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Today, we discuss multivariate normal distribution multivariate normal distribution. 
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Last class we have see the invariant normal distribution. You see the formula if x is a random 

variable then 2 
π
 σ 

2
 e to the power – 1/2 x - µ by σ 

2
 - 

∞
 less than x less than 

+
 
∞
, so the p d f. 

multivariate normal p d f is characterized by µ and σ µ and σ that is a population parameter. 



We want the counter part of pdf multivariate domain when x that invariant x is converted to 

X which is your X1, X2, Xp and univariate µ is no longer univariate. It will be a very mean 

vector µ1, µ2,µp. Similarly, invariate σ 
2
 will no longer be univariate, it will be a multivariate 

covariance matrix p × p. So, when we want something by multivariate normal distribution, 

we want something which is fx in terms of N variable number p and µ vector and covariance 

matrix, how do you, how do you go about it and how to do it that is the discussion, today.  
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Today, we will discuss bi-variate normal density function multivariate normal density 

function and properties of multivariate normal density function. If time permits, we will go 

for statistical distance and constant density contours.  
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So, the univariate PDF is this you want to visualize its multivariate counterpart, so let us 

consider a vicariate case. You see this slide, in this slide you see that there are two variable X 

1 and X 2 and probability density that is joint density that X 1 and X2 X 1 and X2. So, this is 

what is given in figure, so you see that you are getting a bell shape, but in three dimensional 

you are getting because there first two dimension for the two variable values and third 

dimension are the density values. If you take one more dimension, it is difficult you cannot 

visualize, suppose there are three variables with density, we cannot visualize pictorially.  
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Now, as I told you our objective of the first part of today’s lecture is we want to develop, this 

is our objective. So, in order to do so, 
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We will follow a systematic, but simple path.  
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Suppose, you think that you have two variables X 1 and X 2 which we are saying a bi-variate 

case, so our X is X 1 and X 2 that is why my µ is that mini vector µ 1 and µ 2. Your 

covariance matrix will be 2 by 2 σ 1 1,σ 1 2, σ 1 2, σ 2 2, I hope that there is no problem with 

you in this nomenclature. So, we assume something here, you see the slide here, 
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In the slide you see the top figure that here you just scatter plot. Now, what you can say about 

the two variables X 1 and X 2 seeing the scatter plot are they co related or there is no 

correlation, is it something like a circle you are getting or ellipse. There is no pattern you see 

that it is a ellipse type of thing, but there is no correlation. So, we want to simplify our 

derivation without correlation,  
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So let me know what it means to say our σ 1 2 is 0 or rho 1 2 is 0. If there is no correlation, 

then what will be the joint density? Suppose, X 1 and X 2 multiplication of the marginal 

density of the two, so X 1 
×
 X 2, now all of us know that if X 

=
1 by root over 2 

π
 σ 1 

2
 as it is 

X 1 e to the power - 
1/2

 X 1 - µ1 by σ 1 
2
. Then, similarly for X2 also, that is a second 

variable, you can write 2 
π
 σ 2 

2
 e to the power -

1/2
 X 2 - µ 2 by σ 2 

2
. . 

 

You can write this and definitely here x j less than greater than - infinity to less than infinity 

to j 
=
 1, 2 variable you have taken. So, you can multiply these what you are getting, we are 

getting like this 1 by, that is one quantity 
=
 2 

π
, so 2 

π
 you are getting2 by 2 

π
 into 2 

π
 
2
 root 2 

by 2. Then, another one what you are getting, σ 1
2
 and σ 2 

2
 also, σ 1 

2
 σ 2 

2
 to the power 

1/2
 

you are getting here. And Then, I am coming to the exponent parte to the power - 
1/2

 and all 

of us know that e to the power a into e 2 power b 
=
 e to the power a 

+
 b.  

 

So, we can write this one like this X 1 -µ 1 by σ 1 
2
 
+
 X 2 - µ 2by σ 2 

2
s, we can write this. 

