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Additive Properties of Distributions – II 

 

We will consider a few multivariate distributions, which are quite commonly used, one 

of them is a generalization of binomial distribution 
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The so called multinomial distribution, in the binomial distribution we are considering a 

sequence of Bernoullian trails in which each trail of the experiment results in two options 

one is called success and another is called a failures; that is two types of outcomes are 

possible. However, there are a variety of trails in which we may be interested in 

categorizing not only in two, but in k type of outcomes So, for example, if you are 

looking at tossing of a die then you have the phases coming up 1, 2, 3, 4, 5, 6. 

If you are looking at drawing a card from a pack of cards then it could be any of the 

fours, you would say heart, spade, club or diamond or if you are looking at say whether 

what is the number on the that is 1, 2, 3 up to 13 So, there are a variety of experiments 

where the possible outcomes can be more than one. So, if their probability of ending up 

in outcome one is say p 1, ending in outcome two is p 2, getting an outcome k is p k and 

then if we conduct a certain number of trail say n, so out of that say x 1 is the number of 



outcomes resulting in first type, x 2 is the number of trails resulting in the second type of 

outcome etcetera. 

What is the distribution of that, so that is called a multinomial distribution, so suppose a 

random experiment is conducted n times under identical conditions. Each trail may result 

in one of k mutually exclusive and exhaustive events. Let us call them say A 1, A 2, A k; 

let p j denote the probability of outcome A j for j is equal to 1 to k. So, let us consider 

say X 1 number of outcomes resulting in event say A i; X i denotes this for i is equal to 1 

to k. Then what are the possible values of X i; X i’s can take value 0, 1 to n subject to the 

condition that sigma X i is equal to n because n is the total number of trails. 
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So, if we write down probability of say x 1 is equal to x 1, x 2 is equal to say x 2, x k is 

equal to x k then this is equal to n factorial divided by x 1 factorial x 2 factorial and so on 

x k factorial, p 1 to the power x 1, p 2 to the power x 2 p k to the power x k where n is 

equal to sigma X i; i is equal to 1 to k, it is equal to 0 otherwise. 

Now if you look at these distribution here, if x 1, x 2, x k minus on that is any k minus 

one of these variables are given, the last one can be determined in terms of n minus the 

sum of the remaining once So, if we consider the joint distribution of a random variable 

say X 1, X 2, X k minus 1 with joint probability mass function given by this, so we 

consider it as probability of X 1 is equal to x 1, X 2 is equal to x 2, X k minus 1 is equal 

to x k minus 1; that is n factorial divided by x 1 factorial, x 2 factorial, x k minus 1 



factorial; n minus x 1 minus x 2 minus x k minus 1 factorial; p 1 to the power x 1 and so 

on; p k 2 minus 1 to the power x k minus 1 and then 1 minus p 1 minus p 2 minus p k 

minus 1 to the power n minus x 1 minus x 2 minus x k minus 1. 

If sigma x i; i is equal to 1 to n minus 1 is less than or equal to n 0 otherwise; this is said 

to have a multinomial distribution. So in fact if you look at these two, they are the same 

so, but formally we define a multinomial distribution to be k minus 1 dimensional 

because the last value is determined automatically; like in the binomial distribution, we 

talk about the distribution of the number of successes, we do not say that distribution of 

number of successes and failures.  
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Now from a multinomial distribution, we can consider the joint mgf, the joint moment 

generating function of x 1, x 2, x k minus 1. So, it is evaluated at the point t 1, t 2, t k 

minus 1; that is expectation of e to the power sigma t i; X i from 1 to k minus 1. So, if we 

look at this distribution here now the sum of this is a multinomial that is p 1 plus p 2 plus 

up to 1 minus p 1 minus p 2 minus p k minus 1 to the power n. So, the sum of this over 

all this combinations is actually a multinomial sum, so if we want to calculate this term; 

it will become p 1; e to the power t 1 plus p 2 e to the power t 2 and so on plus p k minus 

1 e to the power t k minus 1 plus p k to the power n and this is valid for all t 1, t 2, t k 

minus 1 belonging to R k minus 1. 



