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Lecture – 47 

Chi-Square Distribution (contd.), t – distribution 

 

We have introduced a sampling distribution called Chi-Square Distribution, and then I 

showed that if we are doing the sampling from a normal distribution then the distribution 

of the sample variance is a Chi-Square distribution therefore, chi square distribution is a 

sampling distribution. We used a moment generating function technique to derive the 

distribution of S square. Firstly, by proving that sample mean and sample variance are 

independently distributed, when we are sampling from a normal population.  

Today I will give a alternative derivation by the method of transformations for the 

sampling distribution of X bar and S square when we are sampling from a normal 

population 
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So, let us consider that X 1, X 2, X n is a independently and identically distributed 

normal mu sigma square random variables. So, we want to derive the distribution of X 

bar that is sample mean 1 by n sigma X i, i is equal to 1 to n and S square that is 1 by n 

minus 1 sigma X i minus X bar whole square. So, the method of proof will be through 



transformation. So, we will consider a transformation of the set X 1, X 2, X n in the 

following fashion 

So, let us consider Helmert’s orthogonal transformation; now this is a special 

transformation given in the following fashion that we define Y is equal to Y 1, Y 2, Y n 

as B X where B is the matrix of coefficients the first row is 1 by root n, 1 by root n and 

so on 1 by root n. The second row it is minus 1 by root 2 and 1 by root 2 and remaining 

terms are 0. The third one is minus 1 by root 6. minus 1 root 6 and 2 by root 6 and the 

remaining terms are 0; likewise if we continue in the last row we have minus 1 by square 

root n into 2 n minus 1 and so on finally, the last term is n minus 1 by root n into n minus 

1 multiplied by X 1, X 2, X n. 

So, first of all let us observe this B matrix this matrix is a special matrix which is called a 

Helmert’s orthogonal matrix, the terms of the first row are same and if you take every 

next row then it is defined in such a way that if I multiply any 2 rows then the product 

will be 0, that is the scalar product of any 2 rows is 0 for example, if I take first and 

second then here it is minus 1 by root 2, and here it is plus 1 by root 2, so if I multiply 

the sum will give me 0. Suppose I take this with this then again the same thing because 

these 2 terms are same, so if I multiply here and add then this will become 0. 

Similarly, if I talk these and multiply by the first row then minus 1 by root 6 n, minus 1 

by root 6 n plus 2 by root 6 n so again the sum is equal to 0. So, this is a special matrix 

which is constructed for this purpose. Now let us see the effect of this, what we have 

done is that we have transformed the X 1, X 2, X n variables to new variables called Y 1, 

Y 2, Y n by means of this. 
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So, we have B is an orthogonal matrix and we have BB transpose is equal to identity 

matrix. So, if I consider Y transpose Y then that is equal to X transpose B transpose B, X 

that is equal to X transpose. So, this is also B transpose B that is equal to X transpose X; 

that means, sigma of Y i square is equal to sigma of X i square i is equal to 1 to n. That 

means, the original sum of squares is equivalent to the new sum of squares, also we can 

see here by this transformation that Y 1 is equal to root n X bar; because if I consider the 

multiplication of the this matrix with this vector and look at the first term and the first 

term will be X 1 by root n plus X 2 by root n plus X n by root n. So, that is root n X bar. 

So, Y 1 is root n X bar. 

So, from here we get sigma Y i square i is equal to 2, 2 to n is equal to sigma Y i square 

minus Y 1 square which is same as now sigma X i square this is i is equal to 1 to n, 

sigma i is equal to I to n minus n X bar square, that is equal to sigma X i minus X bar 

whole square, which is the term which appears in the s square term that is the sample 

variance. Therefore, this new transformation is giving me Y 1 as well as sigma, that is 

which is X bar which is a term or X bar and which is another term which is a term of S 

square. So, our desired objective was to get the distributions of X bar and S square and 

this particular transformation helps us in at least representing these 2 terms in terms of 

transformed variables. 



