be it may be almost = 0.9 here 0.90 getting me. So, this 

is one aspect that we have taken two dimensional or regional data x1, x2 their scattered plot looks 

like this and it shows there is linear relationship primary linear relationship and if you go for 

correlation matrix you will be finding out that the relationship is strong enough okay this is first, 

second issue here if i want to see the variability of x1and variability of x2 then these are s11 and 

s22. 

 

This is the variance component now if we go for that this is sample, suppose population 

covariance population co variance, then what will happen this will become σ11 σ12 σ12 σ22. Now, 

this population variance component for x1 is this σ11 and for x2 is σ22. If we see the scattered here 

if we say that n is representative enough for the population large value. If we see the scattered 

here then you see that the across this x1, this is the range variability range similarly, if see across 

x2, so you will be getting another range that is variability x2 okay so, you see that definitely the 

x2 and x1 variability are not same, but their substantial values that means if this is my diagram 

this is my relationship then definitely s11and s12 s11 and s22 for x1and x2 respectively this value is 

high correct.  

 

Now, let us see that another okay the same diagram, let us see that you are rotating this axis x1 

and x2 anticlockwise rotating the axis x1 and x2 rigid rotation keeping this origin this one visit by 

angle θ, then what will happen you will get new direction for x1and x2 correct, if I rotate x1 / θ 

then x2 is also will be rotated by θ. Now, if I say in the new direction this one is z1 and this is z2, 

this one is z1, then z2, what can you say about the variability of the dataset along z1 and z2 getting 

me. So, if I draw one more figure along z1 and z2 here. 

 

Then suppose, I am writing this one, basically in this, what I am doing now, this z1 is this along 

θ, now I am rot I am just making it like this, so that it will be we will be able to see it clearly. 
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In the sense correct if you see the scattered plot, now this one is z1 and this one is other one is z2 I 

think it is like this only correct. Now, if we see the variability across z1, this is variability of z1 

and similarly, if you see this one across z2 you are getting this variability across z2. What are you 

getting here if I plot both the figures now here? So, basically you got something like this one is 

x1 and this is x2 and we have seen that variability of x1 and variability of x2. Okay so, this is our 

original data dimensions and this is as we have rotated by θ degree anticlockwise. We are saying 

that transformed data getting me transformed data.  

 

Now, it is clear from this two diagram that although here from variability explain variability of 

x1 and x2 point of view. If I see that the both are large and may be x1 variability little more than 

x2, if I go by this z1and z2, what I am finding out variability across z1 is much more then 

variability ax z2. So, what we have got then variability across z1 is greater than variability across 

z2. Second thing is that this is one second issue is here, that here in x1and x2 both the variables 

are co related. That is way you are getting an ellipse by variant l ellipse inclined one that mean 

this if I see that ellipse here the major and minor axis of the ellipse are not parallel to x1and x2. 

 



It shows the dependency between x1and x2. Now here in the transform case, what is happening 

major axis of the ellipse is across z1 minor is ax z2. This shows z1 and z2 are independent that is 

what I said the orthogonal dimensions orthogonal dimension or orthogonality is preserved okay 

now, can we do this is there any mathematics by, which we can we can transform the correlated 

structure data structure into uncorrelated data structures well as from correlating that means in 

the reduced dimension, while reduced dimension if the variability across z2 is much less 

compared to z1, then what will happen we can say that the information content across this z2 

dimension is very less. 

 

We can ignore this information we can just capture the information here in statistical sense 

information is the variability variance part so, z1 alone is sufficient to give us the information, 

what is available in the original data set if this is the case, I will go for only one dimension than 

this z1 that this what this the reduction so, principal component analysis we will do this not 

necessary for necessarily for these two dimension it can be a then for p dimensions by p 

dimension, what we mean that your x data matrix is n x p that mean the variable you are 

considering x variable is x1, x2, there are p variables p can be quite large, it can may be fifty. So, 

we are now converting what you are doing this X is converted to z. 

