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Good morning today we will discuss multiple regression. 
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The contents of multiple regressions are first we will start with a conceptual model, then we 

will describe the estimation of parameters. Then we will go for sampling estimation of 

parameters in terms of β vector then sampling distribution of sampling distribution of β 

estimated. Then we will go for sampling distribution of error sampling distribution of error 



estimated, and then we will go for that model fitting lesson that is adequacy of a model 

regression model.  

 

Then we go for test of individual regression parameters, which is all β s. After that, we will 

test the assumptions related to regression, then there are certain diagnostic issues, then 

prediction using multiple linear regression. Finally, a case study will be showed, so this is in 

totality will be covered under multiple regressions. So, we will go by the first the model, then 

estimation of parameters sampling distribution. I think, today we will be able to cover this 

one, conceptual model and estimation of parameters. 

 

I think this is for one hour then sampling distribution of that β estimates and sampling 

distribution of error estimate, I think one more hour is required there. Adequacy of regression 

and this test of individual parameter maybe one more hour, test of assumption one hour, then 

diagnostic issues one hour and prediction one hour, and case study one hour. So, 1,2, 3, 4, 5, 

6 hours, 6 hours we will be discussing on multiple regression. Now, let us start with an 

example, I think in first class and also in subsequent lectures. I have given one example for 

the City can data. 
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City can is a small company working in the local market and we have seen that the data 

structure was like this. Other way, we can start with the variables the important variables for 

this particular company profit, then sales volume, and then they have found out the 

absenteeism, percentage of absenteeism of workers or employees. Then, related to machine, 

that machine breakdown hours monthly, then they also have a marketing department whose 

performance is measured through M ratio.  

 

The company’s primary interest is how to improve the profit that definitely through 

maximizing the sales and apart from many other things. The company is interested to know 

how these three variables that absenteeism, breakdown hours; M ratio is affecting sales 

volume as well as affecting profit. Now this is the case then they under this situation, there 

are two types of variables one called dependent variables or dependent variable DV, another 

set is known as independent variable which is IV. 

 

 So, in this case profit is one dependent variable, sales volume is another dependent variable 

and there are three independent variables like absenteeism, breakdown hours and M ratio. 

Now, what is of interest in this particular case here, we want to test that whether the 

independent variables are contributing. 
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In explaining the dependent variable one at a time it is happening or not, if we can find out 

that. 
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Yes there is influence of the independent variables on the dependent variable. Then, 

depending on the influence measure some action scan be taken to control the dependent 

variable with the help of controlling the independent variables. So, pictorially if we now 

consider that one dependent variable, let it be sales volume which is y, we are denoting like 

this. Other variables we are denoting like this X 1 
=
 to percentage absenteeism, X 2 

=
 to 

breakdown hours and X 3 is M ratio.  

 

So, we are not considering profit at present, later on we will see that how profit also can be 

included. So, under this situation, if I define like this that y within a circle or ellipse and X 1 

within a rectangle, X 2 with another rectangle X3 with another rectangle. I can create some 

straight line curved with the arrow head to y, and then this will determine that the respected 

IVS are influencing the dependent variably that is the measure.  

 

So, that means X 1 influences y that is why the arrow head even it is from X 1 and terminate 

sat y that is the case. So, I can say that if X 1 has influence of β 1, X 2 has influence of β 2 

and X 3 has influence of β 3, what does it mean? It means that if I change one unit of X 1, 

there will be β 1 unit of change in X 2 if you change one unit of X 2 there will be β 2 unit 

changes in y. If you change one unit of X 3 there will be β 3 change in y. If you change one 

unit of X 1, there will be β 1 unit change in y, similarly if you change one unit in X 2there 



will be β 2 units change in y, one unit change in X 3 causes β 3 units changes in y this is the 

meaning of this influencing parameters.  

 

Now, what will happen, suppose none of them for example, absenteeism, break down and M 

ratio, none of them contributes to y will not be your sales. There will be sales also, it is not 

necessarily that they have to contribute always, so in that case we require some other 

parameter which is known as β 0 that is coming through X 0 where X 0 takes value of1 that is 

always X 0 = 1.  

 

Always by saying this, what we are trying to say that even if there is no influence of X 1, X 

2,X 3 still there will be some amount of y values, this is the constant term β 0 is added there. 