So, essentially what is happening here that when I go for that univariate normal or bivariate 

normal with this with no dependence structure. You are having two component in the density 

function, one is the constant part another one is the exponent part; exponent means e to the 

power of something. When I am making the joint distribution, here also you are having also 

two part this and this, the general structure for the multivariate normal distribution invariate 



that remain same what is the difference, difference will come in the two components and the 

values will be different.  

 

So, we found out that if X 1 and X 2 are independent, then our structure is like this, now let 

us see that we want to derive this constant part as well as exponent part from the population 

parameter. 
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We have µ 1 into µ 2 µ 
=
 µ 1 µ2 and we have σ is σ 1 1, σ 12, σ 1 2, σ 2 2, this one you can 

write. Now, σ 1 1 
=
 σ 1 

2
 σ 1 2 σ 1 2 σ 2 

2
, so if I make something like this determinant of σ. 

Here, σ 1 
2
, σ 1 2, σ1 2, σ 2 

2
, its determinant and you know that determinate will be this 

×
 

this- this 
×
 this. So, this one is σ1 

2
, σ 2 

2
 - σ 1 2 

2
, now you see that what we have assumed in 

the earlier demonstration. We say σ 1 2 
=
 0, just for the sake of simplicity we have taken that 

σ1 2 is 0, so if σ 1 2 is 0, then determinant of σ is nothing but σ 1 
2
 σ2 

2
. So, if I make square 

root of these, then this is the determinant of square root of the determinant and if this is the 

case.  

 

Then, the constant part what is the in case of our independent bi variate density function, we 

found out that constant part is 2 
π
 2/ 2 σ 1 

2
 σ 2 

2
 to the power 1\2. Now, these I can write like 

these2 
π
 2 / 2 determinant of covariance matrix to the power 

1/2
. Ok now, suppose you have 

one more variable 
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That means you have taken three variables, now like X is X 1 2, X 2 and X 3. You have to 

consider that your σ is σ 1 
2
,0, 0, 0, σ 2 

2
s, 0, 0, 0, σ 3

2
, we are assuming that all the variables 

are independent, then what will happen again f x 1, x 2, x 3 will be f x 1 into f x 2 into x 3.In 

the similar way you multiply, ultimately your constant term will be 1 / 2 
π
, now three 

variables are there by 2, then σ1 
2
, σ 2 

2
, σ 3 

2
 to the power 

1/2
.  

 

You see if you take determinant here, what are you getting here it will be σ 1 
2
, σ 2 

2
, σ 3 

2
. 

So, that means determinant to the power 
1/2

 is σ 1 
2
 σ 2 

2
 σ 3 

2
 to the power of 

1/2
. So, if you 

now increase it to p variables,  

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 13:52) 

 

 

 

So ultimately your dimension will change and σ to the power 
1/2

 will take care of one part of 

the constant. So, if I go by p variable, now my constant will become like this one by you see 

that, when there are two variables it is 2 by 2 when three variables2 
π
 to the power of 3 by 

2.So, when there are p variable, it will be p by 2 and whether it is two variable or three 

variable, three variable case. Ultimately, this quantity will be replaced by determinant of 

covariance matrix to power 
1/2

, so with one assumption here that we are considering 

independent variable we proved this is thecae, Now what will happen to your constant 

exponent term. So, in two variable cases we found out that the exponent term. 
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1-µ 1 by σ1 
2
 
+
 X 2 - by µ 2 by σ 2

2
d. So, we say this is the exponent term this is the exponent 

term this portion is exponent term, so it is x you see that X 1- µ on that is been subtracted 

divided by a standard deviation that is x 
2
. Now, create one suppose x - µ transpose, no I will 

explain from the invariate case that will be better, so invariant case f x1 by root over 2 
π
 σ 

2
 e 

to the power - 
1/2

 x - µ by exponent 1.So, your exponent is – 1/2, I am writing x - µ σ 
2
 to the 

power -1 x - µ is - 
1/2

 x - µ by σ 
2
.  

