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Rao-Blackwell Theorem and Its Applications 

 

We have actually an important result which is known as Rao-Blackwell, and Rao-

Blackwell Lehmann-Scheffe Theorem; let me give that result. That will help us in 

obtaining the uniformly minimum variance and unbiased estimators. 
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So, the Rao-Blackwell theorem says that- let d x be unbiased for g theta and T be a 

sufficient statistic, then let us define say h T as expectation of d x given T conditional 

expectation, then this is unbiased for g theta and variance of h T is less than or equal to 

variance of d x for all theta. 

Now this means that, if there is a estimator which is not dependent upon the sufficient 

statistic I can transform it by conditioning upon the sufficient statistic and get something 

which is better. That means, it is always advisable to start with functions of sufficient 

statistic for making estimation. Now further a strengthening of this theorem is done if we 

use the concept of completeness also. Let T be a complete and sufficient statistic then h 

T is UMVUE for its expectation; that is g theta is equal to expectation of h T. Now this is 

extremely significant result, it means that whenever I have a complete sufficient statistic 



and I have to find out UMVUE of any parametric function then I consider an appropriate 

parametric function which will be based on the complete sufficient statistic and it will be 

unbiased; that is all 

So, that will become UMVUE automatically, we do not have to do any further proof that 

we have to compare its variance with any other unbiased estimator etcetera; it will be 

automatically. The reason is that the property of the completeness that the only unbiased 

estimators of 0 is 0 itself; that means, for any given parametric function based on the 

complete sufficient statistic you cannot have two unbiased estimators. If they are two 

then they will be same with probability 1. And if there is any other estimator which is not 

dependent upon the complete sufficient statistic, then that can again be improved by 

taking conditioning so you will get the same one. 

Therefore, it is advisable to restrict attention to functions of complete sufficient statistic. 

Now this gives us a very convenient tool for deriving unbiased estimators in various 

problems. So, let us go back to the examples which we have done earlier. 
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So, one of the first problems we considered was estimation of the parameter of a Poisson 

distribution. So now the question arises about the completeness and sufficiency. Here T 

is sufficient, what about completeness? The distribution of T is Poisson n lambda. So, if 

we can prove that the family of Poisson distribution is complete then T will also become 



a complete statistic. So, in place of Poisson n lambda we can prove the completeness of 

Poisson lambda family. 

Let us write down expectation of say g x is equal to 0 this is statement is equivalent to g 

x e to the power minus lambda lambda to the power x by x factorial. Since lambda is 

positive this we can multiply on both the sides by e to the power lambda and g x by x 

factorial term I can combine as some g star x. Now the left hand side is a power series in 

lambda and we are saying that it is identically 0 on the positive half of the real line; that 

is possible only if g star itself is 0, that means all the coefficients must be 0 which is 

equivalent to saying that g x is 0 for all x, which implies that probability that g x is 0 is 1 

for all lambda. That means this family is complete. 

So, this means that sigma xi is sufficient as well as complete. Now that makes our 

problem extremely simple. Now based on T whatever estimator we take if we take its 

expectation then that estimator will become UMVUE for that. 
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For example: expectation of T by n that is expectation of x bar that is equal to lambda. 

So, x bar is UMVUE for lambda. Now that answers the questions for this, because in this 

particular case we had written earlier x 1 has an estimator x 1 plus x 2 by 2 as another 

estimator. We could have also considered say T 4 as 1 by n minus 1 sigma xi minus x bar 

whole square this is also unbiased, because this is the sample variance and in the Poisson 

distribution case lambda is the population variance so sample variance is unbiased, but 



this is UMVUE. So, we do not have to consider any other estimator and we restrict 

attention to x bar for this one. 

As for as the unbiased estimation is concerned we can take help of the complete 

sufficiency and get the best unbiased estimator. This concept is also useful to estimate 

certain parametric functions which are not a straight away unbiasedly estimable. We had 

taken a example of the probability of 0 occurrence. Now, we wrote that we can consider 

and estimator such as say I of x 1 is equal to one if x 1 is 0 and it is 0 if x 1 is not 0, then 

expectation of I x 1 is e to the power minus lambda. 

Naturally this is not dependent upon the complete sufficient statistic. So, by Rao-

Blackwell Lehmann-Scheffe Theorem let me write it as d T is equal to expectation of I x 

1 given T this is UMVUE. So now, the question comes of determination of d T that can 

be determined by using the concept of conditional expectation. 
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So, expectation of I x 1 given T is equal to small t that is equal to probability of x 1 is 

equal to 0 given T is equal to t. That is probability of x 1 is equal to 0 sigma xi is equal to 

t divided by probability T is equal to t. We know the distribution of T that is Poisson n 

lambda so the denominator is determined, the nominator is determined if we make use of 

the condition that x 1 is 0 then this summation reduces to sigma xi i is equal to 2 to n to 

be equal to t, because of first one is 0. 