Now, if you take one observation of y followed by second, third like this what will happen? 

You will find out that you are not able to explain using β 1, β 2, β 3 and β0, and all these 

values not able to explain the total variability in y.  

 

This means there are some other variables or some other, either they are controllable or 

uncontrollable variables are there which are also contributing towards the variability of y. So, 

as a result we require another measure which is known as error that mean, in µltiple 

regression case you will get three types of I can say parameters one is β 0 constant parameters 

which is known as intercept. Then, the influence of the independent variables, these are 

known as that influencing parameters or regression coefficients, also β 0 is also regression 

coefficient, intercept coefficient.  

 

Then, another one is a random one which is error which also contributes, so essentially then 

what will happen? If I want to put the entirety in terms of an equation, I can write like this y 
=
 

β 0 X 0 + β 1 X 1 + β 2X 2 + β 3 X 3 +  ε.  
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You can very well write this one, so that means this figure is the pictorial representation of 

multiple regression model which in mathematical term you can write using an equation. Now, 

as we have said that that X 0 will take value of 1 always, so this can be written like this β 0 β 

1 X 1 β 2 X 2 β 3 X 3 + ε.  
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Now, if we generalize this one that we are not interested only in three variables, we will go 

for a variable vector which is having what I say three variables let it be. So, I am writing like 

this X 1 X 2... X p, so there are p variables which are contributing towards y and as we have 

already seen, there is one intercept parameter and with related to one constant X 0 that one 

we are making it 1. So, we can write if we want to create this X in terms of also you want to 

add X bar, X 0, then you can write this one p +1 into 1.  

 

See this X 0 is need not required to be written here, later on it will be taken care of essentially 

this X 1 to X p is the variables IVS X 0 is a constant that intercept term will come for that. 

So, then if we go by X 1 to X p, this is p × 1 variable vector under this situation what will be 

the β because there will be influence for each of the variables. So, I can write β 1 β 2 dot, dot, 

dot β p which is p × one but see there is one intercept parameter intercept parameter related to 

X 0 so that is β 0, so you require to estimate p + 1 parameters regression coefficients here.  

 

Now, I can write like this y 
=
 to β0, β 1, X 1, β 2, X 2 dot, dot, dot, dot β p X p +  ε. So, this is 

in general the general regression equation this is the general regression equation you can 

write later on we will write it in terms of matrix equation. Now, let us assume that you are 

going to you are collecting data, 
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So let n data points are collected or you can collected if you say to be collected this will be 

the all observations will be random. So, in this case our data matrix will be first one is the 

dependent case, so y it will be y 1 y 2 y 3 like your y n data points. Then, you are collecting 

X that will be n × p n is the number of observation, p is the number of variables, so we will 

use here X 1 1, X 1 2, X 1 p, X2 1, X 2 2, X 2 p. So, like this X n 1, Xn 2 ...X n p, so this is 

related to IVS, these two sets of data you will collect.  

 

Now, if you use this data set into the equation given here, so for every data set or every data 

points this equation will become true. So, in order to incorporate that every data points into 

consideration if I write one yi here, and then here it will be X i 1, Xi 2 like X I p, this is what 

you are saying the general observation related to this. Now, if you want to write the equation 

here, the equation then what you will write, we will write y i 
=
 to β 0 β 1 X i 1 + β X i 2 + β p 

X i p +  ε i.  

 

Then, what is this quantity, this quantity you see it is a weighted linear combination of 

several variables here basically multiple random observations. So, can you not write-down, 

this is variate, this is weighted linear combination, and this is variate. Then, what does this 

variate represent? In this case, this one represent the expected value of y i given X i what is 

this X i 
=
 to? Basically, X i 1, X i 2 like this X i p getting me without error term, this one is 

the expected value of y i. If I know the i
th 

observation for the individual variable like this, 



then what will be the expected, what will be the value of y i that is the predicted value. As we 

do not know that what are this IVS for the i
th

 observations, so accordingly we also do not 

know what will be the y i value, but by this variate we are saying that what will be the 

expected value of y i. If you collect i th observation Xi 1 to X I p. And then that mean what is 

happening then y i 
=
 + ε i. This expected value is nothing but the predicted value; suppose 

you want to use this later on this will be the better. So, I can write from here that ε I 
=
 to y i - 

y i cap.  

