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We will continue multivariate normal distribution.  
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Today our discussion will be on two issues; one is statistical distance, distance including 

constant density contours, and then we will see that how to determine that your data is 

multivariate normality. So examination of data for multivariate normality okay.  
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So let us see a statistical distance first. 
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Suppose you consider two variable case, X1 and X 2, now this is let it be this is the origin with 

μ1 and μ 2, in that sense. So let us give this point name as O and you want to know the distance 

from O to P, P is another point what is X11 from 1 and your X21. So, that when this point is from 

variable point of view X11 and X21 or other way you can write that X12 you can write that manner 

also. 

 

So then the distance between these two points that is OP that every all of us know that this is X11 

– μ1
2
 + X12 – μ2

2
 and this square root. This is a point with coordinate values for X1, this is X11 

for X2, this is X12 and this is the reference point O with μ 1 and μ2 as coordinate then the 

distance is this distance is known as Euclidean distance.  
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Now, let us see that we have several points scattered on a bi-variate plot X1 and X2 in such a 

manner that it basically resembles like this, the figure is like this or you can increase this. Now, 

if you find out all points equidistant from this O, that is μ1 and μ2 coordinate, all points 

equidistance from O that mean the equal Euclidean distance, and if you join them you will get a 

circle. 

 

So, all points on this circle are equidistance okay. Now, we will go to the process level for 

example, I told you in one of the classes that we have a manufacturing process and that process 

take certain inputs and gives certain outputs. This output is measured in terms of its quality, let 

there are two variables, you are measuring here X1 and X2 related to the output, it may be 

related to the process also okay. 

 

For the time being let us consider the output, then if you make a plot of X1 and X2 you may get 

a figure like this. Now, with little assumption in the sense that as if the figure resembles an 

ellipse okay, then I am keeping another observation on X1 and X2 which is here closer to this 

mean point, let it be here. So, as we have assumed earlier also this is our μ1 and μ2 this is one 

point, let this point is Q, let another point somewhere here which is P, correct?  



 

Now, if we go by Euclidean distance OP the distance between O, the origin and P it will be 

greater than OQ from Euclidean distance point of view. Euclidean distance what we say, that all 

points which are equal distance that will make an ellipse, and this suppose I want to get 

Euclidean distance with respect to Q, OQ that is the distance then you will be getting something 

like this the circle when you make, this circle see definitely OQ, this distance is less than OP, 

correct? 

 

Suppose, you do not know the distance concept, we are not interested in terms of defining the 

scattered observation from distance point of view, getting me? Then which one is closer to O, P 

or Q. So that if you see the scatter plot which one is closer to O, that μ P, this P is closer to O, the 

reason is because you are the general mass, the behavior of the general mass is like this, like an 

ellipse and point P belong to this general mass whereas, point Q is does not belong to the general 

mass.  

 

So, from the process point of view this is outlier, Q is outlier. Whereas, P belongs to the general 

mass because our figure is like this, it is like this, your point is here and all values are like this, as 

it your Q point is here, see Q and P. It simply indicates that if we go by Euclidean distance 

measure we cannot capture this behavior. What is the problem? Here the problem lies, see the 

variability across X1 and X2 is not captured. 
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In this equation. 
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And it is because of the variability along the two dimension the difference in variability you are 

getting this structure. So, we want to include variability into the equation. Now, let us see if we 

give weightage to each observation by its variability. What will happen?  
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Suppose, we will now first write this OP
2
, in the general sense X1-μ

2
+X2-μ2

2
 X1and X2 

variables this is your Euclidean distance. Instead of this if I give weightage to the observations 

by its variability I can write like this, X1 –μ1/σ1
2 

+X2-μ2/σ2
2
 that means the mean subtracted 

observation is weighted by 1 by σ1 as well as 1 by σ2 depending on the variable. So, this one if I 

write this is OP
2
, is it not an equation of ellipse, definitely. 
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But not this ellipse that is equation of ellipse. But not this ellipse, why here what happened? 

