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Consider say random variables U and V with say expectation of U is 0, expectation of U 

square is equal to 1, expectation of V is equal to 0, expectation of V square is equal to 1. 

If we consider these 2 random variables, consider the term expectation of U minus V 

whole square. Now naturally this is greater than or equal to 0 being the average value of 

a non negative term, now this will imply expectation of U square plus V square minus 2 

U V is greater than or equal to 0, substituting the value of expectation U square and 

expectation of V square as 1, this relationship is reducing to expectation of U V is less 

than or equal to 1. 

Similarly, expectation of U plus V whole square is greater than or equal to 0, this yields 

expectation of U square plus V square plus 2 U V is greater than or equal to 0. Once 

again substituting the values of expectation U square and expectation V square as 1, we 

get expectation of U V greater than or equal to minus 1. So, we have got that expectation 

of U into V lies between plus 1 and minus 1 provided expectation of U and expectation 

of V is 0, and expectation of U square and expectation of V square is 1. 



Now, we can consider when the equality will be attained. So, here equality at 1 will be 

attained when expectation of U minus V whole square is equal to 0. Now expectation of 

a non negative random variable is 0 if and only if the random variable itself is 0; that 

means, U must be equal to V with probability 1. In a similar way the equality at minus 1 

will be attained, if U is equal to minus V with probability 1, let us consider the 

expressions for this. 
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Here, expectation of U V is equal to 1 if and only if probability of U is equal to V is 

equal to 1 and expectation of U into V is equal to minus 1. So, now, let us take for any 

random variables X and Y let us use the notation that expectation of X is equal to mu x, 

expectation of Y is equal to mu y, variance of X is equal to say sigma x square, and 

variance of Y is equal to sigma y square. Define U is equal to X minus mu x by sigma x 

V is equal to y minus mu y by sigma y. 

So, if we take expectation of U, this is equal to expectation of X minus mu x by sigma x, 

and by the linearity property of expectation, it is expectation x minus mu x by sigma x 

that is simply 0. If we consider expectation of U square that is equal to expectation of X 

minus mu x square by sigma x square; now the numerator here is simply variance of x, 

that is sigma x square so it is 1. 

So, in a similar way you can see that expectation of V is 0, and expectation of V square 

is 1. So, if we make use of the inequality that we have proved here for U V random 



variables with the property that expectations are 0 and the expectations of the squares are 

1. So, we get expectation of U V between minus 1 to 1; now for any random variables x 

and y when U and V are defined like this, what is the expectation of U V representing? 
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So, expectation of U V is equal to expectation of X minus mu x by sigma x into y minus 

mu y by sigma y. So, the numerator here is simply the covariance term between x, y 

divided by the standard deviations of the x and y that is the correlation coefficient 

between. So, for any random variables x and y, the correlation coefficient lies between 

plus 1 and minus 1; the least value is minus 1, and the maximum value is plus 1. 

Now, rho x, y is equal to 1. So, we look at the conditions for attaining the equality, 

expectation of U V was 1 if and only if probability of U is equal to V is 1. So, this will 

be satisfied if and only if probability that X minus mu x by sigma x is equal to Y minus 

mu y by sigma y is equal to 1; or you can say probability that x is a linear function of y; 

that is x is equal to some a times y, plus b where a is a positive number, because sigma x 

by sigma y. Similarly rho x, y is equal to minus 1, if and only if x minus mu x by sigma x 

is equal to minus y minus mu y by sigma y is equal to 1 or probability that x is equal to a 

y plus b is equal to 1, if a is negative. So, this condition that x is equal to a y plus b, 

where a is positive this is known as that x and y. 
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So, we can write it that x and y are perfectly linearly related in positive direction; that is 

x is equal to a y plus b, for a positive and probability of this statement is 1, and if we say 

probability of x equal to a y plus b is equal to 1 where a is negative, then we say that x 

and y are perfectly linearly related in negative direction. 

Now, this gives a interpretation for the coefficient of correlation. So, we can see that in 

general coefficient of correlation lies between minus 1 to plus 1, the bounds minus 1 and 

1 are attained, so minus 1 is attained when there is a perfect linear relationship in a 

negative direction or you can say perfectly negatively linearly related and the equality at 

1 is attained when it is perfectly linearly related in the positive direction or perfectly 

positively linearly related. 

So, in general any value between minus 1 to 1 denotes the degree of the linear 

relationship between random variables x and y. Suppose I say the correlation coefficient 

is equal to 0.7, that shows that there is a good positive correlation between x and y and 

here the relationship is of the linear type. If we say rho x y is equal to minus 0.3 it shows 

that there is a lower degree of negative linear relationship between the random variables 

x and y; when rho x y is equal to 0, we say that the random variable x and y are 

uncorrelated. Now here uncorrelated means that the linear relationship is not existent 

between random variables x and y. 



So, we can interpret this statement as. So, correlation coefficient is a measure of linear 

relationship between two random variables, if rho x y is 0, we say that x and y are 

uncorrelated. At this point it is important to understand the difference between 

uncorrelatedness and independence; if we say that the random variables are uncorrelated 

it does not mean that they are independent of course, if x and y are independent it will 

imply uncorrelatedness, because if x and y are independent then covariance term is 0 

therefore, correlation term will also be 0. 

