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Let us take an example. Say the random variable X is having the density 0, for X less 

than or equal to 0 it is equal to half, for 0 less than X less than or equal to 1 and it is 

equal to 1 by 2 x square for 1 less than x less than infinity and consider the function say 

Y is equal to 1 by X. So, here g x function is 1 by x. So, g inverse function is also same if 

I write this as y. So, y is equal to 1 by x. So, x will be equal to. So, if I look at this, this is 

a strictly decreasing function g is strictly decreasing and g inverse is also a strictly 

decreasing. So, d by d y of g inverse y is equal to minus 1 by y square. The density 

function of y then it is determined by the density function of X at g inverse y multiplied 

by the absolute value of the d X by d y term. Now here it is 0, so it will remain 0, 

whenever x is less than or equal to 0, 1 by x is also less than or equal to 0. So, when it is 

half this remains half multiplied by 1 by square. 

Now, the range 0 less than x less than 1 is translated to y is greater than or equal to 1 and 

in the third region it is y square by 2 multiplied by 1 by y square, when x is greater than 

1 will reduced to 0 less than y less than 1. So, after simplification this is equal to 0 for y 



less than or equal to 0, half for 0 less than y less than 1. 1 by 2 y square for y greater than 

or equal to 1; notice here that these f X x and f Y y they resemble. So, for X less than or 

equal to 0 it is 0 here it is 0, here it is 0 less than x less than or equal to 1 then it is half 

and when x is greater than 1 it is 1 by 2 x square. So, that is also satisfied here except 

that equality at the end point, but that hardly matters because if I put y is equal to 1 here, 

the value is half and here the value at the y is equal to 1 is half and here also. Actually at 

the end points because it is a continuous random variable, the values will be immaterial. 

So, basically X and Y, X and 1 by X have the same distribution here. 
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So, let us look at another example, say X follows uniform 0, 1 and we define random 

variable U is equal to X divided by 1 plus X. Now again you can see here that this is a 1 

to 1 function. In fact, if u is equal to x by 1 plus x, then the inverse function is equal to u 

by 1 minus u; let us look at the derivative d x by d u that is equal to 1 by 1 minus u 

whole square. So, here the density function of X is 1 for 0 less than u less than 1. So, the 

density function of u is obtained 1 into 1 by 1 minus u square, what will be the range 

when this is 0 less than x less than 1. So, when X is 0 this is 0 when X is 1 then this half. 

It is a strictly increasing function, so 0 less than u less than half, and it is 0 elsewhere; 

many times the function g X may not be a 1 to 1 function it may be a many one function. 

For example y is equal to x square, y is equal to modulus x. So, in that case we see that 

the region that is from r to r the functions domain and range. So, what we do? We look at 



the inverse image for a given y and so if there are 2 inverse images, then we split the 

region that is the domain of x into 2 disjoint regions, such that both of them match map g 

from each part of the domain to the full range for example, you consider y is equal to x 

square, now from minus infinity to infinity this maps to 0 to infinity. 

Now, for a given y which is positive; I have 2 inverse images, minus square root y and 

plus square root y. So, if I consider 2 portions of the domain that is minus infinity to 0 

and 0 to infinity, both are mapped by this mapping to 0 to infinity. So, the idea here is 

that in each domain each part of the domain the function will be 1 to 1; that is if you are 

considering only one inverse image say root y or minus of root y then the function is 

either increasing or decreasing, we calculate the density in each regions separately and 

add this gives the density function of the continuous random variable in case the function 

y is equal to g x is a many valued function. 