 

So, essentially what are the things we have found out here, we have found out all the 

coefficients regression coefficients also the error term? We also described that that this linear 

combination of the variate and this variate will basically talk about what will be the value of 

expected value of y given these conditions.  
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So, these are conditional y we say we also write this one as µ of y given X in general term, 

we will write µ of y given X. If I say y I, then given X i where X i is this is the observation.  
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So, if we further assume little bit this is because you just assume that this is one X and one y 

and you are fitting a linear line, suppose this is your Xi. So, what will be the regression line, 

the linear line then you go like this you will be meeting you are getting this point here. What 

is this value this value here? This is nothing but this value µ mean value of y for the i the 

observation given i th observation.  

 

Now, why we are talking about mean value, the reason is suppose you collect for the i th 

observation, if you collect one, now you will get some value here. If you collect two, the 

value may change, so ultimately there will be one error part. So, this one is taken care of by 

the concept error, so any point on this regression line which will be fitting later on. These 

points are the mean value of y given x, so we will see later on when we fit all those things I 

will tell you that how to make all those things. Now, we have collected n data points and we 

have also a regression equation that  
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y i 
=
 to β 0 + β 1 X i 1 β 2 X i 2,like this β p X i p +  ε i. If I write it for all the observation, 

then y1 will be β 0 + β 1 X 1 1 β 2X 1 2 like this β p X 1 p + ε1. For y 2, you will be writing 

like this β 0 + β 1 X 2 1 β 2 X 2 2 + β p X 2 p + ε 2. If you go on writing, ultimately up to the 

n th term, you will be writing like this β 0 β 1 Xn 1 β 2 X n 2 β p X n p +  ε n. So, if i write in 

matrix form, now can you write y 1 y 2 like y i then y n, for the left-hand side you can write 

this, s so this n ×1 vector I can write this 
=
 to. If here for β 0 there is only one that is 0, so1, 1, 

1 for β 1 x, what is this 1, 1, X2 1 X i 1 X n 1 for β 2 X 1, 2 X 2, 2 XI, 2 X n 2.  

 

Similarly, for β p X 1 p X2 p then X i p then X n p, this one is now what will happen, here 

there are n into p + 1 p variables, one for the intercept. So, if I multiply it by β 0, β 1 to β p 

this will be p + 1 into 1, then the multiplication of this will give you n × 1 . It is giving you n 

× 1, so n × 1 
=
 to n × 1 which is basically this portion is taken care of by this + there is error 

terms  ε 1,  ε 2, ε I,  ε n this is n × 1. 
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So, the resultant can be written like this y 
=
 to X β +  ε, so where y is n × 1 vector of 

observations of the dependant variables, X this is n into p + 1.The data matrix of IVS 

including intercepts, this is also known as data matrix. Actually, X is this one including 

intercepts, so we say this one as design matrix, β is the p + 1 × 1 regression coefficients and  

ε this is n × 1 error terms n × 1 error terms.   

 

So, this is a nutshell equation for multiple linear regressions in matrix form. Now, we will see 

some of the assumptions of multiple regressions, first assumption is linearity, so that is linear 

relationships, second assumption is homo scedasticity or we say 
=
 y variance across the 

values of x. Other way, you can say IVS given observations of IVS that homoscedasticity 

 

I will show you how it will be done. Variance a× y a× X y variability remain constant, then 

third one is we have seen that the error term is there. So, the error term will be uncorrelated 

error terms, which mean there are n × 1 errors. These vectors this will not be correlated, 

uncorrelated error terms and definitely linearity, sorry normality of the error terms normality 

of the error.  

 

So, these four assumptions needs to be tested later on after fitting the model we will test this, 

but at present at this moment is should say something about what is this. So, first understand 

what linearity is, 
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You consider your relationships y versus x, for example it is X 1, and then when you plot the 

data if you plot the data. So, suppose you are getting this type of relationship when you are 

plotting with X 2 you may be getting this type of relationship, so in the first case there is 

linearity in the second case it is not a linear one. So, if your data that y versus X that 

relationship is non-linear then this model is not applicable, what you require to do?  

 

Then, you require converting this to linearity; you have to transform the data. Primarily, we 

want the transform IV first case from linearity point of view transform it. So, the data 

becomes linear the relationships become linear, now your relationships can be negative, 

positive no problem, but linearity is an issue. Second one is your homoscedasticity, I told you 

just few minutes back that suppose this is my X this is y, let it be because as we two 

dimensional 1, 1, 1, X your regression equation let it be like this.  