 

If X is p variable case p x 1 vector z can be p x z also we can extract suppose z is m x 1 vector. 

So, m can be less the equal to p okay depending on the correlation structure the matrix the matrix 

will be using the rank of the matrix and all those things, but essentially what do you want 

basically, we want that m should be less than equal to p. If p is very large m should be as low as 

possible compared to p. So, that is what is done in principal component analysis getting me. So, 

principal component analysis is a data reduction techniques it transform original data matrix or 

data set into some other dimensions of reduced that components and it preserves the 

orthogonality of the components. 

 

As a result, what will happen what are the advantages you will be getting from here advantages 

is, suppose we want to do a prediction model using multiple regression and my X variable, these 

are all IVS independent variables. If IVS are correlate then that ultimately leads to 

multicolinearity problem multicolinearity are there. So, under multicolinearity condition the 



regression model what you want to fit that y = f(x) linear model. This model will not be a good 

one, because under multicolinearity it may not be possible to estimate the parameters.  

 

If you use to estimate, what will happen it may be there may be distortion and many things will 

be there. There are different ways to do for example, is regression can be done in case of 

multicolinearity problem, but my question is, if I can make them independent, then this IVS be X 

can be transformed to this z scale. Like z here these are truly independent so now you can fit a 

model using f(z) getting me. These are the advantage, now what is the principal basically, how 

this things that data reduction here or the orthogonal reduction. 

 

That is dimension orthogonality of dimension is maintained and data is reduced to lower 

dimension what is the method will go by that the two by two matrix case for s. 
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So, the same two dimensional case so, if I see this okay so you have seen that we got a ellipse 

like this in the original dataset x1and x2 correct now, let us think that there is one point M okay 

this for example, let this coordinate is x1 and x2, x1 for x1 variable x2 for x2 variable okay now, 

what you have done when you are converting to z that means z1 and z2 so this is z1 and this one is 



z2.so, I am writing this point little high above for example, let it be here this point okay this is the 

point.  

 

So, you have rotated x1 / θ anticlockwise and this also θ I want to know first you say, what is this 

point this value here, if M is x1, x2 then this value is x10 for example, let this is M one point on 

the x1 axis similarly, if you project this M that projection on this point projection on x2, what will 

get you may get a point M2, what is 0 x2 this coordinate geometry okay now, what we want we 

want to find out, what is the projection of this M1 on z1 as well as z2 getting me so, you just let 

me draw this is axis, now clearly what you want here this is your θ, our aim is we want to find 

out this is this one x10.  

 

I want to find projection of M1 on x2 at z2 and z1. So, what you do you will find draw a 

perpendicular here from this point you want to draw a perpendicular so, from this point draw a 

perpendicular here similarly, you want also from this point you want to draw a perpendicular line 

here and perpendicular line here, what you are doing now, that x1component is projected on z1as 

well as z2, x2 component is projected on z1 and z 2.Now, this angle is θ, this is θ, if this one is θ 

and your this also θ, so this will be θ. So, ultimately, what you will find out that the projection of 

M1 on x1 will be x1 cosθ.  

 

Okay so, if I write z1 we have there are two projection one is from x1 cos θ similarly, there will 

be another projection that is a + x2 sinθ x1 cos θ x2 sin θ okay so, similarly in the z2 axis, what 

will happen that - x1 sin θ + x2 cos θ, simple trigonometry so, you will be able to find out only 

just know the θ once you know the θ you know the triangle and project it okay so, then this one 

if I write in matrix term I can write like this z1, z2 = cos θ sin θ - sin θ cos θ[ x1, x2 ] we can write 

like this. Because z1 = cosθ x1 x1 cos θ +x2 sin θ z2 = - x1 sin θ+ x2 cosθ  

 

This equation you are getting okay so, then I can write this one equal to z = A
T
x where z is 

nothing but this one z1 z2 and A
T
 this one. We are saying A

T 
this is A

T 
and this is your x and this 

is your z. So, if i do like this then A
T 

equal to our cosθ sin θ - sin θ cosθ so, then what is the a 

matrix transpose of transpose this will be cosθ -sinθ sinθ cosθ this row transformation. Okay so, 

instead of p = 2 if there is p = p what will happen you will get z1 z2 zp that will be your z and 



your this equal to A
T
. So, a transpose I am now writing that like this our A is a1 here this is 

nothing but this column and a2 is this column.  