Now, let us look at the distribution so. Firstly, we write down the joint density function 

of X 1, X 2, X n. So, each of these X i's are normal mu sigma square variables. So, that 

distribution we write as 1 by sigma root 2 pi to the power n, e to the power minus 1 by 2 

sigma square sigma X i minus mu whole square. Now this we expand we can write as 1 

by sigma root 2 pi to the power n, e to the power minus 1 by 2 sigma square and now we 

get sigma of X i square minus 2 mu sigma X i plus n mu square.  

When we consider the transformation Y is equal to B X and B is an orthogonal matrix, 

then we know that the determinant of an orthogonal matrix is either plus 1 or minus 1. 

So, Jacobian of the transformation that will be having absolute value 1; so this will be 

used for calculation of the transform density. 
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So, if I consider the joint density of Y 1, Y 2 Y n then it is obtained as. So, in the density 

of X 1, X 2, X n let us substitute the transformed values in terms of Y i's. So, sigma X i 

square will become sigma Y i square, and this sigma X i is nothing, but n X bar. Now X 

bar is Y 1 by root n. So, this also we can substitute and multiplied by the Jacobian of the 

transformation that is unity. So, we get the transformed density as 1 by sigma root 2 pi to 

the power n, e to the power minus 1 by 2 sigma square, sigma Y i square minus 2 mu 

root n Y 1 plus n mu square this is i is equal to 1 to n. 

Now, in this particular exponent if I consider this sigma Y i square I take I write this as 

Y 1 square plus sigma Y i square from 2 to n. Now this Y 1 square minus 2 mu root n Y 



1, n plus n mu square becomes a perfect square. So, we can represent it as 1 by sigma 

root 2 pi, e to the power minus 1 by 2 sigma square Y 1 minus root n mu square and the 

other terms we write separately as product i is equal to 2 to n, 1 by 2 pi sigma square to 

the power half, e to the power minus Y i square by 2 sigma square. The range of the 

transformed variables each of these Y i’s are also from minus infinity to plus infinity. 

Now, you see this representation we are able to express the joint density of Y 1, Y 2, Y n 

as product of the certain functions where each function is strictly dependent only on each 

Y i. So, these are n functions. So, this is a function which is dependent upon Y 1 alone 

and here we have n minus 1 function each function is dependent upon Y 2, Y 3, Y n 

respectively. So, if we integrate with respect to Y i’s we will get individual terms; that 

means, Y 1, Y 2, Y n are independent and you are also able to say that these Y i’s are 

independently normally distributed, because of the form of the density. So, we conclude 

that we conclude from the above expression that Y 1, Y 2, Y n are independently 

distributed and Y 1 follows normal root n mu and sigma square and remaining Y i's 

follow normal 0 sigma square for i is equal to 2 to n. 

So, this implies that since Y 1 is root n X bar, that is X bar that is equal to Y 1 by root n 

that will follow normal mu and sigma square by n and the sum of the squares of this Y i's 

divided by sigma square that is sigma Y i square by sigma square i is equal to 2 to n, that 

will follow chi square on n minus 1 degrees of freedom. 
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But this term is nothing, but n minus 1 S square by sigma square. So, that is following 

chi square on n minus 1 degrees of freedom and further these 2 are independent. 

So, the result which we had proved using moment generating function, we have proved 

using transformations of the variables also. This Helmert’s orthogonal transformation is 

quite useful, and that actually suggests that a procedure for obtaining the distributions of 

the sums of random variables and the squares of random variables. So, many times this 

statement is quite useful.  
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Now, we move over to another sampling distribution called t distribution. So, we call it 

students t-distribution, there is a story behind that why it is called a student’s t-

distribution, basically it was discovered by W.S Gosset a statistician in England; 

however, he worked in a brewery and therefore, it was not permitted for him to give his 

affiliation as working in a brewery. So, he used a pseudo name student and therefore, the 

distribution became famous as students t-distribution. 