There are correlations. 
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So if we change, so this is an equation of ellipse and it represent two variables which are 

independent like this. So, if I say across X1 variability high X2 then this one is our equation of 

ellipse, and if you take a point here, suppose this is your P, this one is O, O is μ1 and μ2 and P if 

say X1 and X2 then this OP, this distance is this one, this is the formula for this distance. And as 

this one is the equation of ellipse all points on this ellipse, the distance will be computed using 

this function. 

 

And what we say here? We say all points on the ellipse are equidistance, we say that all points on 

the ellipse are equidistance definitely from O, from a reference point.  
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If you take this ellipse what will happen? Your OP
2
, you can write X1-μ1/- or + you write 

whatever may be there, you write plus some constant will be coming here, let it be a 1 2, I am 

giving (X1-μ1/σ1) (X2-μ2/σ2) + (Xz-μ2/σ2
2
) this is the covariance part between the two 

variables okay. 
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This is what is statistical distance okay, this is what either this elliptical distance, this is what is 

statistical distance. So in essence that the statistical distance, one of the pioneers in developing. 
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This is PC Mahalanobis okay he is an Indian scientist, he is founder of ISI, Indian Statistical 

Institute okay. Now, look at the slide. 
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In this slide there are, in the right hand side there are four figures, first that left most one, top 

one, that one resembles circle, second one, it basically depicts one ellipse, third one is also 

ellipse, fourth one is also ellipse, but the second and third one, the variability along X2 is more in 

case of second one. And in case of third one the variability along X1 is more and in case of 

fourth one, it is there are change in variability as well as there is correlation between the two 

variables okay. 

 

So, first one is random in the sense we are saying that the two variables are independent, second 

also two variables are independent, third one also two variables are independent, only in fourth 

one variables are dependent. Now, you think that this is the bi-variate case, you think from 

multivariate point of view. So, when number of variable will be more than 2 then it will be 

difficult to pictorially visualize, but the points are there.  

 

 

 

 

 



(Refer Slide Time: 15:35)  

 

 

 

So, ellipse will become ellipsoid okay.  
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So, can you tell me that what is the difference between this figure, this or this figure. So, if I say 

this is my quadrant one, quadrant two, quadrant three, quadrant four. Quadrant one versus 

quadrant three one and quadrant three, quadrant three this is quadrant one this is quadrant three 

yes along Y axis or X1 and X2 we have given X1 and X2 uncorrelated okay. First quadrant, 

second quadrant, third quadrant variables are not correlated. 

 

Now, what can you talk about the variability of X1 and X2 in the second quadrant, the circle is 

there, variables are uncorrelated and variance same along X1 and X2 variance is same. So, if X1, 

X2 variance is same then it will ultimately resemble a circle. If there is difference in one of the 

axis the length will be more that will be the major axis, other one will be the minor axis. If there 

is correlation ultimately the total ellipse will be shifted to the other direction okay. 

 

This is very important concept, later on in principal component analysis we will again bring back 

to this figure there we will see that if they are highly correlated. What is the need of measuring 

so many variables? Can you not measure a smaller number of variables that we will discuss 

okay? 
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I think if you look into this figure, this figure you have seen earlier also and this equation also 

you have seen earlier. What is the exponent part of a multivariate normal bi-variate normal 

density function? This is the exponent part and we have also discussed that exponent will 

resemble an ellipse so where is the distance? This is what is the statistical distance okay. 
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What will be the distribution of this exponent part? Yes it is chi-square, why it is chi-square?  
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X-μ
T
 then Σ

-1
 X-μ that is exponent part and minus up is there when causing their minus up, you 

see this x-μ
T
 and x-μ that is the square tung up normal variable and this Σ in the variance part co-

variance part. So what your Σ is population Σ it is a constant value, so the square of normal is Z, 

and Z follows chi-square a linear combination of Z follow chi-square distribution. 

 

So, this will follow chi square distribution that what we are saying probability that this value will 

be less than equal to chi-square P, some α value, this will be 1 - α. Now, in this equation μ, Σ, Σ 

are population parameters and X is the random variable.  
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And your chi-square distribution will be a different types, the shape of the chi-square distribution 

can be like this, can be like this, can be like this depending on the degrees of freedom and you all 

know how to see chi square distribution, chi square distribution degrees of freedom is there one 

side, another side the probability values.  
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Then we will discuss contour, what is basically constant density contours? You see this figure 

carefully, this is bi-variate density function, this is the μ that is the bottom reference point we 

were seeing that is coming through, if you just see from the top if you see what you will see, you 

will first see the point for this top point, then if you come little distant lower and take a cross 

section then you will be seeing this ellipse. 