 

We are assuming that one fitting is possible linear fitting is possible, so you have collected 

data point’s n data points. Suppose, this is X 1, this one is X 2 and then you will go for this 

one is X i. So, similarly last one let it be Xn, so what I said that this observation, this is the 

first observation i 
=
 to 1 this is i 

=
 to 2, so like this i 

=
 to n. We are saying that you will collect 

one sample, but you may collect several samples also. Under such condition what we will 

have done for a particular value of x, you may get several values of y, so if you plot this 

several values for a particular value of x, then whatever variability of y you observe that must 



be 
=
. So, that mean we are saying this one if it is σ 

2
, suppose y 

=
 to1, so y 1 σ, y 2 

2
 σ, y 3 

2
 σ, 

y n 
2
. I think this is i 

2
, so what is the condition σ y 1 means at X 

=
 to 1, this y 2 y i y n 

2
, this 

should be σ 
2
.  

 

This is what is homogeneity from variance variability of y point of view, if there is violation 

of this, for example your plot may not be like this your plot something this here it is, but here 

may be it is like this here may be again small here may be big errors. So, across X values y is 

not homogeneous from variability point of view that assumption if violated you require to 

transform variables, but in that case you have to transform they variable.  

 

If there is linearity problem, you transform the variables, you can go for both, but it is 

preferable that you transform the X variable. If heterogeneous nature, that h eteroscedasticity 

is there, that mean not equal variance is satisfied, so in that case you have to transform the y 

variable. Then, third is uncorrelated error terms, actually you see this equation this figure, so 

when you use regression equation and you predict you will basically predict this points for X 

=
 1, this value X 

=
  2 this value 3 i this value.  

 

So, this value is the remaining portion is the error. Suppose, your case is like this your 

original value is here y i, then based on this equation you are saying this is y i cap, so this 

portion is my error portion, this is the error. Similarly, everywhere you will be getting error, 

what will happen here it is σ  ε 1,  ε2,  ε i,  ε n error uncorrelated error terms because each 

error is random, now  
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So the error will be will follow this type of distribution  ε. I will follow normal distribution 

with mean0 and what will be the variance, variance will be σ 
2
 σ y 

2
, that means what is this 

one σ y 
2
 we are writing it here σ 

2
 

=
 to σ y 1 

2
 

=
 to σ y 2 

2
. For all observation for equal 

variance, this condition is very important because we are considering these variability part 

will be taken care by the error.  

 

So, error will follow normality with mean 0 and variance σ 
2
 where this σ 

2
 is the basically 

the y variability for each of the observation of x. Now, what we are trying to say further that 

suppose that there are two error terms y i and y k, then the covariance between these two will 

be 0, which is uncorrelated error terms. So, as there are n errors, so if I see the covariance 

between the errors terms what will be the n × n matrix we will be getting diagonal elements 

will be the variance off diagonal elements should be 0.  

 

That is what uncorrelated error terms and normality of error is this error will follow normal 

distribution with σ 
2
 variability mean 0. So, these are the assumptions we will test all those 

assumptions later on when we fit regression equation and it is required to be tested,  

 

 

 



So once you are satisfied with the data that examining the data you find out that that 

assumptions are reasonably valid. Then, you will go for fitting that is estimation modelling or 

estimation of parameters.  
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Estimation of parameters model parameters, that is β we are talking about how to estimate the 

β where y is X β +  ε, this is my MLR, this is my MLR, so if you recall that we say y i is β 0 

+ β 1 X i1 β 2 X i 2. So, like this β p X i p+  ε i and if you do little modification, here then 

this will be y i - sum total of j 
=
 to 0 to p β j X i j when j 

=
 0, this X i j will takes the value of 

1.So, if I make a square of it, then you will be getting y i - j 
=
 to 0 to p β j X i j 

2
. So, this is 

for a particular observation, but we have n observation,  

 

so if I take summation over n what is this quantity, total error sum 
2
 error sum of 

2
 errors. So, 

this one is SSE, now we will choose β j values in such a manner that SSE will be minimum, 

so your ultimate optimization is used here choose β in such a manner that SSE is the 

minimum. So, you can do very easily this one  
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So we can write SSE also in some other way also. What will happen you have to go for 

derivation SSE by β j? This you put equal to 0 subject to what subject to that your del 
2
 SSE 

by del β j del β k, this is greater than 0. This is greater because it is a minimum case, so we 

basically know what happen, were here I am saying that only for one variable case, β j, here it 

is 2 β k. Also, we have taken that means the covariance part is two variables, this is coming 

into actually what is happening here there are so many variables p variables.  