Now easily you can see that suppose I substitute t 2, t 3 up to t k minus 1 is equal to 0; I 

will get p 1 e to the power t 1 plus p k to the power n which will become actually the; so 

this p k is actually 1 minus p 1 minus p 2 minus p k minus 1. So, clearly we can see that 

M t 1, 0, 0, 0 is equal to p 1 e to the power t 1 plus p 2 and so on plus p k to the power n 

that we can write as 1 minus p 1 plus p 1 e to the power t 1 to the power n; that is X 1 

follows binomial n p 1; that means, the marginal distributions of X i’s are binomial n, p i 

for i is equal to 1 to k minus 1.  

(Refer Slide Time: 10:09) 

 

In particular we can talk about expectations so naturally expectation of X j will be n p j 

variance of X j will be n p j; 1 minus p j. We can also talk about the covariance terms 

between X i and X j that will be minus n p i p j for i not equal to j and therefore, 

correlation coefficient between X i and X j can be calculated to be minus p i p j divided 

by q i q j where q i q j denotes 1 minus p i and 1 minus p j etcetera to the power half for i 

not equal to j. 

So, the correlation coefficient between two of this can also be calculated; in particular if 

in the multinomial distribution, I consider k equal to 3. So, I will have two of these 

variables that is x 1, x 2 that distribution is called a trinomial distribution, So, that is a 

state forward generalization of binomial distribution to the case when we are having 

three categories as the outcomes. So, it is called trinomial distribution that is for k equal 

to three the multinomial distribution is termed as trinomial distribution So, if I say 



trinomial distribution we can write the probability mass function as n factorial divided by 

x factorial, y factorial, n minus x minus y factorial p 1 to the power x, p 2 to the power y; 

1 minus p 1 minus p 2 to the power n minus x minus y. 

Here x and y can take values 0, 1 to n subject to the condition that x plus y will be less 

than or equal to n and of course, p 1, p 2 are greater than 0 subject to the condition that p 

1 plus p 2 is less than or equal to 1.  
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So, here if I look at the marginal distribution of x that will be binomial n p 1 if I look at 

the marginal distribution of y that will be binomial n p 2. Not only that if we look at the 

conditional distributions of X given Y and y given x, then conditional distribution of X 

given Y is binomial n minus y p 1 by 1 minus p 2 and Y given X has binomial n minus x; 

p 2 by 1 minus p 1. Of course, when we write this p 1 by 1 minus p 2 and p 2 by 1 minus 

p 1, we are assuming that the number is between 0 to 1. 

So, this is one particular bivariate distribution, which is trinomial distribution and a 

general multivariable distribution that is a multinomial distribution, so it is a 

generalization of the univariate binomial distribution. We have a couple of more 

generalizations for example, we have done beta distribution; so a beta distribution can be 

generalized as a bivariate beta distribution in the following way; f x y as gamma p 1 plus 

p 2 plus p 3 divided by gamma of p 1, gamma of p 2, gamma of p 3; x to the power p 1 

minus 1, y to the power p 2 minus 1, 1 minus x minus y to the power p 3 minus 1, where 



x and y are greater than or equal to 0 and x plus y is less than or equal to 1; p 1 p 2 p 3 

must be positive. 

Here, we can see that the marginal distribution of x is beta with parameters p 1 and p 2 

plus 3; in a similar way marginal distribution of y can be calculated it is beta with 

parameters p 2 and p 1 plus p 3. The conditional distributions are also beta with a little a 

scaling for example, if I consider U is equal to Y divided by 1 minus X or V is equal to 

X divided by 1 minus Y, then u given X is equal to x follows beta distribution with 

parameters p 2, p 3; if we consider V given y that follows beta distribution with 

parameters p 1 and p 3. In no way this is a unique generalization of a beta distribution to 

do two dimension, we can generalize in different ways also. 

What we are trying to see here is that the marginal distributions also have beta 

distributions, so then in that case we are calling it has a bivariate beta distribution. 
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A very similar thing is done for gamma distributions; so a bivariate gamma distribution; 

it can be defined as f x y; beta to the power alpha plus gamma divided by gamma alpha 

gamma, gamma x to the power alpha minus 1, y minus x to the power gamma minus 1, e 

to the power minus beta y; where 0 less than x less than y alpha, beta, gamma greater 

than 0. Here if we see the marginals X follows gamma alpha beta and Y follows gamma 

alpha plus gamma and beta, also Y minus X given x, this follows gamma gamma beta. 