 

You see x - 
1/2

 is there -
1/2

 x - µ x - µ 
2
 divided by σ 

2
, so σ 

2
 σ to the power inverse. Now, if 

you go for the multivariate case what will happen your x is replaced by X, µ is replaced by 

bold µ, σ 
2
 will be replaced by σ. Now, in matrix multiplication what will be the 

2
 transpose 

that matrix X transpose x that is the square term. So, we are basically making here square, so 

we want this that is why what is meant to say in multivariate domain, the exponent can be 

written like this x - µ transpose σ 
2
 is replaced by σ to the power- 1 x - µ.  

 

From univariate normal distribution, we have taken the exponent part and we are saying that 

if we go in same manner to the multivariate part our resultant quantity will be this for the 

exponent is it so?  
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Now, can we do like the same thing for X 
=
 X 1 and X 2 variable case µ 

=
 µ1 and µ 2 and σ 

=
 

you have taken already σ 1 
2
, 0, 0, σ 2 

2
 because we are independent case. We want to prove 

first because we know under this condition, what will be the distribution multivariate normal 

density function that is known. So, then you write down - 
1/2

, so x -µ transpose, so that means 

this is X 1 -µ 1 X 2 - µ 2 because x - µ is X 1 - µ 1 X 2 - µ 2, 2 
×
 1 it will be 1 

×
 2.  

 

Now, your what do you want σ 1 
2
, 0, 0, σ 2 

2
, this inverse then, so that is 2 

×
 2 then X1 - µ 1, 

X 2 - µ 2, this is your2 
×
 1.So, what is the resultant quantity 1 

×
2, 2 

×
 2, 2 

×
 2, it is a 1 

×
 1, this 

will give you 1 
×
 2, this will give you 1 

×
 1. We say density that exponential to the power this 

constant value, you will be getting some values density will be calculated.  

 

Now, what is the inverse, how to calculate the inverse suppose if A is a matrix like this a 1 1, 

a 1 2, a 2 1, a 2 2, how do you compute the inverse 1 by ad joint by determinant. So, A 

inverse is ad joint of A by determinant of A, now ad joint is the transpose of the cofactors of 

A divided by determinant of A. So, this is the case our A is nothing but this one σ 1 
2
, 0, 0, σ 

2 
2
, which is what is our σ. Now, determinant already we have seen the determinant is σ1 

2
 

and σ 2 
2
 multiplied by these two.  

 

 



Now, what will be the cofactor of this cofactor is if you if you suppose I want to know 

cofactor of σ. Here, suppose in a case you see cofactor means suppose you want to see the 

cofactor of these then you have to 
×
 this corresponding row and column what is left that is the 

cofactor, but the sign conversion will be there. So, that means cofactor means for a i j, the 

cofactor will be - 1 i 
+
 j and the remaining portion whatever the remaining portion remaining 

part of the matrix that will be the case. As you have take 2 by 2 
×
, so ultimately what will 

happen one row and one column 
×
ed means only one item will be left.  

 

So, it is our case, then cofactor of these we can write first one is - 1 to the power1 
+
 1 that is 1 

+
 1 then what is remaining here, σ 2 

2
s. Suppose, you 

×
 this and this σ 2 

2
 will be there and see 

it is 0 and it will be also 0 and σ 1 
2
 will be this. So, our cofactor is σ 2 

2
, 0, 0, σ 1 

2
 what will 

be transpose same because these two element are 0.Now, transpose of cofactor of σ,  
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This is again coming the same thing because rho band column interchanged symmetry 1, 0, 

0,σ 1 
2
. Then, what is my inverse, inverse is that is the cofactors mean 1 by determinant, you 

write down first σ 1
2
, and σ 2 

2
 that is the determinant σ 2 

2
, 0, 0, σ 1 

2
. Now, calculate this 

one my calculation is- 1/2, our X 1 - µ 1 X 2 - µ2. Then, inverse is coming like this 1 by σ 1 
2
 