 

Okay so, if there are p variable there are two variable, so that why you are getting this one is 

equivalent to a11 this is equivalent to what we are saying a11, x1 + a12, x2 so, this is a12 and this 

one is a21 and a22 you can do this in θ cos θ sinθ we have written here in place of cosθ sin θ I am 

writing that this is a11, a12, a21, a22 like this. If there is p variable case through, you can write 

down like this a11, a21 a this is transpose A
T 

a11 a12 like this a1p a 21 a22 like a2p. Similarly, ap1 ap2 

like app, this is your p x 1, this one is your p x p and then your x1, x2, xp that means this two 

dimension this case.  

 

Now, we are making like this and we are writing in terms of s so, this if I write further I can 

write this one is A
T
x, what we have written earlier also okay then what do you want to see that 

how this that we say that it will be orthogonal transformation. So, how this orthogonality is 

maintained here with this two dimension case we want to see. 
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What we have written for the two dimension case A equal to our cos θ sin θ -sin θ cos θ that we 

are saying we can write like this a1 and a2 getting me. Now, then what is you a1 a1 is cos θ sin θ. 

Now, if I want to know what is a1
T
 a1 what will be the value here cos θ sin θ[ cos θ sinθ] will be 

cos
2
 θ + sin

2
θ will be one getting me. Similarly, you will be getting a2

T
 a2 = 1 correct now, then if 

I want to know that what is A
T 

A that will be cos θ sin θ - sin θ cos θ into a is cosθ sinθ – sinθ 

cosθ 2 x 2 x 2 cos cos sin sine+ cos 
2
θ + sin

2
 θ that will be 1.Now, then cos – sine sine - cos this 

will be 0, 1.  

 

Okay so, this will also be if you do AA
T
 you will get the same thing correct and see this is 

symmetric matrix in such a way that if you do like this A
-1

A is also be getting same thing I mean 

this is identity matrix. That means what we are getting A
-1

A is I when A
-1

A is I this is what is 

orthogonal matrix that of diagonal elements are 0. So, you are getting orthogonal transformation 

okay and this transformation matrix, this is orthogonal transformation matrix A. Okay Now, 

what we will do, I will show you one slide here. 
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You see that there are p variable for X and you can extract p principal components z1 z2 to zp and 

their equation will be like this. What we have seen then what I mean to say if you just see this 

our earlier development that I think, I told you here.  

 

(Refer Slide Time:  32:35) 

 

 

 

z1= a11 x1 + a12 x2 + a13 x3 so, like this you will be getting so what will be getting. 
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 z1 = a11, x1 + a12 x2 + a13 x3.z1 = a1
T 

x, which is a11 x1 a12 x2 … a1p xp similarly, z2 a2
 T

 x 21 x1 a2 

2 x 2 like a2p xp  so, if you write down here zk or zj you write let it be zj then aj
 T

 aj1 x1aj2 x2 ... ajp 

xp. So, following if you go up to the last principal component that may be possible to get that is 

ap
T
x, which is ap1 x1ap2 x2 like app xp. okay and we said that we want orthogonal transformation, 

so when you are reducing the dimension the principal components are, we want this type of a 

trans aj
T
 a = 1 that is one thing second one, what do you want we want that when we are 

extracting the principal component z1, which is the first principal component the variability in z1 

must be the maximum must be the maximum. What we have discussed earlier in this 

explanation. 
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We say we want the first principal component in such a manner that, it will explain the 

maximum variance possible second principal component will explain the next maximum 

variance followed similarly, third one like this with this is the case. 
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Then I can say here variance of z1 greater than equal to variance of z2 greater than equal to 

