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Today, we will start our second module of this course on Parametric methods. I will firstly

introduce the problem of statistical inference. Broadly speaking, if we consider our day to day

terminology  of  making scientific  statements  then  they are like  that  in  various  areas.  For

example, in the area of agriculture, we talk about what is our per hectare production of wheat

say in the state of Punjab. Is it more than per hectare production in the state of say Tamil

Nadu. 

We make a statement what is the average size of the holding for Indian farmers. In the field of

atmospheric  sciences,  we make a statements like what could be the what is the expected

rainfall during the next monsoon season in Indian peninsula. We talk about in atmospheric

sciences, if there is a cyclone approaching what would be the average wind speed during the

peak of the cyclone. 

In  the  area  of  medicine,  suppose there  is  a  treatment  which  is  discovered  for  treating  a

particular kind of disease then we will be interested in knowing the average effectiveness of

the medicine that means out of a n number of people, how many people will be effectively

cured from that  disease by taking that  particular  line of treatment.  Or if  there is  another

previously known medicine, which is already available, then whether this new medicine will

be more effective than the previous one or less effective or equally effective. 

Whether it is more costly treatment than the previous one. Statements of this nature around in

every area of human activity be it economics, be it social science, be it industry, be it trade,

be  it  physics  and so  on.  Now, statisticians  treat  this  problem as  a  problem of  statistical

inference, we broadly classify it into 3 categories. We assume so for example we consider the

concept of population.
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So we  firstly  talk  about  a  statistical  population  is  a  collection  of  measurements  on  any

characteristic of interest. For example, it could be heights of adult males in a city, it could be

production of say wheat per farm in state of say Punjab. It could be say for example the

responses in favor or against an ordinance by government. It could be say age at marriage of

adult females in an ethnic group. 

In trade it could be say the stock prices of a particular stock each day over a month. So, all of

these are examples  of a  statistical  populations.  As I  mentioned little  while  ago,  a typical

problem of a statistical inference could be to estimate average heights of adult males in a city,

it  could  be  to  estimate  the  average  production  of  wheat,  it  could  be  for  example  the

proportion of people who favor a particular ordinance by government.

It could be the estimation of the average age at marriage of adult females in an ethnic group,

it could be stock prices that means estimating say average stock price of a particular stock. So

to answer these questions we are dealing with the populations of the measurements on this.

Now, there are 2 ways of looking at this, we may assume a distributional model for these

measurements and of course there are methods to determine that what could be an appropriate

distribution for that. 

For  example,  heights  of  adult  males  in  a  city  could  follow  a  normal  distribution.  The

responses in favor are against may follow a binomial distribution. Age at marriage may be

following say a gamma distribution and so on. There are methods of fitting distributions right



now we are not going to discuss that. But once we have a fitted a model, then we can say that,

this statistical population can be described by a probability distribution. 

Say capital Fx. Now here we may have option. As I mentioned, if we assume a model like

normal distribution, binomial distribution, exponential distribution etc. then this F is actually

specified but the parameter of the distribution may be unknown and in that case we will say

the distribution is Fx theta, that means it is correct traced by a parameter theta. This is called

a parameter which could be of course scalar or vector. 

For example, if we are writing say binomial n p distribution, then here the parameter could be

p or it could be n p, if the total number of trials is fixed here then n could be known and then

the parameter is p otherwise it is n and p. Suppose I consider exponential distribution with

parameter lambda, then your parameter is, suppose I say normal mu sigma square, then my

parameter is mu and sigma square. That means by parameter we refer to the characteristics of

the population. 

In whatever way they may be defined. For example, in normal distribution mu defines mean

and sigma square denotes variance, whereas in a binomial distribution n denotes the total

number of trials  and p denotes the probability  of success in each trial.  In an exponential

distribution, lambda is actually the reciprocal of the average, 1 / lambda will be the mean.

The  problem  of  parametric  inference  is  to  make  certain  statements  about  the  unknown

parameter of the population. 

For example, I want to estimate the average height of adult males, so this brings us to the one

area of statistical inference and that is called estimation.
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So, broadly speaking let us write the problem of statistical inference, I divide into various

parts so one is estimation, where I want to know the value of the parameter through some

method. The other problem is that of making a doing a testing of hypothesis. For example, I

would like to check whether the heights of adult males in a city is different from the height of

adult males in another city or is it less or is it more. 