σ 2 
2
 σ 2 

2
,0, 0, σ 2 

2
 * X1 - µ 1 and X 2 - µ 2. Suppose, if I do this portion first, what you will 

get you will get - 1/2 X 1 - µ 1X 2 - µ 2 1 by σ 1 
2
 σ 2

2
 this is 2 

×
 2 this is 2 

×
 1you will be 



getting 2 
×
 1 this into this 

+
 this into this. So, it is basically σ 2 

2
 X 1 -µ 1 then this into this 

+
 

this 
+
 0 then 0 again, σ 1 

2
 X 2 - µ2.  

 

Now, let me bring this one this side later on, we will manipulate σ 1 
2
, σ2 

2
, so if you multiply 

this 1 
×
2 and 2 

×
 1, you will be getting 1 

×
1. So, this into this 

+
 this into this you see what is 

happening σ 2 
2
 X1 - µ 1 

2
 because X 1 - µ 1X 1 - µ 1 

+
 σ 1 

2
 X 2 -µ 2 

2
. So, if you divide this 

2 by σ1 
2
 σ 2 

2
 what you will be getting? 
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You will be getting like this - 1/2, then it will be σ 1 - µ 1 by σ1 
2
 
+
 X 2 - µ 2 by X 1 -µ 1 by σ 

1 
2
 this one. You have seen that we have found out earlier also this is f x 1 

×
 f x 2, this we will 

find out like this one you found out you. Just check I showing that earlier when we have 

multiplied the two what we got here 1 by 2 
π
 2 2 

π
 to the power2 by 2 σ 1 

2
 σ 2 

2
 
1/2

 then - 1 by 

2 X 1 - µ 1 by σ 
2
 this one. Here, what are you getting here same thing you are getting, so 

what I mean to mean today all though this is not a derivation this is the other way proof that 

what we are saying that means  
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I can write for a vicariate case. I can write my bivariate normal distribution like this is the 

case you can write like this. If it is true for multivariate case also then what will happen, 

ultimately multivariate case X 1, X 2 and X p, then it will be 2 
π
 to the power p by 2 

determinant of this then to the power - 
1/2

 x - µ transpose. This is the case and you have to 

write -
∞
 x j 

∞
 j 

=
 1 2 p, this is our multivariate normal distribution we say multivariate normal 

density function defined.  

 

Now, what will be the vicariate density normal density function when your matrix is like this. 

This covariance matrix is like this.  
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σ1 
2
, σ 1 2, σ 1 2, σ 2 

2
 that means there is covariance this the case what will happen can you 

not find out this determinant of this is our σ 1 
2
, σ 2 

2
, - σ 1 2 

2
. So, this can be written like 

this σ 1 
2
, σ 2 

2
 - rho 1 2 σ 1 σ2 

2
 covariance is correlation times the standard deviations. So, 

we can write this one σ 1 
2
 σ 2 

2
 1 -rho 1 2 

2
 and what will be your inverse here now inverse 

will be 1 by determinant. So, 1 by determinant, let me keep this one only then σ 1 
2
 σ 2 

2
 -σ 1 

2 
2
 into we know that transpose of the cofactor. So, I will take this, so it will be σ 2 

2
 then 

what will be this 
+
 this is - σ 1 2 – 

 

σ1 
2
. Then, what is my exponent part 

1/2
 x - µ transpose X - µ transpose σ inverse x - µ. This 

is 
=
- 1/2 X 1 - µ 1 X 2 - µ 2 X1 - µ 1 µ 2 the 1 by σ 1 

2
 σ 2 

2
 - σ 1 2 

2
 into σ 2 

2
 - σ 1 2 - σ1 2 σ 

1 
2
 times X 1 - µ 1 X2 - µ 2 correct.  
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So, if you further manipulate, what will happen this 
=
 - 1/2 X 1 - µ 1 X2 - µ 2, then I want to, 