variance of zp.  
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So, what we will do then we will. 
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Just one minute. 
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So I have shown you this thing and that, this is possible.  
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Now, we want to find out. 
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What will be the principal components given a data matrix x how to extract the components fine 

so, here before going to this extraction part I have to tell little bit of that we are saying that in 

general. 
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We are saying zj is aj
T
x were zj is the j

th
 principal component this is j

th
 pc and this aj and x, what 

are those aj and ax you will be x you know what is this aj, we will be defining late on it is if you 

see the equation and similar to regression coefficients a11 x1 +a12 x2 + a1p xp similar, to 

regression coefficients, but it is not so, now I want to know I say that variance of zj you require 

to compute, because variance of z1 greater than variance of z 2 like this, what will be the variance 

of zj. 

 

It will be variance of aj
T
x then it will be a j is the constant here, so aj

T
 variance of x aj. as we 

know this is a vector basically aj is a vector later on you will be you know that aj1 aj1 to ajp that is 

a vector. Now, what is the variance of x, x is what is the variance of x means, that will be the 

covariance of x. so, covariance of x will be Σ you have seen earlier indifferent class  Σ12  Σ1p  Σ12 

Σ22 Σ2p that is Σ1p Σ2p Σpp. 

 

So, that means this will be aj
T
Σ aj okay then what will be the expected value of zj expected value 

of zj will be expected values of aj
T
X, which is aj

T 
expected value of X, which is aj

T 
μ. Because, 

we said that X is p variable vector and it is it has p mean vector μ1 to μp correct so, that mean 



essentially that aj
T
x which is something, which is having aj

T
 μ aj

T
Σ aj that is the mean and 

variance part okay so, if there is normally distributed then you will put normal n, so aj
T 

is1 x p. 

 

Now, what will be your μ part suppose, this one if you 1 x p into p x 1. So, one into 1 into 1 and 

this one also will be 1 into p into p 1 into p that is one into1. So, this is aj
T
 x this one will give 

you a univariate case this is linear transformation of variable x all the principal components are 

linear transformation, that, aj
T
 x that is the linear transformation. Now, if you do not get the 

values of Σ capital Σ as well as the μ, because these are population these are population 

parameter that is μ and Σ. 

 

If you know μ and Σ and then giving a data matrix you go for this type of extraction of zj. Then 

this will be known as population PCA getting me, what I mean to say if you know μ and Σ of the 

population that x variable case. Then you are doing population principal component analysis, but 

it is seldom known you will not get this two values. So, what is the then the rescue is you will 

use    as estimate of μ and S as estimate of Σ. So, when we use s actually here, we will be we will 

be playing with the covariance matrix.  

 

So, if you use S, which is the covariance sample covariance matrix then your principal 

component analysis will be known as sample principal component analyze. So, we will be 

writing it as sample PCA and essentially population PCA is not possible. So, we will go for 

sample PCA, because when we are talking about applied principal component analysis, then we 

have to rely on the data and will go by sample PCA. So, next we will discuss sample PCA that 

mean show we will extract all those thing. Okay when we will use sample PCA.  
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Then your extracted value of zj will be expected value aj
T 

x. So, this will be aj
T
 expected value of 

x, which will be aj
T
    okay from sample point of view similarly, your variance of zj this will be 

your variance of aj
T
 x, which will be nothing but you are  aj

T 
covariance of x aj. This is aj

T
 now 

covariance of S will be replace by S aj correct so if I say that okay this can be normally 

distributed then ajx it is normally distributed with aj
T
    aj

T 
s aj okay now, I will explain you when 

we extract PC. 

 

 What are the principal we follow getting me, we will we will discuss the principal. Now, let us 

see the slide. 
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 Each PC is a linear combination of x1 linear combination of x  ap x 1 variable vector. That is aj
T
 

x you have seen this one already first PC is a1
T
 x subjected to a1

T
 a1 = 1. That also you have 

describes that maximizes variability of this variance of a1
T
 x. Second PC is a2

T
 X that maximizes 

variability of a2
T
 X and subjected to a2

T
 a2 = 1. Covariance of a1

T
 X a2

T
 X = 0, keep in mind this 

one, what is happening. We are saying first component you are extracting that is our z1 is the first 

component. 
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Which is a1
T
 X you will extract in such a manner that the variability of z1 will be the maximum. 