 

Sir here should we means del square SSE divided by del β j β k or only jb two 
2
, you are 

talking about when there is only one variable we say this by now if k 
=
 to j it will take care of 

that issue. It is general form we have written here basically. It is basically hessian matrix. So, 

actually that I am trying to say as there is p +1 estimates, you are making, so you will 

begetting a matrix, so hessian matrix.  

 

That matrix will positive definite will be positive definite, that is what I mean to say, that is 

why I have written like this. So, every component you will be calculated and a matrix will be 

found and that matrix will be positive definite by positive definite we mean that suppose A is 

a 
2
 matrix. Now, you get any vector X, if you find out that X transpose A X greater than 0, 

that is that means a is positive definite, so what the hessian matrix will come that µst be 

positive definite then it is the minimum condition.  
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Now, let us write in terms of matrix then we found that  ε is  ε 1  ε2  ε n that is n × 1. We are 

making SSE mean 
2
 sum 

2
 error can you not write like this, this is a vector, so 1 ×n, n × 1 this 

will give you 1 × 1a scalar quantity. If this is true, you can write like this y - X β transpose y - 

X β, you can write because our regression equation is this. So, ε is y - X β, you can write like 

this, now if I take derivatives against β, then you will derive this one. It is nothing but the 
2
 

term. 

 

So ultimately what will happen, it will come like this 2X transpose y - X β 1, X transpose will 

come from here then this will remain this because we are deriving the derivatives for β any 

one will come from here. This is with matrix compatibility; we will get this equation, so this 

equation we will put to 0. I can write now that - X transpose y + X transpose X β 
=
 to 0, so I 

can write X transpose X β 
=
 to X transpose y.  

 

If I multiplied both side by inverse of X transpose X, then what will happen, what I have 

done, I X transpose X inverse I multiplied both side. Now, X transpose X inverse X transpose 

X in the covariance lecture I have given you that SSCP matrixes X transpose X. Can you 

remember that data of covariance type and I say that this is basically a square matrix 

symmetry matrix,  

 



So the inverse times this will be identity matrix. I think as generally it is programmed that is 

why. That is why case, so this one a identity matrix, so I can say that β we are writing, now β 

cap because we have taken the X transpose X all this fixed values which are collected from 

the sample. So, this will become X transpose X inverse X transpose y, so this is your formula 

for estimating regression coefficients, I will show you one example for the estimation part. 

Let us solve this one problem,  
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Suppose y is10, 20, 30, 40, 50, this is my 5 × 1 vector and my design matrix is 1, 1, 1, 1, 1 

that will always be there and let it be 5, 7 then10 then 12 then 20. We are taking it is basically 

5 × 2, so that mean y 1 variable independent variable, we have taken that is X and this one is 

your X 0 1 1 we have taken. So, what you require to calculate, you require to calculate β cap 

which is X transpose X inverse X transpose y. 

 

So you first find out your step 1 is find out X transpose X, so that will be your 1, 1, 1, 1, 1 5, 

7, 10,12, 20. This is X transpose, then your again X transpose X only, so one 1, 1, 1, 1, then5, 

7, 10, 12, 20, now this matrix become 2× 5. This is 5 × 2, the resultant will be 2 × 2 matrix.  

 

So, you will get this X transpose X, if you 1 into 1 like this, so there are data points, so you 

will be getting5 first this into this, this into this like this. Now, this into this into this like this 

sum of this 5 + 7, 12, 22, 34, 54, other side also this × this that will become 54,now 5 into 



this 25 + 49 + 100 + 144+ 400. So , 9 + 14 + 418 then 4 +4 8 + 2, 10 + 1, 1, 4, 4, 10 and 4 +1 

+ 7, so 718. So, you second what you require you require computing inverse, so is say this is 

my step one.  
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Now, step 2 step two I want X inverse X transpose X inverse, so this is my determinant of X 

transpose X that one by this one by this adjoin of X transpose X, so determinant of X 

transpose X equal to determinant of 554, 54, 718 which is 5 into 718 - 54 
2
. This will 

become5 into 8, how µch it is 40 + 935- this quantity will become 16, 96, 26,16 and the 

resultant quantity will be 674.Now, ad joint of this matrix 554, 54, 718,this will become, so 

718 will come - 54- 54, 5, this will be like this. So, your X transpose, X inverse then will 

become 1by 674 into 718 - 54 - 54, 5. 