The advantage of writing like this is that the first one is independent of the second term, 

because this is x 1 and this is x 2 to x n. So, we can write it as a product x 1 is equal to 0 

into product of sigma xi i is equal to 2 to n is equal to t divided by probability of T is 

equal to t. Once again we make use of the fact that sum of the independent Poisson 

random variables which is again Poisson, so this will be Poisson n minus 1 lambda that is 

T follows Poisson n lambda sigma xi 2 to n follows Poisson n minus 1 lambda and x 1 

follows Poisson lambda. So, we can substitute these values here this is e to the power 

minus lambda e to the power minus n minus 1 lambda n minus 1 lambda to the power t 

divided by t factorial then e to the power minus n lambda n lambda to the power t by t 

factorial. So, these terms obviously cancel out and we are left with n minus 1 by n to the 

power t which can write as 1 minus 1 by n to the power t. 

So, d T that is 1 minus 1 by n to the power T is UMVUE for g lambda. So, this concept 

of completeness and sufficiency is extremely useful for determination of the minimum 

variance unbiased estimators for given problems. Of course, one may wonder that this 

estimator looks somewhat different, because we are estimating e to the power minus 

lambda and what type of term we have got. But if you see carefully if I take the limit of 

this as n tends to infinity it is actually e to the power minus x bar, because this is nothing 

but n times x bar so this becomes e to the power minus x bar which was actually the 

maximum likelihood estimator. 

So, this is another important point that in most of the practical situations asymptotically 

the minimum variance unbiased estimator and the maximum likelihood estimator will be 

same. There have been some results in this direction. 
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Let us take some other practical problems- say x 1, x 2, x n follows normal mu sigma 

square distribution. Now let us determine a complete sufficient statistics here, write 

down the joint distribution of x 1, x 2, x n so that is 1 by sigma to the power n root 2 pi 

to the power n e to the power minus 1 by 2 sigma square sigma xi minus mu square. 

Now if we write the term like this it is not easy to understand that what will be a 

sufficient statistic, because here all the observations are coming into picture. 

So, we do slight algebraic simplification we can write it as 1 by sigma to the power n 

root 2 pi to the power n e to the power minus sigma xi minus x bar whole square by 

twice sigma square minus n x bar minus mu by 2 sigma square That means, we have 

added and subtracted sigma xi minus x bar plus x bar minus mu is square that become 

sigma xi minus x bar whole square plus n times x bar minus mu square, and the cross 

product term vanishes. 

So, now you can see here that this is a function of sigma xi minus x bar whole square this 

is a function of x bar. So, we can say that x bar and sigma xi minus x bar whole square is 

sufficient any one to one function of a sufficient statics will also be sufficient. In fact, we 

can write the general thing that if T is sufficient and T is a function of U then U is also 

sufficient. On the other hand if T is complete and V is a function of T then V is also 

complete. 



So, this implies that we can also write this as sigma xi sigma xi square. Now the question 

comes about checking the completeness of this, that will involve the joint distribution of 

x bar and sigma xi minus x bar whole square which we already know; the distribution of 

x bar is normal and the distribution of n minus 1 is square by sigma is square is chi 

square and they are independent so we can write a proof based on this. However, it may 

be quite complicated. Fortunately there is another result that if the distributions are in 

exponential family then a form of complete statistic can be determined. 
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So, a general result in this direction is that consider a k- parameter exponential family; 

that means, the distribution is of the form e to the power sigma theta i T i xi is equal to 1 

to k multiplied by sum c theta h x. This is called a k- parameter exponential family; this 

belongs to certain parameter express theta. If theta contains a k- dimensional rectangle 

then T 1, T 2, T k is complete. Sufficiency is of course obvious because of the 

factorization theorem, but this will also be complete. If we utilize this one then 

obviously, here x bar and sigma xi minus x bar whole square will be complete also. 

Because this can be considered as a two parameter exponential family; one of the 

parameters can be written as minus 1 by 2 sigma square and another parameter can be 

written as minus n by 2 sigma square. 

So, the range of the parameter says minus infinity to infinity and minus infinity to 0 and 

therefore this will; I am sorry this can be written in this following fashion: 1 by sigma to 



the power n root 2 pi to the power n e to the power minus 1 by 2 sigma square sigma xi 

square minus 2 mu xi plus mu square. Now this we write down 1 by sigma to the power 

n root 2 pi to the power n e to the power minus n mu square by 2 sigma square e to the 

power minus sigma xi square by twice sigma square plus mu by sigma square sigma xi. 