If you want to do a testing, then the statement has to be in the form of a assertion and then an

alternative  to  that  will  be  given  whether  it  is  not  true  or  so.  So,  broadly  speaking  we

subdivide the problem of a  statistical  inference into estimation  and testing of hypothesis.

Later on I will also discuss the case when there is no theta here. That means the distributional

model itself may not be known and that is called the problem of non parametric methods and

are non parametric inference. 

We will discuss that in another module of this particular course. Right now we are assuming

that  our  population  is  partially  specified  in  the  sense  that  capital  F  is  specified  but  the

parameters may not be specified. So if the parameters are not specified and we want to make

certain inference about that, then we are dealing with the parametric methods as I mentioned

here. Now let us consider the problem of estimation. 

In the problem of estimation, we will give on the basis of a random sample so because we do

not have the full population with us so to make the statistical interference a sample from that

population is taken and then the sample is used to draw any particular inference. It could be



in the form of estimator. Now an estimator can be of 2 types, it can be a point estimator or it

can be an interval. 

For example, we may say the average height of adult males is say 6 feet, then we are giving a

single value for the average height. Then this is called a point estimator. On the other hand,

we may say that 95 % of the times the average height would lie between 5 feet 11 inches and

6 feet 1 inch.  Then we are giving an interval  of the values and at  the same time we are

associating a probabilistic statement along with that. 

That means roughly how many times the statement was likely to be true. This is known as a

confidence interval or interval estimation. So we subdivide the problem of estimation into the

problem of point estimation and the problem of interval estimation. To begin with I consider

the problem of point estimation. So let us consider let X1, X2, Xn be a random sample from a

population with the distribution Fx theta. 

As I mentioned theta could be scalar or vector and it lies in a space of values which is called

parameter space. We will use T X1, X2, Xn. Let us use a abbreviation X vector denotes X1,

X2, Xn to estimate a parametric function say g theta. Now the question comes that, what is

the nature of g theta and what is the nature of T. Let us consider say binomial n p. we may be

interested in estimating the probability of success. For example, if we consider responses in

favor of an ordinance. 

So we have taken a sample of size n and we record the responses which are in favor. So for

example that number is capital X. So now the sample proportion is capital X/n, which can be

used as an estimator for the probability of favorable response. So X is a collection of the

responses which are in, so total number of responses are in terms of yes you can say 1 and if

it is no, you can say 0 and if you add them you get capital X there. 

So it is function of the observations and we are using it to estimate the proportion here. In a

similar way, one may consider suppose I take the problem of normal mu sigma square and

suppose I am considering the heights of adult males, I assume that they follow a normal mu

sigma square distribution. Now the problem is to estimate mu. So I take a sample of adult

males and I record their heights. So let me call them X1, X2, Xn. 



I can use the sample mean X bar for estimating mu. Now the question arises that what is the

methodology by which I can assign the estimators, what are the criteria for that. So let us

look at this problem. So for example, to estimate the mean mu of a normal mu sigma square

population, we may use, let me call it T 1 X as X bar. We may also use say T2X, which is

nothing but the X median. That is the median of observations. 

If one looks at the logic that mu also denotes the median of a normal distribution. In that case,

one may consider the sample median or we may use say T 3, we may call it to be M mode,

that means the mode of X1, X2, Xn. If I give the interpretation to mu that it is the point which

is the mode of the density function. Now, the question comes that in a given problem, out of

T1, T2 and T3, these may take different values and therefore which one should be used. I can

give another analogy here. 

Suppose I consider sigma square, now sigma square is the variance here. Now for variance,

one may consider say sigma Xi-X bar whole square, the way we define variance 1/n days. So

this could be my say U1X. but one may consider some other options also n place of this,

somebody may consider the mean deviation about say mean. One may consider say mean

deviation about median. 

Once again, if I have choice of estimators, there are various estimators which are available,

then what should be our method to analyze them. There is another problem. These are written

in some sort of heuristic way. For example, if mu is the mean of the distribution, I consider

sample mean. If I give the interpretation mu is the median, I take the sample median. If I take

the interpretation mu is the mode, then I take the sample mode. 