So, let us look at the result here let X be a continuous random variable with probability 

density function say f X, let y is equal to g x be a differentiable function and assume that 

g prime x is continuous and non zero at all, but a finite number of values of x. 
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Then for every real number y, there exists a positive integer n is equal to say n y, and real 

inverses say x 1 y, x 2 y, x n y such that g of x k y is equal to y, and g prime of x k y is 

not 0, for k equal to 1, 2 up to n y or they are does not exist any x such that g x is equal 

to y, g prime x is not 0, in which case we write n y is equal to 0; then y is a continuous 



random variable with pdf given by sigma f of x k y, g prime x k y inverse k equal to 1 to 

n, this is if n is greater than 0, n means n y and it is equal to 0 if n is 0. So, the idea is that 

we consider n separate regions of the domain such that each region maps to the range of 

g, calculate the density in each area and sum over all such areas that gives the density 

function of y. 
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So, let us look at application of this I am skipping the proof of this theorem; let X 

follows a uniform distribution on minus 1 to 1. So, the density function is half for minus 

1 less than or equal to x less than or equal to 1 it is 0, consider the function say Y is equal 

to modulus X. So, here for a given y we have g 1 of y is equal to minus y and g 2 y is 

equal to plus y. So, 2 inverse images for a given y is there for y positive. If y is negative 

n is equal to 0; that means, there is no inverse image, and the derivatives here you can 

see d by d y of this is equal to minus 1 and d by d y of this is plus 1. So, if you take 

absolute values then both are 1. So, the density function of y is the density function of X 

at minus y into 1 plus the density function at plus y into 1 for y greater than 0, if you 

want you can include equal to 0 also that does not make any difference, and it is equal to 

0 for y less than 0. So, this is half plus half that is equal to 1. 

Now, when we say y is greater than or equal to 0, here it will reduce to the region half 

plus half for minus 1 to 1. So, it is becoming modulus of x between 0 to 1 and it is equal 



to 0 for y outside 0 to 1. So, you can see that y follows uniform 0, 1. If X is minus 1 to 1 

uniform distribution, then modulus of X is uniform distribution on the interval 0 to 1. 
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Let us consider say X follows normal 0, 1 distribution. So, the density function is 1 by 

root 2 pi e to the power minus x square by 2, consider the function say Y is equal to X 

Square. So, now, for a given y which is non negative, we have 2 inverse images; that is g 

1 of y is equal to minus root y and plus root y. So, if I look at the derivatives that will be 

minus 1 by 2 root y or plus 1 by root y. So, if I take absolute value it is reducing to 1 by 

2 root y; for y less than 0 there is no inverse image. So, the density function of y is the 

density function at X is equal to minus root y multiplied by 1 by 2 root y, plus the 

density function at plus root y multiplied by. 

So, now you see the value will be 1 by root 2 pi e to the power minus y by 2, and in the 

second term also same terms will be coming because minus root y and plus root y both 

will give x square is equal to y. So, the 1 by 2 root y, 1 by 2 root y term is coming so it 

will become 2 times 1 by 2 root y that is equal to 1 by 2 to the power half gamma half, e 

to the power minus y by 2, y to the power 1 by 2 minus 1; this is nothing but a gamma 

distribution with r is equal to half and lambda is equal to half. So, you can see here the 

square of a standard normal random variable is a gamma random variable. 

Now, sometimes it may happen that in place of finite number of inverse images we have 

infinite number of inverse images that may happen in cases such as periodic functions 



which are trigonometric functions such as sin function or cos function etcetera. So, the 

theorem can be extended here in place of a finite number of inverses we have infinite 

number of inverses. So, we again split the domain into infinite number of distinct regions 

such that each of them is mapping to the full range of g, calculate the density in each 

region by the same formula that is f x of g inverse y multiplied by the absolute value of d 

by d y of g inverse y, and add in all the regions. 
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Let us take one example here say f x is theta e to the power minus theta x, for x greater 

than 0; that means, it is a exponential distribution with parameter theta, consider Y is 

equal to say sin of X. So, we consider sin inverse y to be principle value. So, we consider 

2 cases; because sin lies between minus 1 to 1, so we consider case 0 to 1 and minus 1 to 

0. So, if we take 0 to 1 then probability that sin X is less than or equal to y can be 

expressed as probability of 0 less than X less than or equal to sin inverse of y, where sin 

inverse is the principle value plus probability of 2 n minus 1 pi minus sin inverse y less 

than or equal to X, less than or equal to 2 n pi plus sin inverse y; n is equal to 1 to 

infinity. 