So, if you write in this particular fashion you can see that we can consider it as a two 

dimensional parameter theta 1 we can take to be minus 1 by 2 sigma square, theta 2 we 

can take to be mu by sigma square, T 1 we can take to be sigma xi square, and T 2 we 

can take to be sigma xi. So, the range of theta 1 is from minus infinity to 0 and the range 

of theta 2 is from minus infinity to infinity, so obviously this contains two dimensional 

rectangles. Therefore, sigma xi square sigma xi is a complete statistic. The sufficiency is 

already established through factorization theorem. 

Therefore, we conclude that sigma xi sigma xi square is sufficient and complete or x bar 

and sigma xi minus x bar whole square is a complete and sufficient statistic, this is a one 

to one function of this. Now the estimation problem for finding out the minimum 

variance unbiased estimators becomes very simple. For example, expectation of x bar is 

mu, therefore x bar will be minimum variance unbiased estimator for mu. We have also 

proved that expectation of x square is sigma square that is sigma xi minus x bar whole 

square by n minus 1 which is a function of this, therefore that is also a UMVUE. 
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So, we conclude that x bar is UMVUE for mu and S square is UMVUE for sigma square. 

So, we can see here that once the determination of a complete sufficient static is done in 

a problem then finding out the UMVUE which is simply a problem of finding certain 

expectations. Let us take another familiar example there is of a uniform distribution. 

Here we have seen the method of movements estimator was 2 x bar which was unbiased 

MLE was x n. So, we write down the joint distribution, we have seen x n is actually 

sufficient, but what about its completeness. So let us write T is equal to x n, what is the 

distribution of this? It is n T to the power n minus 1 by theta to the power n 0 less than or 

equal to t less than or equal to theta 0 otherwise. 

If we want to prove the completeness of T then let us take expectation of g T that is equal 

to g t n t to the power n minus 1 by theta to the power n dt from 0 to theta equal to 0 for 

all theta. Now you see here this is a function of t and we are saying the in integral over 

every interval of the form 0 to theta is 0. Now through the intervals of the form 0 to theta 

we can generate all the (Refer Time: 22:31) measurable sets on the positive real line. 

That means, we can say the integral of g is star t where g star t denotes this thing is equal 

to 0 for all measurable sets A on R plus, which is implying that g star t itself must be 0 

almost everywhere on R plus. This implies g t is 0 almost everywhere on R plus. So, this 

implies at probability that g T is equal to 0 is 1. This proves that T is actually complete 

you have already prove that it is sufficient. 

Now let us look at expectation of T. 
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So, expectation of T is equal to n t to the power n by theta to the power n 0 to theta dt; 

that is equal to n by n plus 1 theta which shows that the maximum likelihood estimator is 

actually a biased estimator, but we can adjust this coefficient. So, we get n plus 1 by n T 

that is n plus 1 by n x n this will become minimum variance unbiased estimator for theta. 

So, you can see here that this settles the issue of that which estimator among the 

unbiased estimators must be chosen. 

The concept of completeness and sufficiency is quite significant in a statistical inference. 

Here we have given examples for the estimation problems, later on we will see when we 

do the testing or confidence interval there also the same statistic plays a role. Here we 

give some more examples of estimation problems. Suppose in place of mu the mean of a 

normal distribution is given to be 0, let us see how this modifies the given problem. Let 

us write down the joint density because all the information will be derived from the 

distribution itself. So, product of individual density is becomes 1 by sigma root 2 pi to 

the power n e to the power minus sigma xi square by 2 sigma square. 

Now here you do not have to do anything, you just observe that the distribution belongs 

to one parameter exponential family; the parameter is minus 1 by 2 sigma square and it is 

from minus infinity to 0, the range of minus 1 by 2 sigma square which obviously 

contains one dimensional interval. Therefore, sigma xi square is complete statistic. The 

sufficiency is clear from here. So, we conclude that sigma xi square is a complete and 



sufficient statistic. Now we look at the distribution of sigma xi square. The distribution 

of sigma xi square by sigma is square is chi square on n degrees of freedom. This means 

that expectation of sigma xi square by sigma is square is n, that is expectation of 1 by n 

sigma xi square is sigma is square. 

That settles the issue here. In fact, for this problem if we find the maximum likelihood 

estimator that will be the method of movements estimator will be this and this is also 

minimum variance unbiased estimator. 
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So, 1 by n sigma xi square is UMVUE for sigma square. Let us compare it with the 

previous work when we considered normal mu sigma is square distribution we 

concluded that 1 by n sigma xi minus x bar whole square is UMVUE. Now here you see 

that if the information about mu is there then the UMVUE is changing; that means, 

making use of the given information about the parameter changes our inference. A 

Lehmann will blindly without knowing the concept of sufficiency, he may just say that 

once we know that for mu we have x bar and for sigma square we have s square then he 

can always use in any given problem the estimators has x bar and 1 by n minus 1 sigma 

xi minus x bar whole square. Whereas, here you see that if we know that mu is equal to 0 

then first of all for mu there is no estimation problem, because we know that the value is 

0 and for sigma square also a more efficient estimator is 1 by n sigma xi square. In fact, 



it is better than 1 by n minus 1 sigma xi minus x bar whole square because of the 

UMVUE thing that we have considered here. 