But,  there  may  be  some  other  parameters  or  parametric  functions  for  which  this  direct

interpretation may not be available. And in that case what should be our method of getting the

estimators. So there are 2 problems. 
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One  problem  is  method  for  obtaining  estimators  and  another  is  the  criteria  for  good

estimators. So we will take up both of these topics. Let me firstly consider some criteria for

good estimators and then when we obtain by some methodology, then we will check whether

those criteria  are  satisfied  or not.  Now, one may argue in this  way that  if  I  consider  an

estimator. Now, this is based on the sample. 

Now, if I take the sample at another point of time, or at another point of time or some other

person also takes a sample and gets an estimate, then on the average, it should be same as the

original value of the parameter. Now, this can be modeled in statistical terms as the criteria of

unbiasedness. So, an estimator TX is said to be unbiased for estimating g theta. If expectation

of TX = g theta for all theta. 

That means on the average, this T, that is expected value of T is same as the original value. If

T is not unbiased then, it is said to be biased. For example, if expectation of TX = g theta + b

theta, then b theta is said to be the bias of T in estimating g theta. Let us consider some

example  here.  Let  us  consider  say  X1,  X2,  Xn  a  random  sample  from  a  geometric

distribution. 

So, by geometric distribution we have introduced in the first module that we will consider the

probability mass function as fxp = 1-p to the power x-1p for x = 1, 2 and so on. If this was a

distribution, the mean was 1/p. suppose we want to estimate the mean that is let me call it mu

1 prime that = 1/p. then I can consider say TX = X bar. Then expectation of TX will be =

expectation of X bar that = 1/n expectation of sigma Xi that = 1/n sigma expectation of Xi. 



Now each Xi will have mean 1/p. So this is becoming n/n1/p that = 1/p. therefore this is

unbiased estimator for estimating the mean of the geometric distribution. Let us take some

more example.
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Let X1, X2, Xn follow a gamma distribution with parameter say r and lambda. That means I

am considering the density function to be lambda to the power r/gamma or e to the power -

lambda x x to the power r-1, for x > 0. Now, suppose I want to estimate lambda here, let me

call  it  g1  lambda.  Suppose  this  is  lambda.  Suppose  I  also  want  to  estimate  g2  lambda,

actually  the  mean  of  this  distribution  will  be  r/lambda.  So  suppose  I  want  to  estimate

r/lambda also okay. 

We may consider here say r is known. If we consider that and let us consider say X bar. So

expectation  of  X bar  that  = again  if  I  apply  the same argument,  it  will  be  = 1/n  sigma

expectation of Xi. and each Xi has mean r/lambda. So this will become r/lambda, that = g2

lambda. So, X bar is unbiased for g 2 lambda. Now, to consider the estimation of lambda, let

us consider in a slightly different way. Let me consider for example Y = sigma Xi, then the

distribution of Y that will be gamma. 

In the previous module, I have mentioned the gamma distribution if the scale parameter is

kept fixed, then it is additive. Therefore, this will become gamma nr lambda, that means if I

write down the distribution of Y, that will be lambda to the power nr/gamma nr e to the power



- lambda y, y to the power nr - 1, for y positive. If I consider say expectation of 1/Y, then it =

1/y fydy 0 to infinity. 

Now, that is equal to lambda to the power nr by gamma nr e to the power - lambda y, y to the

power nr-2dy. So that = lambda to the power nr by gamma nr, gamma nr-1/lambda to the

power nr-1. So that gives me 1/nr-1 lambda. Since I am assuming r to be known here, I can

adjust this coefficient, that means I will get expectation of nr-1/y = lambda. So this gives say

T2 that = nr-1/sigma Xi is unbiased estimator of lambda. 

So the problem of unbiased estimation can be solved by suitably choosing the functions.

However, this method is more heuristic in nature, a more general form could be to actually

consider.
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That means you need to basically write down an equation of the type expectation of TX = g

theta for all theta and solve this equation. However, you have some general result which you

have seen. For example, I considered geometric distribution and as well as I considered the

gamma distribution. If I want to estimate the mean of the distribution, I can take the sample

mean and it is unbiased. 