So, if I have let X and Y be 2 independent random variables, let us assume that X 

follows normal 0, 1 distribution and Y follows a chi square distribution on n degrees of 

freedom. If I consider the ratio X divided by Y by n and square root. So, let me write it 

as square root n X by square root of Y, let me call it say T, then this T is said to have a 

student’s t-distribution on n degrees of freedom. 



Now, this degrees of freedom terminology is coming from the chi square distribution, 

where we express that what is the meaning of the terms degrees of freedom, a chi square 

distribution on n degrees of freedom was represented as the sum of squares of n 

independent standard normal random variables. So, in the definition of t distribution I am 

using the degrees of freedom of chi square, and therefore, this t distribution is said to 

have set to be on n degrees of freedom. 

Now, since here X and Y are independently distributed random variables, the derivation 

of the density of t is an exercise of deriving distribution of a function of random 

variables. So, we can write down the joint distribution of X and Y and create a 

transformation, in which one of the variables will be defined by t, and some other 

variable and we derive the distribution. 

So, let us do it in the following way. Firstly, we look at the joint probability density 

function of X and Y. So, it is equal to the product of the individual distributions of X and 

Y. Now X is normal 0, 1 so the density is 1 by root 2 pi, e to the power minus X square 

by 2, and the density of Y is chi square n that is 1 by 2 to the power n by 2, gamma n by 

2, e to the power minus Y by 2, Y to the power n by 2 minus 1. Here the range of the X 

variable is from minus infinity to infinity and range of Y variable is positive. 
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So, now we are considering the transformation T is equal to root n X by root Y. So, let us 

consider this transformation. So, the second variable we can consider as say V is equal to 



or say U is equal to Y, because we have to consider a one to one transformation or at 

least the number of variables should be same, so that we can find the joint density and 

then we can integrate out the not desired variable. 

So, the inverse transformation here will be. So, x is equal to root u by n t and y is equal 

to u. So, we consider the Jacobian del x by del t that is root u by n, del x by del u that is t 

by 2 root n u, del y by del t that is 0 and del Y by del u that is 1. So, it is equal to root u 

by n. So, if we substitute this in the joint density of X Y and multiplied by Jacobian, we 

get the joint probability density function of T and U f T, U. 

So, let us substitute the values here 1 by root 2 pi and all this thing is constant, so we 

combine it together, it becomes 1 by 2 to the power n plus 1 by 2, root pi n, gamma n by 

2, e to the power minus u by 2, 1 plus t square by n, u to the power n plus 1 by 2 minus 1. 

So, this is after combining the coefficients and another thing you observe here that if we 

are making this particular transformation, the range of T remains from minus infinity to 

infinity and U is the chi square variable. So, U is positive. So, t belongs to r and u is 

positive. 

To get the density of T we integrate this joint density with respect to U. So, if you 

integrate with respect to U from 0 to infinity you observe this term, it is e to the power 

minus u into something, and then u to the power some power, which is of the nature of a 

gamma integral or a gamma function. 
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So, it can be easily evaluated and we get the marginal probability density of T is let me 

call it f U that is integral f T, U d u from this is f T. So, I have written wrongly this is f T 

from 0 to infinity. 

So, here the order of the gamma function is n plus 1 by 2. So, in the numerator I will get 

gamma n plus 1 by 2 divided by u as a multiple half, 1 plus t square by n. So, in the 

denominator I will get half, 1 plus t square by n to the power n plus 1 by 2. Now there is 

a 2 to the power n plus 1 by 2 term that will cancel out, so we are left with this density as 

gamma n plus 1 by 2 divided by gamma n by 2 root pi n, 1 plus t square by n to the 

power minus n plus 1 by 2 and the range of the variable is from minus infinity to infinity 

so this is the density of the t distribution on n degrees of freedom. 

This particular coefficient we can write in a slightly different way also, because root pi if 

we observe it is gamma half. So, we can utilize the beta function notation and it becomes 

1 by root n beta, n by 2, 1 by 2 and 1 plus t square by n to the power minus n plus 1 by 2. 

