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Lecture – 19 

Special Discrete Distributions – I 

 

Today we will introduce various special distributions which are encountered in various 

physical and other kinds of experiments. 
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So, broadly we will categorize them into two parts; one is Special Discrete Distributions 

and another is Special Continuous Distributions. So, the first distribution that I will be 

taking up is the discrete uniform distribution. So as the name suggest it allots uniform 

weights to various points. So, a random variable x it takes value say 1, 2 n and 

probability that x is equal to say j is equal to 1 by N for j is equal to 1 to n. That means, 

this probability distribution it gives equal weight 1 by N to N distinct integer valued 

points. This type of distribution arises in the classical theory for example, if we are 

considering a coin tossing and we are looking at head as occurrence of 1 and occurrence 

of tail as 0 then probability of x equal to 0 and probability of x equal to 1 both is equal to 

half. Suppose we are considering tossing of a die, so there are 1, 2, 3, 4, 5, 6 as the 

possibilities; each with probability 1 by 6, so in all such cases discrete uniform 

distribution is applicable. 



Let us look at some of the features such as mean variance etcetera. So, let us look at 

mean; mean of this distribution is sigma j by N; j is equal to 1 to N so that becomes 

sigma of j is N into N plus 1 by 2, therefore you get the mean as N plus 1 by 2 which is 

appropriate because it is something like a middle point of the distribution. If you want to 

calculate the variance, we can use expectation of X square that is equal to sigma j square 

by N; j is equal to 1 to N. So, sum of j square is N into N plus 1 into 2 N plus 1 by 6, so 

expectation of X square turns out to be N plus 1 into 2 N plus 1 by 6. And therefore, 

variance of x is equal to expectation of X Square minus expectation of X Whole Square; 

that is this quantity minus this square, so after simplification it turns out to be N square 

minus 1 by 12. 

We may also calculate its third movement, forth movement etcetera. Since every time, it 

is a finite sum, the moments of all positive integral orders will exist; that means, you can 

say mu k prime for k equal to 1, 2 and so on exists for all positive integral values of k. 
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We may also look at the moment generating function of this distribution M x t; that is 

equal to expectation of E to the power t x. So, it is equal to sigma e to the power t j and 

each is with probability 1 by N j is equal to 1 to n. Now if you look at this is e to the 

power t plus e to the power 2 t plus e to the power N t, which is a finite geometric series. 

So, the sum you can evaluate and it is turning out to be e to the power t, e to the power N 

t minus 1 divided by e to the power t minus 1 and we have this N in the denominator. 



Now this expression is valid for all t. Of course, when we say t is equal to 0 then this is 

not defined because the denominator becomes 0 and the numerator also becomes 0. So, 

in that case we write separately. So, this is for t not equal to 0 and for t equal to 0; we 

specifically write it as 1. So, the higher order moments of this distribution can also be 

derived from the expression for the moment denoting function because we can consider a 

Maclaurin series expansion around t is equal to 0 or we can consider derivatives of m x t 

of various order and put t equal to 0 to get the moment of that particular order. 

Another trivial kind of distribution is say degenerate distribution; the degenerate 

distribution arises when we are sure about a particular event to occur. So, probability X 

is equal to say c is equal to 1; that means, the random variability takes only one value 

with probability 1. Therefore, expectation will be c and moment of any particular order 

can also be calculated for example, mu k prime will be equal to c to the power k. 

A third type of discrete distribution arises in experiments which are called Bernoullian 

trials. So, several times in the real life we are interested in phenomena from a particular 

point of view such as we look at only whether a particular event has occurred or it has 

not occurred. For example, if we appear in a competitive examination, so whether we 

qualify or we do not qualify. If a medicine is taken to cure a disease then the outcome 

recorded maybe that whether the disease is cured or it is not cured. So, generally we call 

it as a success failure trials, we make the assumption that the trials are conducted 

independently under identical conditions so that the probability of success is considered 

to be fixed. 
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So, if we consider the outcome of one trial then it is known as Bernoulli distribution. So, 

a Bernoullian trial is an experiment with two possible outcomes that is success or failure. 