Also you a1
T
 a1= 1that is the normalization case. So, I have a data set, so and in this suppose this 

is my total variability portion. So, z1 will extract as max as possible by z1.So, let z1 variability 

extracted is this much then I am coming to the second PC, which is my a2
T
 a x here. What 

happen the remaining variance I want to extract maximum of the remaining variance so, variance 

of z2 that is the maximum of the remaining. So, let I am able to extract this one z2 see, ultimately 

if this is my total variability z1 and z2 has already may be around 70% is extracted by the two 

components. There are p components this is also here a2
T
 a2 = 1 and covariance of a1 x a2 x this = 

0 because, orthogonal component. 

 

Now in this manner if you go for zj then you will write aj
T
x. Here, you will definitely maximize 

the remaining variance already j - 1 components are extracted the remaining maximize this one, 

the remaining variance. Here, also you will write aj
T
 a j this = 1 and covariance of aj x a k x this = 

0 for k less than j. Why k less then j what I am saying you're means k up to k can be 1 to j - 1.So, 

when you are extracting this, please keep in mind this is the principals what I am saying that 

when you are extracting the first component that basically, takes care of the maximum variance 

of the data set subject to this normalization. 



Then a2, ax, z2 second principal component goes for the second max of variability of the 

remaining variance and subject to this as well as covariance component between the first two 

that will be 0 when you go for the third, there also you will you will maximize the variability of 

that component subject to the remaining variability. And you also make a normalize it that a a3
T
 

a3= 1 and covariance between a3, a1 as well as a3, a2. That x is common that will be 0.So, in the 

same manner you will extract.  
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Okay so, then essentially what we are doing now actually, if I go by the general component that 

is zj. This is my aj
T
 x we are we want to maximize the variability of this, which is our aj

T
 S aj. 

Now, I am using sample covariance matrix and subject to what we are saying that aj
T
 aj

 
this= 1 

correct so, we have two things first one, we want to maximize this second we have this concept. 

So, this second one I can write like this aj
T
 aj-1 = 0.As we want to maximize this with respect to 

this condition, so what we can do we can create a function. Suppose, this function is l, which is aj 

transpose s aj- λ into aj
T
 aj- 1.  

 

Correct so, we are using a function this is the lλ is the Lagrange multiplier λ is Langrage 

multiplier. So, you know that this is the general way of maximization process using langrage 



multiplier. So, what you require to do now you require to find out the aj
 
value in such a manner 

that this function will be maximized. So that means what I want δ a / δ aj, that is what I want 

getting me, so this you want to put it 0 provided δ2 l / δ aj that will be that matrix. You will also 

get this should be that maximization that positive definite and negative definite case is there that 

condition must satisfy. 

 

So, this ultimately results into this equation it will be like this S - λ I into aj = 0. See this is if you 

take derivative with respect to aj it will be 2 Saj if you take derivate with respect to aj it will be 2 

λ a j this derivative. So, ultimately it will be 2 Saj- 2 λ aj that= 0. So, 2 will be cancelled out that0 

is there, so S - λ, but s is a matrix λ is scalar this into aj= 0 so, that is the equation okay so now S 

is your p x p matrix. Because, p variables are there λ is a scalar it all depends on that what will be 

there number of λ, but I definitely p x p matrix.  