 

This will become the quantity will become something like this, if we go by this by this will 

be 1.07, - 0.08, - 0.08 then 0.007. If you go little, if you want to make it then 0, 1 something 

will come for digit case okay. Then, what you require to know, now you require knowing X 

transpose y that is another thing you have to compute.  
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Then, your step 3 is compute X transpose y, so this one can be written like this X transpose y 

is 1, 1, 1, 1, 1 5, 7, 10, 12, 20, this is my 2 × 5 into 5 × 1 the 10, 20,30, 40 and 50, so this is 5 

× 1. So, it will be 2 × 2 × 1, resultant will be 2 × 1, so that n all will be summed here 10, 30, 

60, 150. Finally, then this is50 + 140 + 300 + 480 + 1,000. 

 

I think this quantity will become 0, this side, this 5 + 4, 9 + 8, 7 then 4 +3 + 1, 8 + 1 9, this is 

1970. So, your step 4 is β cap 
=
 to X transpose X inverse X transpose y what is our X 

transpose X inverse, we found out we found out X transpose X inverse. I think X transpose X 

inverse is 1.07 - 0.0801, 0.0801, 0.0007 into X transpose y is 150, 1970.  
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So, this quantity will be this is 2 × 2, 2 × 1, it will be 2 ×1, this into this minus this into this 

the quantity will become like this 160.50 -157.80 and it will become 2.70. Similarly, other 

one will become - 12.015 - 13.79, resultant quantity will be 1.775, and this is the case. 
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So, my regression equation is now y 
=
 to β 0, β 0 + β 1 X 1 +  ε 

=
 to 2.70 + 1.775 X 1 +  ε, this 

is your regression equation your y cap will be 1.70 + 1.775 X 1 this is y cap. If you want to 

find the ε cap the error term that is y - y cap which is y - y cap, we have to find out. Now, this 

one you have y values, you have y values like10, 20, 30, 40, 50 and you require to find out y 

cap.  

 

How do you find out you have X values, also X values are 1, 1, 1, 1, 1 5,7, 10, 12, 20, so this 

2.70 + 1.775 what is X 1 value 52.70 + 1.775. X 2 value 7.2701.775, X 3 value 2.70 + 1.775, 

12, 2.70+ 1.775 into 20. This will give you your error values it will be 5 × 1 okay, I think this 

is what estimation we have calculated very simple problem only one variable at a time.  

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 58:03) 

 

 

 

So, when you when you take y is function off x in the linear mode like β 0 + β1 X 1 +  ε,  ε 

only one variable, this equation is known as simple regression, simple linear regression when 

that mean p 
=
 to 1 case p 

=
 to. Now, if it is p is number of parameter to be estimated, then it is 

two intercept like this if I say p is the number of variable case, this is only 1.  

 

So, when it is p ≥3 or more number of parameters to be estimated, other way I can write p + 1 

should be 2,then it is simple regression when p + ≥3 that will be multiple regression. All 

those case, y is a single DV y is our single DV only one DV at a time we are considering. So, 

next class we will see the sampling distribution of β the β you have estimated this β cap I am 

I am saying sampling distribution of β cap,  
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That estimate basically, so this β cap you have estimated using a sample. If you go for several 

samples, the β cap value will change and it will become random. It is a random variable what 

about β is it a random variable the β the regression coefficient. From population point of 

view, you have y 
=
 to X β +  ε which we are talking about it is our regression line for the 

population β is the population parameter.  

 

So, that constant and they are unknown SI that is why you are obtaining this β cap which is 

estimate of β and expected value of β cap will be β. This is the unbiased estimation, so β is 

constant and random constant and unknown constant and unknown and β cap is random 

variable, but it is known. Now, when you are collecting data you are getting this value, so we 

will go for sampling distribution of β cap next class. 
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