This also shows that whatever information is coming in the form of the likelihood 

function; that means the data and the parameter space that should play full role in 

deriving any inference in particular for estimation. Suppose here we have another 

restriction say sigma square is greater than or equal to sigma naught a square. Obviously, 

this 1 by n sigma xi square which was the MLE as well as even be we becomes slightly 

unreasonable estimator if it is observed that this value is less then sigma naught square. 

Let us see how to modify the maximum likelihood estimator. 

We consider the log of the likelihood function that is equal to minus n by 2 log sigma is 

square minus sigma xi square by 2 sigma square. So, if we differentiate this dl by d 

sigma square we get minus n by 2 sigma square plus sigma xi square by 2 sigma to the 

power 4 which is nothing but sigma xi square minus n sigma square by sigma to the 

power 4. We can easily see that if n sigma square is less then sigma xi square this is 

positive, that is if sigma square is less than 1 by n sigma xi square and it is less than 0 if 

sigma square is greater than this. That means the form of the likelihood function is that it 

increases up to a certain value then decreases. 

Now if sigma naught square is here and 1 by n sigma xi square is here then this solution 

is alright, whereas if this value is on this side then the maximum is occurring at this 

point. Therefore, the maximum likelihood estimator for sigma hat is square becomes 1 

by n sigma xi square if sigma xi square by n is greater than or equal to sigma naught 

square and it is equal to sigma naught square if it is less. Here you can see the unbiased 

estimator does not belong to the given parameter space, therefore we have to discard 

some portion of it and get a modified estimator. 
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Suppose in the same problem x 1, x 2, x n follows normal mu sigma square and we are 

interested in the estimation of sigma. Now if maximum likelihood estimation is to be 

done then immediately we can take the square root of the estimator of sigma is square, 

but that will not preserve the unbiasedness. So, we can then make use of the concept of 

completeness and sufficiency. Here we know that S square by sigma square follows chi 

square on n minus 1 degrees of freedom. So, we take expectation of a square root of this 

quantity and we obtain a multiple of a constant here. 

Now, we adjust that constant here, so we get here n minus 1 by k square root n minus 1 

by k s as unbiased estimator for sigma; that is a standard deviation. This quantity which I 

have written here is actually 1 by root 2 gamma n minus 1 by 2 divided by gamma n by 

2; which can be done after certain calculations, because expectation of this will involve 

evaluation of a gamma function which can be easily done and this term will come. So, 

what will get that this is UMVUE for sigma. 

Now suppose we are interested in a parametric function say mu plus eta sigma, which is 

nothing but a quantiles are locations on the distribution we have defined it earlier. So, 

suppose this is a normal distribution mu. So, mu plus eta sigma may be a particular 

quantile mu minus eta sigma may be another quantile etcetera and we may be interested 

to find a UMVUE of this. Then easily we can see because of the linearity we can put x 

bar plus eta and this particular term let us denote it by say c n minus 1; c n minus 1 sigma 



then this will become UMVUE, a c n minus 1 as this will be UMVUE for this parametric 

function which we call say theta. 

So, you can see that for various kinds of parametric functions the UMVUE is can be 

derived once we have the complete sufficient statistic with this. The only disadvantage is 

that sometimes the complete sufficient statistic may not exist; that means a statistic 

which we are considering a sufficient it may not be complete. 
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A example for this situation is suppose I say x 1, x 2, x m follows normal mu sigma 1 is 

square y 1, y 2, y n follows normal mu sigma 2 is square, then expectation of x bar is mu 

expectation of y bar is also mu. So, expectation of x bar minus y bar is 0 for all 

parametric functions. However, probability that x bar minus y bar is 0 is not 1. In fact, 

this probability is actually equal to 0. So, x bar y bar S 1 square, S 2 is square is not 

complete. 

In this case we cannot make use of the Rao-Blackwell Lehmann-Scheffe Theorem. In 

fact, there is another result here which says that the UMVUE for mu does not exist. So, 

that may happen sometimes. However, this concept is extremely useful as we have seen. 

In the next lecture we will be discussing the interval estimation; that means, in place of a 

single value as an estimate for a certain parametric function we will give a range of 

values and we will say that with a certain confidence the parameter lies into that range. 