The random variable x will associate the value 1 with success and the value 0 with 

failure and the probability with success is say p and the probability with the failure is say 

1 minus p. So, the distribution is described by p x equal to 0 is 1 minus p and p x equal to 

1 is p. 

So, this is also a 2 point distribution, so if you look at our discrete uniform distribution, 

this was an N point distribution; for N is equal to 2 it is like a Bernoulli distribution. 

However, here the probability of both success and failure would have been same 

whereas, in the Bernoulli distribution it can be summed different numbers say p and 1 

minus p, where in general p is a number between 0 and 1. If you take the extreme case 

that say p is equal to 1 or p is equal to 0 then this is reducing to a degenerate distribution. 

Let us consider some of the properties of this distribution say it is mean. So, mean is 0 

into 1 minus p plus 1 into p that is equal to p. So, if in a single trial the probability of 

success is p then on the average, the average value of the distribution should be equal to 

the success probability that is p. Now since here the values taken are only 0 and 1 and 

any powers of 0 and 1 are also same; that means, in general if I calculate the moment of 

kth order; expectation of x to the power k that will be equal to again p, for k equal to 1, 2 

and so on. 



Therefore, if you look at say variance of this distribution that is equal to p minus p 

square that is equal to p into 1 minus p; 1 minus p many times we write as q also; so it is 

p q. The moment generic function is equal to expectation of E to the power t x; that is 

equal to 1 minus p into e to the power t into 0 plus p into E to the power t, that is equal to 

1 minus p plus p e to the power t or q plus p e to the power t. It is obvious that moments 

of all orders exist here and they can be evaluated using the relationship between central 

and non central moments. 
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Now, an immediate generalization of the Bernoulli distribution is the so called binomial 

distribution. So, consider n independent and identical Bernoullian trials with probability 

of success in each trial as say p. Let us denote the x as the number of successes in n trials 

then what are the possible values of x; x can take value 0, 1, 2 and n etcetera. What is the 

probability that x is equal to say j that is probability of x equal to; so if you have j 

successes then in each trial the probability of success is p, so p into p j times. 

Now it is obvious that if we are looking at total number of trials as N trials and we are 

fixing some of these j trials as success, then the remaining n minus j must be failures. 

The probability of a failure is 1 minus p; therefore the probability of n minus j failures 

will be one minus p to the power n minus j. 

Now, out of this n trials this j trials can be selected in N c j possible ways, therefore the 

probability mass function of the binomial distribution is N c j p to the power j into 1 



minus p to the power n minus j. Here we have made use of the independence of the trials 

because the probabilities of individual trials whether success or failure have been 

multiplied, since the binomial coefficients N c j occurs here that is why it is known as 

binomial distribution. This distribution has wide applicability as I mentioned we may be 

looking at the number of successes in solving a certain multiple choice question paper. 

Suppose we are looking at number of successful hits in a basket ball game by a particular 

team, we may be interested in looking at the number of patients treated successfully 

following a particular line of treatment and so on. So, whenever we are interested in 

dividing particular phenomena only as a success or failure, then this particular 

distribution is quite useful. 

Let us look at various properties, now whenever we write down a probability mass 

function; we should ensure that the sum of the probability mass function over the 

required range must be equal to 1. So, if we consider the sum of the binomial 

probabilities; this is equal to 1 minus p plus p to the power n which is equal to 1 to the 

power n that is equal to 1. So, this is basically the binomial expansion of 1 minus p plus 

p to the power N. 

Now this fact can be used for evaluation of the moments, for example if we are 

calculating mu 1 prime that is expectation of x, this is equal to sigma j p x; j, j is equal to 

0 to n, that is equal to sigma j; n c j, p to the power j 1 minus p to the power n minus j. 