multiply the last two parts. So, I am writing like this σ 1 
2
 σ 2 

2
 - σ1 2 

2
 into this one, you see 

this is2 
×
 2 and this one is 2 

×
 1. So, this multiplied by this 

+
 this multiplied by this 

+
 this 

multiplied by this, 
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So if we write like this what will happen here σ2 
2
 into X 1 - µ 1 - σ 1 2 into X 2 - µ 2.So, 

that is coming from this part row column second one will be - σ 1 2 - σ1 2, we are 

multiplying this with this. So, X 1 - µ 1 an then 
+
 σ 1 

2
 when you are saying σ 1 X 2 - µ 2,so 

that is your matrix your this is the first row, this is the second row. So, it is 2 
×
1, so then - 1/2 

into σ 1 
2
 σ 2 

2
 - σ 1 2 

2
 you keep here. Now, you are multiplying this into this so multiply 

this is 1 
×
 2, 2 

×
1 you will get 1, so this into this 

+
 this into this.  

 

So, what you are getting then you are basically getting σ 2 
2
 X 1 - µ 1 and X 1 - µ 1 that is 

2
 - 

what you are getting this into this so σ 1 2 into X 1 - µ 1 and X 2 - µ 2. So, this into this over 

second column verse here second row, so it will be - σ 1 2 X 1 -µ 1 X 2 - µ 2 
+
 σ 1 

2
 X2 - µ 2 

2
 that is the total.  

 

So, if I further manipulate this what I can write σ 1 
2
 σ 2 

2
 - σ1 2 

2
 then this is σ 2 

2
 X 1- µ 1 

2
 

- 2 σ 1 2 X 1 -µ 1and X 2 - µ 2 
+
 σ 1 

2
 2 - µ 2 

2
. If you divide this within bracket quantity by σ 

1 
2
 and σ 2 

2
 what will happen - 1 by 2 1 by σ 1 

2
 σ 2 

2
 - σ 1 2 

2
. So, I am dividing the entire 

thing by σ 1
2
 and σ 2 

2
 I am taking common then what will happen this one X 1 - µ1 by σ 1 

see σ 2 is already there σ 1 
2
 we have already taken σ1 I am keeping. Here, this - 2 σ 12 then 

divided by you write σ 1 and σ2 here can we not write like this, like this, this 
=
 this X 2 by 

this see σ 1
2
 σ 2 

2
. You have taken here 

+
 you can write down X 2 - µ 2 by σ 2 

2
 what is what 

is this quantity σ 1 2 by σ 1 σ2 that is rho. 



 

So I can write like this -
1/2

 σ 1 
2
 σ 2 

2
. You have already seen σ 1 2 

2
 
=
 σ1 

2
 σ 2 

2
 into rho 1 2 

2
. 

So, you take common here 1 - rho 1 2 
2
 then this quantity is X 1 - µ 1 by σ1 

2
 - 2 rho 1 2 X 1 - 

µ 1 by σ 1 X 2 - µ 2 by σ 2 
+
 X 2- µ 2 by σ 2 

2
 so this quantity this will be cancelled out. So, 

if I see this verses the independent case you will very easily find out,  
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Now if I put rho 1 2 
=
 0, this one will become 0,so then this is X 1 - µ 1 by σ 1

2
 
+
 X 2 - µ 2 by 

σ 2 
2
 and what you have here also rho 1 2 will be 0.So, I remove 1 by - 

1/2
 that mean the 

resultant quantity will be, if I put rho 12 
=
 0 my quantity is coming this 1- 1/2 X 1 - µ 1 by σ 1 