Obviously if you look at his one the density is a symmetric function in t around 0, 

because if we replace t by minus t you get the same function. Another thing you observe 

that as t becomes large this will go towards 0, because the 1 plus t square by n term is in 

the denominator; also you observe that higher the power of n higher the value of n the 

conversions to 0 will be faster. So, basically that determines the shape of the t 

distribution, so we look at this thing. 

The density is symmetric about t is equal to 0, hence all odd ordered moments vanish 

provided they exist, even ordered moments can be calculated. Now if you evaluate e to 

the power 2 k integral of this term, then you can reduce it to a gamma function and do 

the calculation. So, the even ordered moments exist of order less than n. So, we have 

expectation of T to the power k for the even ordered moment as n to the power k by 2, 

gamma k plus 1 by 2, gamma n minus k by 2 divided by gamma half, gamma n by 2. 
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So, in particular expectation of T is 0, expectation of T square is that is variance of T that 

is n by n minus 2 which is existing for n greater than 2. You observe this is somewhat 

peculiar number n by n minus 2, as n becomes large this becomes close to 1. 

Mu 4 is expectation of T to the power 4, that is 3 n square by n minus 2 into n minus 4, 

which is valid for n greater than 4. So, we can calculate the measure of kurtosis that is 

beta 2, that is mu 4 by mu 2 square minus 3. So, you look at this term we divide by n 

square, so this cancels out and we get 3 into n minus 2 by n minus 4 minus 3, which is 

simply 6 by n minus 4 so; obviously, this is positive, because we are considering n to be 

greater than 4, but you can observe here that if n becomes sufficiently large, then this 

number becomes small and that means, the kurtosis moves towards normality as n 

becomes large; in general it is leptokurtic density of T is Leptokurtic. 

Now, let us consider this distribution as a sampling distribution, because right now I 

have given a distributional theoretic representation of this t variable, because we are 

writing it as only ratio of 2 variables in a particular form, but we can make use of the fact 

that chi square is itself is a sampling distribution, so whether we can represent t also in 

the same fashion. So, let us see. 

If I consider a random sample from normal mu sigma square distribution, then X bar and 

S square are independent that we proved and what are the distributions? X bar follows 

normal mu sigma square by n, this means that I can consider root n X bar minus mu by 



sigma and this will follow normal 0, 1 n minus 1 s square by sigma square follows chi 

square on n minus 1 degrees of freedom, and this variable and this variable is 

independent. 
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So, if I make use of this definition of the 2 variables of the t variable, then I can write 

root n X bar minus mu by sigma divided by root n minus 1 S square by sigma square into 

n minus 1, this must follow chi square distribution on n minus 1 sorry this must follow t 

distribution on n minus 1 degrees of freedom. Now if you simplify this term here n 

minus 1 cancels out sigma cancels out. So, we are left with root n X bar minus mu by S, 

this follows t distribution on n minus 1 degrees of freedom therefore, t distribution is a 

sampling distribution. 

Another interesting thing is you can observe when I considered root n X bar minus mu 

by sigma this is standard normal, and here root n X bar minus mu by S is there; that 

means, sigma is replaced by S, later on we will see in the inference portion that S is 

actually an estimate for sigma. So, when sigma is not known we have to work with S and 

the distribution of that is known. In fact, in the context of this only this distribution was 

derived.  

Now, regarding the probability points of t distribution, so the t distribution is a 

symmetric distribution about 0. So, if this point I call t alpha n, then the probability 

beyond this must be alpha; that means, probability of T greater than or equal to t alpha n 



is equal to alpha; that means, t alpha n is upper 100 alpha percent point of t distribution 

on n degrees of freedom. Because of the symmetry if you consider t 1 minus alpha n then 

that will be equal to t minus t alpha n; that means, if this value is alpha, then this point is 

t 1 minus alpha n by this definition, but because of the symmetry this will be equal to 

minus t alpha n.  