So, this takes care of all the infinite number of distinct regions, each of which map to the 

region sin X less than or equal to y. So, now, this probability using the exponential 

density function, probability of X lying between 0 to sin inverse y is 1 minus e to the 

power minus theta sin inverse y, plus summation n is equal to 1 to infinity, e to the 



power minus theta, 2 n minus 1 pi minus sin inverse y, minus e to the power minus theta 

2 n pi minus sin inverse y plus sin inverse y. 

If we look at this series here, e to the power sin inverse y terms can be separated out and 

the remaining terms become geometric sums and infinite geometric series can be added. 

So, this is simplified to 1 plus e to the power minus theta pi, plus theta sin inverse y 

minus e to the power minus theta sin inverse y divided by 1 minus e to the power minus 

2 pi theta. In a similar way if y is between minus 1 to 0, we can split the regions and 

evaluate. 
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So, after carrying out the calculations, the density of y can be obtained after 

differentiation as theta e to the power minus theta pi, 1 minus e to the power minus 2 

theta pi, inverse 1 minus y square to the power minus 1 by 2, e to the power theta sin 

inverse y, plus e to the power minus theta pi minus theta sin inverse y, this is for minus 1 

less than y less than 0 and it is equal to theta 1 minus e to the power minus 2 theta pi 

inverse, 1 minus y square to the power minus 1 by 2,0 e to the power minus theta sin 

inverse y, plus e to the power minus theta pi plus theta sin inverse y, this is for y between 

0 and 1 and of course, it is 0 for all other values of y, because y will lie between minus 1 

to 1. 

So, if the transformation y is equal to g x is such that the random variable y is equal to g 

x is also continuous, then the probability density function of y can be determined in 



terms of the density function in x, if the function is 1 to 1 there is a direct formula if there 

is a many 1 function then we have to split the domain into disjoint sets such that each 

part of the domain maps to the full range, calculate the inverse image in each of them 

and utilize that to find out the density function of y in each parts separately and then 

sum. 

There is one important result here which connects all the continuous distributions, which 

is known as the probability integral transform; this basically says that if X is a 

continuous random variable with cdf capital F, if we define say U is equal to F of X then 

u is distributed on the uniform interval 0 to 1.  
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So, this is known as probability integral transform the converse of this result is also true 

that is if U is uniform 0, 1 and F is an absolutely continuous cdf then X is equal to F 

inverse of U has cdf F x basically F here. 

Now, this is the very crucial result, first thing is that it connects all the continuous 

random variables. So, if Y 1 is a continuous random variable with some cdf F 1, Y 2 is a 

continuous random variable with some cdf then there exists a function g, such that Y 2 is 

equal to say g of y 1 and the distribution of y 2 will be given by this. So, basically what 

we can do is that we can consider F 1 of Y 1 that is a U and then we consider F 2 inverse 

of U then that will be this. So, basically F 2 inverse of F 1, Y 1 is equal to Y 2. 



In the modern age of simulations this result is quite useful. So, in some practical problem 

we may be interested to generate the values of a random variable which is a having say 

exponential distribution. So, we will use a pseudo random number generator to generate 

numbers uniformly between 1 to say some n, and then we can consider division by n to 

make it a uniform random variable between the values of the uniform random variable 

on the interval 0 to 1. 

Now, if we are having the exponential distribution. So, the cdf of that is known that is 

capital F is known, so, we take f inverse of that. So, suppose I consider F x is equal to 1 

minus e to the power minus lambda x. So, if y is equal to 1 minus e to the power minus 

lambda x, the inverse function can be obtained. So, minus lambda x is equal to log of 1 

minus y. So, x is equal to minus 1 by lambda log of 1 minus y. So, if y’s are the uniform 

random variables on 0 to 1 then if we consider log of 1 minus y and minus 1 by lambda 

then x i’s will be exponential distributed random variables with parameter lambda. 

So, this transformation play extremely important role in the simulation of random 

variables, because we can use some pseudo random number generator to generate 

uniformly distributed random values and now for any other distribution we make use of 

the transformations. So, especially their probability integral transform is extremely 

useful in this and also we have the relationships between various other continuous 

distributions. So, the discussion on the distribution of the function random variables is 

quiet important in this sense that to simulate the values of various random variables we 

make use of these transformations. So now, we will proceed to the jointly distributed 

random variables in the next lecture. 