 

If you come even little more you will be getting the second ellipse, like this you will be getting 

different ellipse and as we have already discussed that all points along this ellipse is 

equidistance, we have proved this one by statistical distance they are equidistance. So, here what 

is happening? The total dataset, the total data which is represented by this MND here it is 

basically bi-variate normal distribution and you are capturing.  

 

Now, the more you want to include more number of observations your ellipse will be bigger. 

What does it mean?  
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What I am trying to say, suppose your case is like this, this is the case, now if you take this, you 

take like this, this is cross section here then what is the portion you are considering? You are 

considering a smaller portion, if you take a cross section, here you are considering a bigger 

portion. So, as a result what is happening your ellipse is becoming like this. So, I can say this 

may be 25 % ellipse, this is may be 50 % ellipse, this one may be your 75 % ellipse, this may be 

95 % ellipse. What does it signify?  

 

This signifies that 25 % of observation will be on or within this ellipse, 50 % will be within or on 

this ellipse, 75 % will be on or within this ellipse, then 95 % will be on the ellipse. 
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And that is what is this one, α if you choose α = 0.05 then you are creating an ellipse in such a 

manner that this will be 95 %, 0.95 that means you are considering 95 % observations to be 

within or on the ellipse, rest 5 % will be in other, out of this region.  
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So, why we are saying this one is constant density contours?  
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So why we are saying this is constant density contours? Why we are saying this is concentrated 

contours, what is contour? Elliptical region is a plan that is why I said if you see the plane view 

from the top you see in the floor itself the footprints will be generated. An equal distance points 

will be making one ellipse, why constant density contour? What is the contour? A contour line of 

a function of two variable is a curve along which the function has a constant value, this is 

Wikipedia definition.  

 

So, our function is fx X1, X2 that is a function then we are taking when we are making a cross 

section here that means, we are taking a constant distance, constant density. Suppose, you are 

taking this 0.5 as a density then along this the problem, 0.5 we are making a cross section and 

that cross section will bring certain ellipse here also. And as a result we are saying that this is 

constant density, that mean all the points on this ellipse is constant density, having constant 

density. 

 

Yes, yes it can be, it is not that only two variable case for example, we want to draw a contour on 

the wall map for the cities having equal altitude, that mean from the mean sea level you will find 

out the cities altitude value. If you join a line that is also contour distance contour, similarly 



temperature contour, same manner is just you think here what is happening you think from a hill 

point of view, this is a hill. 

 

Now, from the floor of the hill bottom of the hill you are going up and after certain height make 

a cross section as this is the for example, this is my floor, this is the height. So, this is the density 

you are making a cross section, there need not be that it will be a two variable function of two 

variables, it can be function of many variables and ultimately our case is multiple variables only. 
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Here, one example consider the data given in example one obtain constant density contours for 

α=0.05 and α=0.01 and we have seen that the d
2
 this is x1-100 by square root of 10 square. This 

one we have given earlier considering this equal to chi-square alpha. Now, when α=0.05 then 

this will be chi-square 0.05 variable is 2 so, degree of freedom is 2 and you have to see this 

value. What is this value? This value is 5.99.  

 

So now, this is the ellipse, which is basically taken into consideration, chi-square 2.05, 5.99 this 

is the ellipse what is basically constant, all the points are in equal density value. Now, how we 

get this 5.99 value? This is what is the chi-square distribution and when your degrees of freedom 



for that distribution is 2 and our value is 5.99, this is 0.055.99 this value if it is 0.10 then your 

value will be 4.61 so, ellipse will be little smaller okay any question from your side? 