So, if the moment exists, that means the mean is defined, then we can actually say that, the

sample mean is always unbiased for the population mean. So we can consider, if mu that =

expectation of X exists, then the sample mean X bar is unbiased for. In fact, we may prove a



little more general result also, we may also consider suppose sigma square = variance of X,

this exists, then we define something called the sample variance. 

Then the sample variance, I call it S square that = 1/n-1 sigma Xi - X bar square. Then this is

unbiased for sigma square. These results are true irrespective of any distribution. The only

condition is the existence of mu and sigma square here respectively. So these results  are

pretty useful and they are used to derive heuristic estimators. For example, in this case of

gamma distribution, I could easily derive the estimator of r/lambda. 

However, now, to get an estimator lambda I considered an improvisation because, if I am

considering a function of sigma Xi for 1/lambda, then it will be reversed for that and that is

why I considered 1/Y here or 1/sigma Xi here. And here, some sort of distribution theory is

used here, that means the sum of the gamma distributions. Similarly, in the case of geometric

distributions,  suppose I  want to estimate the probability  p here,  probability  of success in

individual trial, then I will have to consider 1/sigma Xi here.

Of course 1/sigma Xi will follow negative binomial distribution. So I can use the property of

that negative binomial distribution and I can construct in a similar way. So although unbiased

estimators are heuristically having a nice justification that on the average, the estimated value

will be equal the true value of the parameter. But there may be sometimes the problems. So,

you may have for example, sometimes, unbiased estimators do not exist. 

To take a very simple example, let us take say X following Poisson lambda distribution. Now,

consider  1/lambda as  g lambda.  Let  T be unbiased,  for g  lambda.  Then we should have

expectation of T = 1/lambda, for all lambda. Now this will imply sigma Tx e to the power -

lambda, lambda to the power x/x factorial that = 1/lambda, for all lambda positive. 
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We can further rewrite this condition as sigma Tx lambda to the power x/x factorial = e to the

power  lambda/lambda  and  this  right  hand  side  I  expand,  it  is  1  by  lambda  1+lambda/1

factorial + lambda square by 2 factorial and so on. So what we are saying is, this is for all

lambda > 0. If you look at this term carefully, the left hand side is a power series in lambda,

the right hand side is a power series in lambda but there is also a term 1/lambda here. 

Now, so basically you have a Laurent series also coming here. So the 2 series cannot agree on

an interval, because if they have to agree on an interval, all the coefficients must match. So,

this is impossible. That means the unbiased estimator of 1/lambda does not exist. A second

thing  is  that  sometimes,  unbiased  estimators  may  be  unreasonable.  For  example,  let  us

consider say in the same in the above example, take say g1 lambda = say e to the power - say

2 lambda. 

Now, let us look at this condition here. Sigma Tx lambda to the power x/x factorial = e to the

power lambda into e to the power - 2 lambda. That = e to the power-lambda. So, let us write

down the terms here, so sigma Tx lambda, so this will give me T0+T1 lambda/1 factorial+T2

lambda square/2 factorial and so on. That = 1-lambda by 1 factorial + lambda square by 2

factorial and so on. Now let us look at here. This gives me T0 = 1, T1 = -1, T2 = +1, T3 =

again -1 and so on. 

Now look at  the problem, this g1 lambda function, it  is e to the power -2 lambda, since

lambda is positive, we always have 0 < e to the power -2 lambda < 1, this is an unbiased

estimator now. But it is taking values always +1 or -1. So this is unreasonable estimator. That



means to estimate a parametric function which is lying between 0 and 1, I use the values +1

and -1, because depending upon what is the observation x, you will either use it as 1 or you

will use as -1. 

So this is  not a good criteria  or good estimator  here.  So, now one thing I would like to

mention right here, see we have introduced a criteria of unbiasedness. So it is based on the

reasonable assumption that if we consider the sampling a large number of times, then on the

average the estimated value should be equal to the true parameter value. 

So this the only one criteria we have also seen that sometimes we may not have done by

estimator or sometimes even if it exists it may not be reasonable. Therefore, we have some

other criteria also. Let us look at one or two some such things. 
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Another criteria is that of consistency. Now, we are considering T, let me write the estimator

as Tn because it is dependent upon n observations. So this is said to be consistent estimator of

g theta,  if  Tn converges to g theta  in probability. Now, if  you remember in the previous

lecture,  we have introduced the concept  of convergence and probability. That is  for each

epsilon > 0, probability of modulus Tn-g theta > epsilon, this goes to 0 as n tends to infinity.