So, we have the following result if X and Y are independent, then rho x y is 0, but the 

converse of this is not true. So, proof is of course, obvious that if X and Y are 

independent then covariance term is 0, and therefore the correlation term is 0. 

Let us look at the converse of it. 
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Let x and y have joint pmf; as x is taking value 0 1, y is taking value minus 1, 0 and 1, 

the probabilities are 0, 1 by 3, 0, 1 by 3, 0, 1 by 3. So, here we consider say expectation 

of X. So, here you can calculate the marginal distributions by adding the rows and 

columns. So, the marginal distribution of x is 1 by 3, 2 by 3, the marginal distribution of 

y is obtained as 1 by 3, 1 by 3 1 by 3. So, expectation of X is equal to 0 into 1 by 3, plus 

1 into 2 by 3, that is equal to 2 by 3. 



If we look at expectation of Y that is equal to minus 1 into 1 by 3, plus 0 into 1 by 3, plus 

1 into 1 by 3 that is equal to 0. If we look at expectation of X into Y; so we look at all the 

possibilities of the x and y values here. So, X is 0, Y is minus 1 with probability 0, plus x 

is 0 y is 0 with probability 1 by 3, X is 0, Y is 1 with probability 0, X is 1, Y is minus 1 

with probability 1 by 3, X is 1 Y is 0 with probability 1 by 3, plus X is 1 Y is 1 with 

probability 1 by 3. 

You can see these terms vanish we are getting minus 1 by 3 and plus 1 by 3 so it is 0 

therefore, covariance term is 0 and consequently rho x, y is 0, but we can see here that 

the product of the marginal distributions for example, P x 0 and P y 0 both are 1 by 3, but 

P x y. So, let us write here P x 0 is 1 by 3, P y 0 is 1 by 3, but if we consider P x y 0 0 

that is also 1 by 3. So, X and Y are not independent. So, they are uncorrelated, but not 

independent.  

Now, this further brings out the contrast between the concept of independence and 

correlatedness. So, independence simply means then that the random variables or you 

can say the observance of the 2 phenomena has nothing to do with each other, that is one 

phenomena which yields the random variables x, and the phenomena which yields the 

random variable y they are totally independent. 

Whereas the correlation gives a degree of linear relationship between the random 

variables; so if they do not have a linear relationship, the random variables may become 

uncorrelated, but that does not mean that they are independent. For example even in this 

problem, it may happen that x is actually y square, because the probability that x equal to 

0 is same as probability y is equal to 0, and probability x equal to 1 is sum of probability 

y is equal to minus 1 and probability y is equal to 1. 
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So, this could be a non-linear relationship. So, let us take up few examples for 

calculation of the covariance’s and correlation term. So, let f x, y be equal to x plus y for 

0 less than x less than 1, 0 less than y less than 1 and 0 elsewhere. In order to calculate 

the coefficient of correlation, we need the first and second moments of x and y and also 

the first product moment of the joint distribution. So, expectation of X into y that is equal 

to double integral x y into x plus y, d x d y, 0 to 1. So, this is simply integral of x square 

y plus x y square, which we can easily evaluate and it is equal to 1 by 6 plus 1 by 6 that 

is equal to 1 by 3. 

In order to calculate the moments of x and y separately, we can make use of the marginal 

distributions. So, you can see here that this will be equal to x plus half for 0 less than x 

less than 1 and similarly the marginal distribution of y will become y plus half for 0 less 

than y less than 1 and 0 elsewhere. 

The distributions of x and y are same. So, it is enough if we calculate the moments for 

one of them. So, expectation of X becomes the integral of x into x plus half from 0 to 1, 

which is obviously, 7 by 12. So, the same value will be expectation of Y and expectation 

of X square likewise can be calculated that is equal to 5 by 12 same as expectation Y 

square and therefore, variance of X that is equal to expectation of X square minus 

expectation of X whole square that is equal to 11 by 144, that is sigma x square and 

sigma y square. 
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So, correlation coefficient less than equal to 1 by 3 minus 7 by 12 square divided by 

eleven by 144, which after simplification is minus 1 by 11. So, this means that there is a 

low degree of negative linear relationship between the random variables X and Y. We 

can take up some example which we did yesterday, so let us consider say f x y is equal to 

say 2, 0 less than y less than x less than 1, 0 elsewhere. Here suppose we want the 

distribution of x then it is equal to integral with respect to y, 2 d y from 0 to x that gives 

2 x. 

So, expectation of X is equal to 2 x square d x from 0 to 1 that is 2 by 3, expectation of X 

square is equal to integral 2 x cube d x 0 to 1 that is equal to half therefore, sigma X 

square that is variance of X is equal to half minus 4 by 9 that is equal to 5 by 18, I am 

sorry this is not 5 by 18 it is 1 by 18. 