So, this is another generalization of a univariate gamma distribution to a bivariate 



gamma distribution. We consider a bivariate uniform distribution; it is a discrete uniform 

distribution. 
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So, consider probability of X 1 is equal to X 1, X 2 is equal to small x 2 has 2 by k into k 

plus 1 where x 2 takes values 1 2 x 1 and x 1 takes values 1 to k. For example, if we 

consider the points 1, 2, 3 up to k then if I take x 1 is equal to 1, then x 2 will take value 

1, if I take x 1 is equal to 2; then x 2 can take values 1 and 2 that is 1 and 2, if I take x 1 

is equal to 3 then x 1 can take value; x 2 can take values 1, 2 and 3. So, you can see that 

this distribution is a discrete uniform distribution with probabilities concentrated on this 

diagonals; this you can say it as the half of the square actually. We can easily see that the 

marginal distributions if we sum over x 2 from 1 to x 1, this will give 2 x 1 by k into k 

plus 1 for x 1 is equal to 1 to k. 

So, the marginal distribution of x 1 is obtained like this. In a similar way; if we sum over 

x 2, sum over x 1 from x 2 to k then we get the marginal distribution of X 2 is 2 into k 

plus 1 minus x 2 divided by k into k plus 1; for x 2 is equal to 1 to k. Important thing 

here to notice here is that if I take the conditional distributions of x 2 given x 1, it is a 

discrete uniform distribution on 1 to up to x 1. Similarly, the conditional distribution of 

X 1 given X 2 is a discrete uniform distribution univariate 1 by k plus 1 minus x 2 that is 

range from x 2 to k. So, this generalization of a bivariate of a discrete uniform 



distribution to two dimensions has the conditional distributions has discrete uniforms, 

but the marginal’s are not uniform. 

We can calculate certain moments about this distribution, which can be obtained from 

the marginal distributions like expectation of x 1, expectation of x 1 is square, variance 

of x 1 and similar characteristics for the x 2 variable.  
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We can also look at the product moment here that is expectation of x 1 x 2 which is 

calculated from the joint distribution of x 1, x 2 and after certain simplification it turns 

out to be 3 k square plus 7 k plus 2 by 12. So, covariance of X 1, X 2 that is expectation 

of X 1, X 2 minus expectation of x 1 into expectation of x 2. So, after simplification this 

quantity turns out to be k plus 2 into k minus 1 by 36. 

So, now if we divide covariance by the product of the square root of the variances, we 

get simply half because it is k plus 2 into k minus 1 by 18 both of this. So, the value turns 

out to be half, so the correlation coefficient between the random variables X 1 and X 2 is 

half, here we look at some application of the additive properties here. 
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Let us consider here, suppose the life of an electronic system is described as the sum of 

four independent exponential lives. So, Y is X 1 plus X 2 plus X 3 plus X 4 and each of 

the exercise is exponential with mean life 4 hours. 

So, what is the probability that the system will operate at least 24 hours; that means, we 

are interested to find out what is the probability of Y greater than or equal to 24. Now 

here we can use the additive property of the exponential distribution, we have proved 

that the sums of independent exponentials are following a gamma distribution. So, here 

each exercise exponential with parameter lambda is equal to 1 by 4; here mean is 4 that 

is parameter lambda will be 1 by mean because mean is 1 by lambda. So, y will follow 

gamma distribution with parameters 4 and 1 by 4. Now the density of a gamma 

distribution with parameters 4 and 1 by 4 is given by 1 by 4 to the power 4 gamma 4; e to 

the power minus x by 4, x to the power 4 minus 1. 

So, we integrate from 24 to infinity, so after some simplification this value turns out to 

be 61 e to the power minus 6 that is 0.1512 that is there is a almost 15 percent of the 

chance that the system will be operating for at least 1 day. 
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Now let us look at one more application of bivariate distributions, so consider an 

electronic device so it is designed in such a way to switch house lights on and off at 

random times after it has been activated. Assume that it has been designed in such a way 

that it will be switched on and off exactly once in a 1 hour period. Let Y denote the time 

at which the lights are turned on and X the time at which they are turned off; that means, 

firstly, it will be switched on and then there will be switched off and the joint density 

function for x y is given by 8 x y for y less than x are and of course, since we are 

considering only 1 hour period so both will lie between 0 to 1. 