2
 
+
 X 2 - µ 2 by σ 2 

2
. So, this is the exponent part clear, so that means what I mean to say that 

in the reverse way also we proved that yes this quantity is following the distribution equal 

distribution what we have thought of. 
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 Now, question comes what is this is the shape of this ellipse correct. 
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Now see this diagram this very important concept. Here, see this is my equation and we have 

started with this we said this is the scattered plot of X 1 and X 2 and it resembles that there is 

no dependency between the two variables that mean covariance is 0. We assume σ1 2 is 
=
 0, 

so that mean this one is nothing but this ellipse what is coming here this ellipse. 
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So, that means if I just write-down this one what you are getting you are getting you see that 

what I will do now I will draw a line. 
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 Like this, but it will be a curve so it is basically coming like this.  
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So, when you plot this X 1 and X 2 that exponent part you are getting an ellipse when any 

time you can get an ellipse because this one is also a equation of ellipse please keep in mind 

this is the in two dimensional general equation of ellipse. So, if I want to plot this what will 

happen to my figure you are now depending on rho 1 2 yes origin is at µ 1 µ 2. You usually 

figure that is original side µ 1 µ 2 data is given in such a manner that 0 is the 0, 0 is the origin 

µ 1 µ 2 origin is µ 1 and µ 2 this is your µ 1and µ 2 what will happen if you take the general 

equation means this 1. 

 

So, depending on the rho value that rho 12 value is it positive is it negative is it0. If it is 0 this 

is the diagram this side or you it may because this side see in here the major axis of the 

ellipse lies along X2 axis the reason is the variability along X 2 is more they are independent. 

That is why the major and the minor axis of the ellipse go along the original X 1 and X 2 axis 

and along X 2 axis the major axis lies because the variability along X 2 axis is more and 

variability along y 2 is less, sorry variable X 2 is more variable X 1 is less if variability along 

X 1 is more. Then, they are independent, then your ellipse will become like this keep in mind 

they are independent when rho 1 2is greater than 0, it will be so X 1 increases X 2 increases 

like this so it will be like.  

 

 



This is inclined because the major and minor axis of the ellipse is not parallel to the original 

X 1 and X 2 axis. So, as this one is increasing this is also increasing other way when it is less 

than it will be just this it will go to this level. 
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 In one of the slide I think I have shown you this picture  
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That my X 1 and X 2 is like this my data is like this it is a circle this is also a bivariate case. 

So, this is also independent case the question is this σ 1 and σ 2 in this case independent, but 

σ 1 
2
 
=
 σ 2 

2
s, how do you know this axis. I know the ellipse what is this value suppose this is 

the first of the entire direction second one is the value how you know all this things. Let us 

see some of the slides here. This is multivariate, so let us see this one first 
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I will I will come back to this how-to determine the axis and length all those things. So, what 

I request to all of you in order to understand the axis. You have to know little bit of matrix 

what is this again value Eigen value Eigen vector,  
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So Eigen value and Eigen vector. I will show you next class Eigen value Eigen vector then 

axis the all those things and now see one example.  
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A process is characterized by two variables that is X process is designed to produce laminar 

aluminium sheet of length X1 and breadth X 2.With the following population parameters this 

and this are the population parameters obtain its bivariate normal distribution this is the 

answer, I am sure you will be able to find out this one from the beginning. If you start the 

way we have described if you start in the same manner you will ultimately ending. With this 

answer, we come to properties that multivariate normal distribution has started very, very 

useful properties, multivariate normal distribution that we will denote. Next, hence proved 

that is MND. 
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Multivariate normal distribution which is we say N p µ and σ it has many useful properties 

some of the useful properties I am describing. Now, you see the first property.  
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If X is multivariate normal then all the variables individually are invariate normal obvious 

that when x is there are X 1 to X p. They simultaneously multivariate normal then X 1 is also 

invariate normal X 2 is invariate normal x p is also invariate normal that means what I mean 

to say that. 
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this one where µ is µ 1 µ 2 µp and σ. I am writing σ 1 
2
 σ 2 

2
 σ p 

2
 and these components are 

also there any one. If say x j this will be your invariate normal with µ j and σ j 
2
 j 

=
 1 2 p, so 

that mean that σ j will be coming from here that σ j 
2
. This is your first property what is the 

second property,  
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f x is multivariate normal, then any subset you take that will be multivariate normal by this 

what do you mean. Suppose,  
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My X is this X 1 X 2 X q X p, I will create two subsets that is X 1 X 2 that is big X 1 X 2, so 

then this will be this X 1is q 
×
 1 and X 2 is p - q 

×
 1vector then what I want to say we want to 

say that X 1 is q variable vector. So, it will be multivariate with q dimensions and what will 

be the µ that is µ and σ what you will do I am writing µ q and σ q. If I write what will be the 

µ that firstµ because that first µ variable you have taken what will be the σ q σ. Now, σ 1 1, σ 

1 2 like σ 1 q, σ1 p, similarly this will be σ 1 q then somewhere σ 1 q then σ q p then σ1 p 

that σ p p.  