Now, few things that we observe let us recollect that; when I wrote the density I said it is 

symmetric about 0 the odd ordered moments vanish even ordered moments can be found, 

mean is 0, the variance approaches 1 as n becomes large, the peakedness approaches 

normal p as n becomes large. So, these things and another thing I said that if you replace 

sigma by S then you have a t distribution, here you have a normal distribution. 

This shows some sort of close similarity between t distribution and n t distribution and a 

standard normal distribution. Actually it is true; in fact we can prove that as n becomes 

large, the t distribution can be approximated by a standard normal distribution. So, we 

prove the following result. 
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So, we consider let T be a t random variable on n degrees of freedom, then as n becomes 

large the pdf of T converges to phi t. Phi t is the probability density function of a 

standard normal random variable. So, to prove this let us write down the density function 

of t as derived that is gamma n plus 1 by 2 divided by gamma n by 2 root pi n and 1 plus 



t square by n to the power minus n plus 1 by 2. Now you observe this term as n becomes 

large or n tends to infinity, this converges to e to the power minus t square by 2. 

So, as n tends to infinity, 1 plus t square by n to the power minus n plus 1 by 2 converges 

to e to the power minus t square by 2. So, let us look at the remaining terms we must 

actually prove that this remaining term converges to 1 by root 2 pi. So, if we look at this 

term n plus 1 by 2, gamma root pi n gamma n by 2. 
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Now, there is a formula called Sterlings approximation. So, Sterlings approximation is 

let me write it here, that gamma p plus 1 can be approximated by root 2 pi, e to the 

power minus p, p to the power p plus half for large p; that means, for large p gamma 

function can be approximated by an exponential and binomial type of term. So, is a 

mathematical formula we can use it here. So, I am saying n is large then I can represent 

these things as root 2 pi, e to the power minus n minus 1 by 2, n minus 1 by 2 to the 

power n plus 1 by 2, no n minus 1 by 2 by to the power n by 2 and in the denominator 

you have root pi n, root 2 pi, e to the power minus n minus 2 by 2, n minus 2 by 2 to the 

power n minus 1 by 2.  

So, we can do some simplification this root 2 pi etcetera will cancel out, and here you 

have 1 by 2 to the power n by 2, and 1 by 2 to the power n minus 1 by 2. So, 1 root 2 will 

come here. 
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So, this is giving rise to 1 by root 2 pi and then we get this e to the power half and here I 

can take common n in the numerator and denominator. So, the those terms are getting 

canceled out that is n to the power n by 2, in the denominator I have n to the power half 

here and n to the power n minus 1 by 2. So, these all terms get canceled out and you are 

left with 1 minus 1 by n to the power n by 2, divided by 1 minus 2 by n to the power n 

minus 1 by 2. 

So, if I take the limit as n tends to infinity, this goes to e to the power half and this goes 

to e therefore, the limit is simply 1 by root 2 pi, because this e to the power half e to the 

power half and e, they get canceled out. So, this proves that this f t converges to; f t 

converges to 1 by root 2 pi, e to the power minus t square by 2 that is the density 

function of a standard normal variance. 

The question arises that for what sufficiently large value of n is this approximation good? 

The answer is that for n greater than or equal to 30, the approximation is extremely good 

and the tables of t distribution most of the times they show. So, if we look at a standard 

table of t distribution, unfortunately this cannot be seen here, but I will just write here the 

t value say at 0.25 and 30 is 0.683. 
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If I look at the same value for normal distribution then the point where the probability is 

0.25 above the given point, it is 0.67 that is the if I consider that as z point, z 0.5 is equal 

to 0.68 and since this tables is given only up to 2 places, so I cannot predict here, but it is 

pretty close as you can see from there. 

In fact, the tables are not given beyond 30 in most of the cases, because the 

approximation is extremely good. In fact, at 120 the value is almost equal. 