Now if we look at this sum and if we compare it with the sum of the distribution taken in 

the previous statement, it is required here that I should make this particular term as a 

binomial coefficient term; here it is j into n c j, so somehow it has to be adjusted. So, for 

this we made certain observation; first thing is that corresponding to j is equal to 0 this 

term vanishes. 
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So, in effect this sum is actually considered from j is equal to 1 to n; j and this n c j we 

can write as n factorial divided by j factorial, n minus j factorial; p to the power j into 1 

minus p to the power n minus j; obviously, this j and j factorial we can adjust the term 

and we can write this as j minus 1 factorial, then this suggests that we can replace j 

minus 1 as equal to say i and then this becomes sigma i is equal to 0 to n minus 1. Now if 

we are putting this term as i then this we have to adjust, we can write it as n minus 1 

minus i factorial and therefore, in the numerator; in place of n factorial, we can consider 

n minus 1 factorial and n can be kept out.  

So, this is p to the power i and 1 p will be here, 1 minus p to the power n minus 1 minus 

i. So if you look at this term, it is the expansion of 1 minus p plus p to the power n minus 

1; which is 1 and therefore, this summation deduces to n p. So, the mean of the binomial 

distribution is n p which is understandable because if we say that the probability of 

success in one trial is p, then out of n trials what is the expected number of successes; it 

must be n into the probability of success in each trial; that is n p. 

Now, this particular way of deriving the moment of a binomial distributions suggests that 

if we want to look at say mu 2 prime, then here I will get j square now in this particular 

expansion 1 j was canceled. So, if I have j square, another j cannot be canceled therefore 

it suggests that it will maybe beneficial to consider factorial moments. So, we may 

consider say expectation of X into X minus 1; that will be equal to j into j minus 1; n c j 



p to the power j, 1 minus p to the power n minus j, j is equal to 0 to n. Now like in the 

previous case, we can observe that this term is vanishing for j is equal to 0 and j is equal 

to 1, so this we can cancel and we can consider it as j is equal to 2 to n. 

Once we write that then in the expansion of n c j, the j factorial term in the denominator 

can be adjusted with j into j minus 1 and we get here n factorial divided by j minus 2 

factorial, n minus j factorial, p to the power j into 1 minus p to the power n minus j, j is 

equal to 2 to n so; obviously, we can substitute j minus 2 is equal to i and this gives us n 

into n minus 1; sigma i is equal to 0 to n minus 2; n minus 2 factorial divided by i 

factorial n minus 2 minus i factorial; p to the power i; 1 minus p to the power n minus 2 

minus i. So, p square term has come out, so the second factorial moment is n into n 

minus 1; p square. 
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So we may utilize this to calculate expectation of X square because expectation of X 

square is expectation of X into X minus 1 plus expectation of X and we substitute these 

terms so it is n into n minus 1 p square plus n p. Now that helps us to calculate variance 

of x that is equal to expectation of X square minus expectation of X whole square; that is 

equal to n into n minus 1 p square plus n p, minus n square p square. So, here you can 

observe that the term n square p square cancels out; we are left with n p minus n p square 

which is n p into 1 minus p or n p q; obviously, if p is a number between 0 and 1 then n p 



q is going to be less than n p. So, in the binomial distribution in particular we have the 

average less than the variance value. 

We may also look at the higher order moments to discuss the properties of skewness and 

kurtosis etcetera, so let us consider third moment. Now the coefficient of skewness beta 

1 is mu 3 divided by sigma q, so this is sigma square here. Now if we are considering mu 

3 this is a third central moment, now third central moment can be expressed in terms of 

the first three non central moments. Now that means we need mu three prime; now mu 

three prime expectation of x cube will require the third factorial moment. So, we can use 

it because we can follow the similar type of calculations, the third factorial moment that 

is expectation of X into X minus 1 into X minus 2, if we follow the same logic it will 

come out to be n into n minus 1 into n minus 2 p q and also if we look at say measure of 

kurtosis, it will require mu 4, now mu 4 will require mu 4 prime etcetera and mu 4 prime 

will require the fourth factorial moment and that will be equal to n into n minus 1 into n 

minus 2 into n minus 3, p to the power 4. 

So, after doing certain algebraic simplifications; we can obtain mu 3 as n p into 1 minus 

p into 1 minus 2 p. Now you can easily see here that the term n p into 1 minus p because 

it is the variance terms it is always non-negative. Whereas, if you look at this term; this 

will determine the symmetry of this distribution; obviously, if we look at the value p is 

equal to half then this is 0, then this is a symmetric distribution which is alright because 

if we consider the binomial probabilities, it is starting from 1 minus p to the power n and 

goes up to p to the power n. 