 

Okay then this equation is a famous equation in matrix algebra, anyways you will find out that 

set of linear equations case suppose and more famous one is this one. 
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Suppose I want to know the λ values then what you require to do you have to find out the 

characteristics equation this = 0.So, determinant of this = S – λ I = 0 determinant of this =0. This 

is a characteristics equation getting me, so if S is p x p then this equation has p roots that means 

you will be getting λ1 with the condition greater then = λ2, like this λp.  
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Okay so, let us see now some more slide here. 
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So I said that this will be the that p the order polynomial is there p root you are getting. 
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 You have to this is the if you know λ. 
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Basically from this equation you will be able to find out λ values. Now, take 1 λ put into this 

equation. 
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And then you find out the a values okay. 
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 I will show you one data set.  
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Now, this is the dataset what is the profit and loss? For example we have started with and if you 

of you plot the scattered, what you are getting you are getting that it is almost linear relationship. 

So, that means one here data reduction is very much possible, so we tried with two variable case 

and what we found out that these are the things.  
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So, first is the covariance matrix. Covariance matrix is S.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  55:13) 

 

 

 

So with this example S is 1.15, 5.76 then your 5.76, 29.54.Now, what we want we want S - λ I 

determinant = 0. So your I will be 2 by 1001 I is identity matrix, so if I do like this - λ I. So, that 

means instead of λ I am writing 1001 okay this total determinant if I write and if I put into 0, 

then what is the resultant. This one 1.15 - λ5.76 then 5.76, 29.54 - λ this = 0, determinant of this 

= 0.So, ultimately you will be finding out 1.15- λ into 29.54 - λ -5.76
2 

= 0. It will be it is a 

quadratic equation of λ because our S is 2 x 2.  

 

So, there will be 2 roots, so λ1 and λ2, so that roots will be the two roots of two roots of λ. Let it 

be λ1 and λ2 now using this equation you can find out.  
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So, what I means to say the resultant equation is 1.15 into 29.554 - 1.15 λ -29.54 λ + λ
2
 - 5.76

2
 = 

0. So, λ
2
 -you add this 30 I think 30.this λ, this one then this two is to be added that you will be 

getting some value. This is the sum positive value you will be getting okay if I consider this as c 

then you λ is - b -b is 30.69 - b + - √b
2
, b

2
- 4ac, a is 1 c / 2 into a is 1 this will give you the Eigen 

values two values λ1 will be your 30.66 and λ 2 will be 0.03 correct so, you are getting your λ1 

and λ2, then what you require to find out you require to find out the a values.  

 

So, what you will do now, we know S- λi aj that will be = 0, so here will be using λj. Now, so as 

λ1 = 30.66, so you put S is 1.15, 5.76 then 5.76, 29.54 this - λ is your 30.66 and into this matrix 

1001. This matrix this into a1 = 0, now you are a 1 will be what a11, a12, because there are two 

variable. So, I can write a11, a12, a11, a12 that will be 0 this value will be 0, but what will happen 

ultimately, you will be getting two equation and you will not get unique solution. You will get 

infinite solution under these conditions because this is a equation is 0 and that means there will 

be infinite number of this a1. So, in order to restrict that what we will do a1
T
 a1=1 so if a1

T
 a1= 1.  
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Then what will happen a11, a12, a11, a12that is one. So, a11
2
 + a12

2
 = 1. So, whatever equation you 

are getting here that earlier equation you put a11= from this equation. What is the value you are 

getting you will be getting positive and negative values. So, you put this one once you put into 

this equation. 
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Or a11, now a12 will be replaced by a11from this first equation a1 is already there. Our a 1 relation 

you will be getting from here from this you will be getting, because this is two by two this into 

this + this into this. So, it is a two variable equation will be like this. 
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Some value into a11+ some value into a12 that will be 0 like this. So, similarly now you are 

getting one relation from here suppose this is your p and this is your q. Then you are getting a11= 

q / p - a12 Here, you put instead of a11you put - q / p
2
 a1 to + a12

2
 s + a12

2
 + a12

2
= 1. You will be 

getting a12
 
and putting here you will be getting a11.Similarly, a21and a22 you will be getting. Okay 

so, the final one this is the that why this. 
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This is your a11, a12this is a21, a a22 and you are getting third principal component z1 and z2, this is 

the manner of extraction of principal component. 
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