 

No, here that degrees of freedom case is purely dependent on the number of variables 

considered, whether they are correlated or not correlated it is a material. No, the ultimate 

exponent value will be different because distribution will not change. No that will not be that is 

not correct. 
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Why if there are P variables then our case is to the exponent is this one e
-1/2T 

this one you are 

talking about this part. Whether there is, because this is covariance matrix Σ so definitely there is 

correlation or covariance, we are considering this correlation component or covariance 

component this here basically, if you say this we are not going to statistic, it is a population 

domain. So, this expression is chi square distributed. Degrees of freedom always okay that mean 

what we are saying that X-μ
T
 this X-μ it is chi square P.  

 

Now, I think your question is suppose if you go for some transformation of the variable then 

your number of variable will reduce because of correlations. Suppose, if the data is correlated 



when you go for principal component analysis, like analysis what will happen your number of 

dimension will reduce. No, here it is not like this, here the covariance component is well 

accounted for the derivation part okay. 
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Now, we will discuss another important aspect that is very, very important for all of us that when 

we collect data.  
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Suppose, you collect a data nxp and our data points are like this. We are saying that we have 

collected the data from multivariate normal population, MN population, mean multivariate 

normal population and we are defining that our X is multivariate normal with p variables, μ and 

Σ the population parameters. What is the guarantee that your data is multivariate normal? It is 

true that if your population is multivariate normal the data we generate that will be multivariate 

normal also. 

 

But you do not know you are you do not know whether that population is really multivariate 

normal or not. So, what we do up here, we examine the data to understand that whether data 

comes from multivariate population or not. So, in this case in multivariate domain we will use 

chi square quantile, quantile plot Q Q plot, chi square quantile, quantile plot, Q stand for 

quantile. What is quantile? Any idea?  

 

You know median so how do we get the median? Your data point you first order the data from 

smallest to largest ascending and then you find out the middle location and you say if this is my 

variable X and what is the middle value of X, that is median. So, when you are making median, 



how many parts you are making for the data? Two parts okay 50, 50 where this is one side, this 

is another side.  

 

You know quantile, quantile will make partition, the data total data into four parts. This is my 

quartile one, quartile two, quartile three, quartile four and we know that Q 1 and Q 3 the inter 

quantile range that we have discussed in descriptive statistics. So, while making quantile you are 

making partitioning the data into four parts. Now, you do one thing, you partition into hundred 

parts. What will happen?  

 

Sorry, that is percentile, so median then you are saying quantile then you are saying percentile. 

Suppose, I do not want like median quantile, I want to partition the total set into n parts then 

what name you will give? You cannot give you have you have to have some name that is 

quantile. So, that mean if you partition the data into two parts, the median that is also quantile, 

general name quartile is also quantile percentile is also quantile and if you partition even more or 

less number than the hundred parts then that is also quantile.  

 

So, by quantile, quantile plot, we want to see that how multivariate normality will be assessed 

okay. 
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For example, suppose you have collected n data points 1, 2, 3, n data points you have collected. 

Let the data is X 1, X 2 on xp variables and I am sure all of you are in a position to fill up this. 

Now, we will calculate the d
2
 Mahalanobis d

2
. I am writing this one as di

2
 where I stands from 1 

to n correct. So, what is this? So, you have some reference point., somewhere that reference 

point definitely if it is a p variable case then it is the μ vector μ1, μ2 like μp you are getting on p 

variable you are getting this is your first observation, this is second observations. 

 

So, like this if there is i
th

 point you will be getting xi1, xi2, xip. So, this is your i
th

 observation. 

Now, you want to find out where does that i
th

 observation lie, when if we consider a two 

dimensional case. This is my μ1 and μ2 then somewhere here this is my i
th

 observation is falling. 

So, I want to get this distance, I think we have discussed the statistical distance part. What is the 

formula for statistical distance? (X-μ)
T
 Σ

-1
(x-μ).  

 

Now, in Mahalanobis distance the formula is (X-μ)
T
 S

-1
(x-μ) getting me? So, when I say di

2
 I am 

saying xi-μ but I do not know the μ. So, I will write xi - x  S
-1

 xi- x . So, if you write in this format 

X-μ
T
 and this Σ

-n 
x-μ this is the exponent of the multivariate normal distribution that also follows 



chi square distribution that is the general statistical distance. But when I say this is S
-1

, this is we 

show that Mahalanobis has developed this. 