And it is 0 elsewhere; what is the probability that the lights will be switched on within 

half hour after being activated and then switched off again within 15 minutes; that 

means, what is the probability that Y is less than half and X is less than Y plus 1 by 4 

because within 15 minutes of getting on, it should be switched off. So, X must be less 

than y plus 1 by 4; now to determine this probability we look at the region of integration 

of the density. So you see here the density is defined for in a unity square, the density is 

defined for y less than x that is this region. 

Now, here Y less than half means that we are in the bottom region and X is less than y 

plus 1 by 4. Now x is greater than y; that means, here and the line x is equal to y is equal 

to 1 plus 4 is this line. So, we are basically in this zone, so we have to integrate the joint 



density 8 x y over this region so the limits of integration our for x y to y plus 1 by 4 and 

for y it will be 0 to half. So, this turns out to be 11 by 96. 
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In the same problem, Let us look at what is the probability that the lights will be 

switched off within 45 minutes of the system being activated given that they were 

switched on 10 minutes after the system was activated; that means, what is the 

probability that X is less than or equal to 3 by 4; given that Y is equal to 1 by 6, so we 

need the conditional distribution of X given Y. 

Firstly, we look at the marginal distribution of y, so here the joint distribution is 8 x y, 

we will integrate with respect to x. Now the region of integration for x is from y to 1. So, 

after integrating we get 4 y into 1 minus y square and therefore, the conditional 

distribution of x given y is evaluated as the ratio of the joint distribution divided by the 

marginal distribution of y, which turns out to be 2 x by 1 minus y square for x lying 

between y and 1; where y is a value fixed between 0 to 1. So, the conditional distribution 

of x given y is equal to 1 by 6 is easily evaluated by substituting y is equal to 1 by 6 here 

and we get 72 by 35 x; for x lying between 1 by 6 to 1. 

Therefore, this conditional probability is obtained by evaluating the integral of this 

density over the region 1 by 6 to 3 by 4 and it is evaluated to be 11 by 20. 
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Find the expected time that the lights will be turned off again given that they were turned 

on 10 minutes after the system was activated; that means, what is the expected value of 

the distribution that we obtained just now; given Y is equal to 1 by 6; so the density is 

given here over this region so we calculate the expected value as integral of x into the 

density from 1 by 6 to 1 d x and it is evaluated to be 43 by 63. 

Finally in this problem; what is the correlation coefficient between the random variables 

X and Y? So, in order to evaluate the correlation, we need the covariance term and the 

expectations of x and y and the variances of x and y. In order to evaluate the covariance 

term we need the product moment, so here expectation of x y is x in to y into the joint 

density that is 8 x y y is integrated from 0 to x and x is integrated from 0 to 1 which is 4 

by 9. 

The marginal distribution of x is obtained by integrating with respect to y from 0 to x 

which is simply 4 x cube So, expectation of x turns out to be 4 by 5 variance of x turns 

out to be 2 by 75. The marginal distribution of y was evaluated here as 4 y into 1 minus y 

square, so we can evaluate the mean and the variance of y also. Therefore, we can find 

the covariance between X, Y as 4 by 9 minus 4 by 5 into 8 by 15 and the correlation 

turns out to be this divided by the square root of the variances of x and y; which is 0.49 

approximately; that is nearly half. So, in this particular problem the timings of switching 

on and off of the lights is having correlation nearly half year. 



We have in general discussed the joint distributions, where we initially considered two 

variables, and then we considered multivariate that is k dimensional or n dimensional 

random variables. We have discussed the concept of marginal distributions, conditional 

distributions, the concept of correlations and we have also discussed certain additive 

properties of the distributions So, now in the next lecture; we will see that if we consider 

transformations of the random vectors, how to obtain the distributions of that, so in the 

next lectures, we will be covering that topic. 

Thank you. 