 

So, you have created a subset with q variables, so that means what is happening here, now 

this is your σ q and µ case is µ 1 µ2 µ q µ p, so this is your µ q. So, that means if you take a 

subset and you know the parameters for those the subset of parameters you consider and find 

out it distribution that will be multivariate normal distribution the third distribution is very, 

very useful.  
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The third property is very, very useful, you see what is written if X is if x is multivariate 

normal linear combination of x j is invariate normal this property can be exploited like 

anything in your research what is what does it mean?  
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It means that suppose I will first create a vector like this a 1 all constant a p some I is my X is 

X 1 X 2 x p then this one is1 
×
 p this is p 

×
 1 so what is the linear combination, linear 



combination. Obviously, this one gives you a 1 X 1 
+
 a 2 X 2 like a  p x p what it is say is that 

the this property says that what will be the expected value of a T x it will basically a T. 

Expected value of x will be a T and µ this is nothing buta 1 µ 1 a 2 µ 2 a p µ p and what will 

be your variance of this a transpose x. This will be you are a transpose σ a, you can prove it 

also writing like this, so a transpose σ. You see it is 1 
×
 pp 

×
 p p 

×
 1 resultant is 1 

×
 1.So, then 

the linear combination will follow univariate normal with a transpose µ a transpose σ a that is 

our variance spot ok. Now, the fourth property fourth property says that instead of one linear 

combination if you make two linear combinations, what is happening here, you just see in 

one linear combination.  
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We taken a 1 a 2 we have taken a p this is the instead of this I am creating another one like 

this a 1 1, a 1 2, a 1 p, a 2 1,a 2 2, a 2 p. Suppose, a q 1, a q 2... a q p what is happening now? 

If I find out, so this one is my 1 2 p, so this is p 
×
 q this one is p 

×
 1. Now, if I make like this 

A transpose x what will happen then this will be your q 
×
 p and this will be your p 

×
 1. So, 

you will be getting something called q 
×
 1 where as in one linear combination a 

×
 t is 

basically1 
×
, so that means q 

×
 1. This means you are ultimately creating this one q 

×
1 a 1 1 X 

1 a 1 2 X 2 like this a 1 p x p for this a 2 1 X 1 
+
 a 2 2 X 2 

+
 a 2p x p.  

 

So, like this a q 1 X 1 a q 2 X 2 
+
 qp xp so if q 1 will be this if I take one combination that is 

invariate normal take this one second, so all collectively what you are saying collectively 



they will be multivariate normal. So, that means this quantity will be as q linear combination 

you have made this into definitely what will happen a sorry A transpose µ. Then, A just 

check this transpose part you have to check what is A here a is p 
×
 q and this one is q, so that 

means what do you want this will be 
×
 q if I write like this. I think in books may they have 

written in the other way round that part you check ultimate aim is as it is q variable that a 

transpose x is q variable vector. So, the variance component will be order of q 
×
 q and mean 

component be order of q 
×
 1 column vector definitely. 

 

So, this four properties are important and you will you have you see that we you calculate x 

bar in invariant case. When you calculate x bar that is what that is linear combination of 

multivariate observations n observations are there 1 by n into x or so equal. Now, then that 

then what will be the distribution of x bar, although it is invariate normal that is why the σ 
2
 

by n is coming there, so all those things. Here, we will be seeing not that x bar only it will be 

a big x bar that means 
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Mean getting me, so next class I will explain you that statistical distance. Thank you very 

much.  
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