 

So far every observation you can get this distance. Now, xi is what, xi is xi1, xi2, xip, p x 1. So, 

xi - x 
T
 S

-1
 xi- x  what will happen? This is 1 x p, S

-1
 will be p x p and this one will be p x 1. So, 

resultant will be 1 x 1. So, you will be getting a value I am writing here, suppose this is d1
2
. For 

the second one you calculate d2
2
, same formula like this you will be getting di

2
 then dn

2
, correct? 

 

So, what are the steps then you have collected data there are n multivariate observations, we 

want to compute the distance of each observations from the mean vector. Here, we will be 

concentrating on the sample mean that is X1 bar, X2 bar like xp bar, that mean so you require to 

calculate this mean vector, you also require to calculate the covariance matrix. Once you know 

this, you require to calculate S
-1

, this also will be p x p matrix. 

 

Once you do all those things you have computed then you go for di
2
, for i=1 take this row first, 

put here every observation will be subtracted by the corresponding mean okay then you go for 

the second one, third one, like this and using this equation you have n number of distance values. 

Now, depending on the observation value it will be different types. 
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For example, what I mean to say now from the set of multivariate observations you calculated 

the distance and finally, you got data matrix like this d1
2
, d2

2
, di

2 
then dn

2
, then the n

2
 that is 

what data you got and this one I am saying, this is my d
2
 matrix. What you require to do? Now, 

you have to find out the quantiles, please remember we say quantile quantile plot. So, if you 

require to know the quantile the one of the issue is you have to arrange these values observed 

values in ascending order. 

 

So, if I say my ascending data for the distance values are like this, d within bracket, 1
2
 within 

bracket, 2
2
, like this d within bracket i

2
 like, within bracket n

2
, this is my ordered data. So you 

will be having smallest to largest data set, fine? Now, how many data points you have? n data 

points, you create n quantiles here. So your 1, 2 now partitioning the entire data, this data 

transformed data, distance data partitioning this distance data into n quantiles.  

 

What will be the distribution of this di
2
? What is di

2
? Xi- x 

T
 S

-1
 Xi- x  chi-square. So, this follows 

chi square as p variables so they are p then as I know that d
2 

is chi square p di
2
 and what you 

have created, you have created a data matrix now different data that is where n x 1 transformed 



data d and which is chi square distributed. So, that means all those you, this can be a chi square 

axis, I can get for quantile all points, chi square value I will be getting. 

 

Now, di
2
 is chi square distributed so from di

2
 if I compare with the chi square quantile values I 

must get a relationship understood or not? This is nothing difficult.  
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Suppose, this is my chi square distribution for example, let like this is your chi square, you know 

the lowest value and largest value from the data set, it is known what is this chi square value, if I 

say I want to know this chi square p what will be this value? We require to know, then what is 

the probability right hand side getting me? So, if I know that what is the probability of this? And 

if I subtract by 1, I will be knowing the what is the probability of this.  

 

So, with respect to this probability from chi square table we will be getting this value. Similarly, 

for the second quantile you will also be getting, third quantile value you will be getting because 

you have n data set, this chi square X is each partitioned into n parts. So, everywhere I am saying 

that you have chi square 1, chi square 2, this one and two not degrees of freedom these are the 

that is the quantiles.  



 

So, like this you will be getting chi square n values. Now, as we have said that di d
2 

is chi square 

distributed, so there will be relationship between d
2
 and chi square. If you plot d

2
 in this side or 

di
2
 and chi square in this side you will be getting a straight line like this okay, you may get here, 

may get, no it will be a straight line linear relationship. Now, see the problem given here.  
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See this is my data set bi-variate case, we have considered 10 points, 1 to 10 and this is my first 

observation 93, 52.33. My second observation is 94, 53.46 like this what we have done? You 

have calculated the distance for this observation. First observation from the mean value, X1 and 

X2 that mean value we have to find out and from that mean value and then using the distance 

formula di
2
=xi- x 

T
 S

-1
xi- x  we computed this value 2.25. 