The second one is n c 1, p into q to the power n minus 1; the last, but 1 is n c n minus 1 

which is again same as n c 1; p to the power n minus 1 into q. So, if p and q are same 

then the rth term will be same as n minus rth term and therefore, it will be a symmetric 

distribution. So, if we write down beta 1 that is mu 3 divided by sigma cube that is equal 

to n p q into 1 minus 2 p divided by n p q to the power 3 by 2 that is equal to 1 minus 2 p 

divided by n p q to the power half, then this is equal to 0; if p is equal to half; that means, 

symmetric distribution, so binomial distribution will be symmetric. So, which is obvious 

also because in a binomial distribution we are looking at the probabilities of success and 

failures and if the in each individual trial the probability of success and failure is the 

same for example, if you are tossing if you are coin then the distribution must be 

symmetric. 



This is greater than 0 if p is less than half, now naturally this value is q to the power n, 

this value is p to the power n etcetera. So, if p is less than half then this values will be 

higher; corresponding to the values on this side, this values will be smaller. For example, 

p to the power n will become less than q to the power n, so it will be a positively skewed 

distribution. 

On the other hand, if I have p greater than half then this will become less than 0. So, if p 

is greater than half then these values will become higher and these values will become 

lower, so the shape of the distribution will be something like this. So, it will become 

negatively skewed, so this third central moment clearly gives the information about the 

skewness of the distribution. 
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Let us also look at the fourth central moment and as I have explained the method of 

calculation, you will need to calculate mu 4 prime which will require the fourth factorial 

moment which can be easily evaluated. After using that mu 4 turns out to be 3 n p q 

square plus n p q into 1 minus 6 p q. So, if you look at the coefficient beta 2, it is equal to 

mu 4 by mu 2 square minus 3, so mu 4 is this term and mu 2 is n p q. So, mu 2 square 

becomes n p q whole square. So, if we consider mu 4 by mu 2 square this will give me 3 

here and 3 minus 3 will cancel out. So, we are left with 1 minus 6 p q divided by n p q. 

So; obviously, this is equal to 0 if p q is equal to 1 by 6, it is greater than 0 if p q is less 



than 1 by 6, it is less than 0 if p q is greater than 1 by 6. Now this p into q term is actually 

p into 1 minus p that is p minus p square. 

Now, we know that the range of this it is from 0 to 1 by 4, the maximum value is attained 

at p is equal to half. So, it is a basically a concave function p into 1 minus p, it is like this 

at p is equal to 0 and p is equal to 1 it is 0 and at p is equal to half, the value is equal to 1 

by 4. So, naturally it is possible that the value of p into 1 minus p can be greater than 1 

by 6, equal to 1 by 6 or less than 1 by 6. So, if p into q is less than 1 by 6; that means, the 

values are here then the peak of the binomial distribution be slightly higher than the 

normal, if p q is greater than 1 by 6 it will be slightly less than the peak of the normal 

distribution. 

Another thing which you can observe from these coefficients that beta 1 is equal to 

certain term and in the denominator, we have square root n. So, even though it may be 

positively or negatively skewed, but if n becomes large the skew becomes closer to 0; 

that means, it will become closer to asymmetric distribution. In a similar way, if we look 

at the coefficient beta 2, here in the denominator we have n and therefore, as n becomes 

large; the measure of kurtosis is closer to 0 even though p q may not be equal to 1 by 6 

and therefore, it will become closer to a normal peak. 

We may also look at the moment generating function of the binomial distribution; 

expectation of E to the power t x; that is equal to e to the power t j; n c j; p to the power j 

into 1 minus p to the power n minus j, j is equal to 0 to n. 

Now, if you are making use of the binomial expansion then it is clear that the term e to 

the power t j must be adjusted with the term p to the power j. So, this becomes n c j; p e 

to the power t whole to the power j into 1 minus p to the power n minus j; j is equal to 0 

to n and this becomes 1 minus p plus p e to the power t whole to the power n; that is q 

plus p e to the power t whole to the power n, so for all values of t this is well defined. 

Thank you. 