So, we are able to calculate the mean and variance of the distribution of x, similarly let 

us calculate the marginal distribution of y, that is integral 2 d x from y to 1 that is equal 

to 2 times 1 minus y for 0 less than y less than 1, 0 elsewhere. 

So, expectation of Y is equal to integral 2 y into 1 minus y dy from 0 to 1, that is equal to 

twice y. So, that is y square that is 1 minus 2 y square. So, that is 2 by 3, that is equal to 1 

by 3. Expectation of Y square will be equal to 2 y square 1 minus y, d y integral from 0 

to 1. So, once again 2 y square; so y square is integrated to y cube by 3, so this is 2 by 3, 



minus 2 y cube. So, y cube is integrated to y to the power 4 by 4. So, that is 2 by 4that is 

half so it is equal to 1 minus 4 minus 3 by 6 that is 1 by 6. 
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So, we can calculate the variance of y that is equal to 1 by 6 minus 1 by 9. So, that is 

equal to 1 by 18 now we have calculated the means and variances of the random 

variables x and y, in order to get the correlation coefficient we need the product moment 

also. 

So, expectation of X into Y that is equal to 2 x y, now here we can choose the order of 

integration we may do d y d x. The range of y is from 0 to x, and the range of x is from 0 

to 1 so this is equal to 2 times integral 0 to 1. Now firstly, we are integrating with respect 

to y. So, we get y square by 2, so this term cancels out and that gives us x square. So, we 

are left with x cube d x that is equal to 1 by 4. 

So, covariance term between x and y that is equal to expectation of X Y minus 

expectation X into expectation of Y; that is equal to 1 by 4, minus 2 by 3 into 1 by 3 that 

is equal to 1 by 4 minus 2 by 9. So, once again it is equal to 1 by; so 9 minus 8 by 36, so 

1 by 36. So, the coefficient of correlation is equal to 1 by 36 divided by 1 by 18 both 

variances of x and y are 1 by y 18. So, sigma x into sigma y will be 1 by 18, it is equal to 

half. So, this shows that there is a moderate degree of relationship, moderate degree of 

positive linear relationship between the random variables x and y, we also introduce the 



concept of the joint moment generating function between the random variables x and y 

as follows. 
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Joint moment generating function between X and of X and Y; so we use the notation M 

X, Y at the point s, t, it is expectation of e to the power s x plus t y provided the 

expectation exists in a neighborhood of 0; at 0, 0 this always exist and it is equal to 1, so 

in a neighborhood of 0, 0 this should exist. Now the nature of this term is nice, it 

suggests certain properties for example, it is equal to expectation of e to the power s x 

into e to the power t y; so the first thing that we observe that if the random variables are 

independent, it will become product of the expectations of e to the power s x and e to the 

power t y, which are nothing but the individual moment generating functions of x and y. 

However, because of the uniqueness property of the mgf’s we have a stronger result 

here; X and Y are independent, this implies and implied by that M X, Y s t is equal to M 

X s M Y t for all s, t. In order to prove this let us consider say the case of continuous 

random variable with joint pdf say f x, y and marginal pdf’s say f x and f y. Now, here let 

us notice that if the random variables are independent then this expectation of a product 

will be equal to the product of the expectations, so the joint mgf will be equal to the 

product of the individual or marginal mgf’s, let us look at the converse. 

Let this 1 relation be true, then this implies that integral e to the power s x plus t y, f x, x 

y, d x d y is equal to integral e to the power s x, f x d x into integral e to the power t y, f y 



d y for all s t. Now the right hand side we can write as product of the 2 integrals can be 

written as a combine integral e to the power s x plus t y, f x into f y d x d y. 

Now, note here the left hand side denotes the joint mgf of random variables x and y 

when the pdf is f x, y. The right hand side denotes the joint distribution the joint mgf of 

the random variables x and y, when their joint distribution is given by f x into f y and this 

statement is true for all s t. So, by the uniqueness of the mgf the 2 densities must be 

same. 
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So, the left hand side denotes the moment generating function of a random variable X,Y 

with joint pdf f x,y x, y whereas, the right hand side denotes mgf of a random variable 

with joint pdf f x into f y. As they are identical by the uniqueness of mgf we conclude 

that the distributions must be the same. So, we should have f x y, x, y is equal to f x into 

f y for all x and y that is X and Y are independent. So, this is quite a strong property and 

that is true because of the uniqueness property of the moment generating functions. So, 

independence of random variables can also be proved through the consideration of the 

joint mgf. 
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We end this one with another result, if X and Y are independent then M x plus y that is 

the moment generating function of random variable x plus y, which is equal to the 

product of M X and M Y. The proof of this is almost trivial, the left hand side is 

expectation of E to the power t x plus y and so if independence is there this can be 

written as t x into e the power t y, which will become expectation of e to the power t x 

into expectation of e to the power t y, which will be this term and this term respectively. 

This result is extremely useful in obtaining the distributions of sums of various random 

variables, because if we know the mgf’s of those random variables then we can identify 

the distribution of the sum by identification of the mgf of the sum as the mgf of certain 

random variables. So, we will consider the bivariate normal distribution in the next 

lecture. 