 

So, my first observation is 2.25 distance apart from the mean, my second observation is 1.40, this 

distance unit distance apart from the mean, like this 102 and 63.71 this is the tenth observation is 

3.57 units apart from the mean okay understood? Now, this is the calculation part. Only you have 

to utilize this formula, correct?  
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Carefully if you use this formula. 
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You are in a position to get this, this is your first step.  
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What is your second step? Second step is order because you want to find the quantile values. So 

you order that is ascending order, third one is you find out the chi square quantile value. What is 

this chi square? pn -i + ½ this is the chi square quantile value. What is happening here you see, 

you see that. 
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You have 10 data points, i = 1 to 10 data points. So, these 10 data points order data points so that 

means your this is the chi square axis. Let it be this is the chi square variable axis so you have 

divided into 10 parts, 1 to 10 parts, you have divided and what will happen, your chi square will 

be something like this we have discussed. Now, you want to get the chi square value here. So, 

first you find out the probability value here right hand side you use because you will be using 

table. 

 

Then for that probability value you find out the chi square value, that is why what you are doing 

here, you are writing chi square p n - i + ½. So, if I want to do little more manipulation here what 

is n - i + ½ n is 10. We have taken 10 data points, so this 10 - 1 + ½, 9.5. So, we want to find out 

the probability, so how many data points are there? 10 data points are there. So, if I divide by n 

again, so that by 10, so this that mean this will be 0.95 and this one also you write this by n 

because this probability value you want to, this is the probability value, α value. So, your first 

one first chi square, this value is chi square 0.95. What is this value?  
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You see here, 0.1 then what will be the second one?  
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10 - 2 + ½ / 10 this will be 8.5 means 0.85. So, your second value here you find out for chi 

square 0.85 chi square, 0.85 is 0.33.  
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So, third one will be 0.75 0.58 0.65 chi square 0.65 0.56. So, like this then what we have done 

here? Then we have this side di
2
 Y axis, X axis is chi square value and when you plot this, you 

will be getting this type of straight line, getting me? So, clear that your total data set is this one. 
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Every observations is transformed into one value here, we get value that is the Mahalanobis d
2
. 

And you are now finding out the distribution for this and you all know this is chi square 

distributed using this property. 
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And the steps like this plot, if you get a straight line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 53:27)   

 

 

 

That is multivariate normal. If we depart substantially then definitely that is not multivariate 

normal, but there will always be some amount of departure. So, what is the departure acceptable 

that also you want to check.  
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So, there are some other methods for checking also, like case testis there, Kolmogorov Smirnov 

test, d max. So you will be able to check all those things okay this is what is our in totality the 

multivariate normal distribution, we have discussed along with the properties so my, as it is very 

important one.  
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So, first of all you must know that your multivariate normal density is 1 / (2Л) p/2 then your 

covariance to the power ½ e
-1/2

 x-μ
T
 Σ

-1
x-μ okay and definitely your all j x j less than equal to 

infinite j = to 1 to p. So, there are two parts, one is constant and another one is exponent and it is 

exponent which is very, very important. So, the exponent part X – μ
T 
Σ

-1
 x-μ it follows chi square 

p, this distribution is chi square p. And this is also known as constant, this will give you the 

constant density.  

 

Now, this formula is chi square, this is chi square, but this quantity resembles an ellipse okay this 

will be an ellipse when p = to 2 for more than two variables it will be ellipsoid okay. Then there 

is another concept called statistical distance keep in mind this is very, very important concept 

and constant density contours the properties of  multivariate  normal distribution is important 

properties of MND that if x is what we say properties X is multivariate normal then xj will be 

univariate normal. That we have seen j =1 to p.  

 

Now, if X is multivariate normal subset will also be multivariate normal, so that mean if I create 

a subset xq 1 that will be q μq and Σq then linear transpose of x this will be your univariate 

normal with A
T
μ A

T
ΣA. If you find out q linear transpose then that will be your multivariate 



normal that is A
T
μ only the matrix multiplicability, compatibility part from multiplication point 

of view we have to check okay. 

 

And then finally, when you collect data that data must be examined and you have to check that 

whether, the data is coming from multivariate normal or not, and that is possible through chi 

square quantile, quantile plot. There are other plots also, but we will be looking into this okay. 

So, I have given you one data set, that five variable data set if you can find out whether the data 

coming from multivariate normal or not using this statistical distance concept or you take your 

own data set just test use excel or mat lab okay, thank you. 
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