So if we give the physical interpretation of this condition, it means that as the sample size

increases, that means if the estimator is based on a larger sample, then the probability of this

being closer to the true value increases. Because the probability of this being away from the

true value is decreasing to 0. So, consistency is again a large sample property. That means if



we are taking more and more observations, then we are approaching towards the true value at

least in the sense of probability. 

Now, if we remember the strong law of large numbers and the weak law of large numbers, in

the weak law of large numbers we assume that if the mean of the observations is mu, then the

sample mean is consistent for the population mean. So, in fact we also saw the strong law of

large numbers, so we call it then weak consistency and the if Tn converges to g theta almost

surely, then it is called strong consistency. This is we can say weakly consistent, just to keep

in analogy with the weak law and the strong law of large numbers. 

So, X bar is consistent for mu, that is the mean of the population. Of course we have to

assume that mu should exist. Sometimes we may be able to apply this weak law of large

numbers or strong law of large numbers, then one may try directly. Let me take an example

here, which is different from the consistency of the sample mean. Let us consider say, X1,

X2, Xn following uniform distribution on the interval 0 to theta. 

Now, if  we  are  considering  the  uniform  distribution  on  the  interval  0  to  theta,  all  the

observations are lying between 0 to theta. An estimator for theta can be say Xn, that is the

maximum of X1, X2, Xn. let us consider the distribution of Xn, the consistency of Xn for

theta. So let us consider probability of modulus Xn-theta > epsilon. Since all the observations

are between 0 to theta, theta is bigger than Xn. 

So, this probability is same as theta-Xn > epsilon. Which = probability of Xn < than theta-

epsilon. Now this is equivalent to probability of each of X1 < theta-epsilon and so on Xn less

than theta-epsilon. Because if the maximum of the observations is < theta-epsilon, then each

observation  will  be  less  than  theta-epsilon.  So,  because  of  the  independence,  it  simply

becomes, the Fx at theta-epsilon to the power n, that = theta-epsilon/theta to the power n. 

Naturally this goes to 0 as n tends to infinity. So that means, this Xn is consistent for theta.

So, in this case, we have not used the law of large numbers, rather we have gone for a direct

verification of the result. Now, we may also have a situation, where there are 2 estimators,

say  both  may  be  unbiased,  both  may  be  consistent,  or  may  be  biased  and  one  may  be

unbiased and then, how to compare. So, we introduce the mean squared error criteria.
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So, the mean squared error, that is we call it MSE. MSE of T for g theta is defined to be say

MSE T, that = expectation of T-g theta whole square. And in the terms of this, we can give the

comparison, because the smaller the mean squared error, the better the estimator can be. So,

we say estimator T1 to be better in the sense of mean squared error than T2, if mean squared

error of T1 <= mean squared error of T2, for all theta with a strict in equality at least for some

theta prime belonging to theta. 

Now in  case,  T is  unbiased  for  g  theta,  then  the  mean  squared  error  of  T is  becoming

expectation of T-expectation T whole square. That is nothing but the variance of T. So, an

estimator T is said to be uniformly minimum variance unbiased estimator for g theta, if T has

the smallest variance among all unbiased estimators of g theta over the fill parameter space. 

Now the question is that, how to determine the minimum variance and by estimators or how

to obtain the estimator which have less mean squared error. For that there are certain other

techniques.
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For example, to obtain uniformly minimum variance unbiased estimator, we have method of

lower  bounds  for  the  variance,  then  second  method  is  the  method  of  sufficiency  and

completeness. We will not be discussing in detail these methods in this particular course as

they have been discussed in another course on statistical inference, which is also available on

NPTEL.  Here  I  will  briefly  mention  about  the  concept  of  sufficiency  and completeness,

regarding the lower bound I will mention one lower bound here. 

So,  but  this  telling  various  conditions  on  the  density  function.  So,  that  becomes  a  bit

theoretical. Since, this is a course on statistical methodology. I will just mention the method

here. So, in the method of the lower bounds for the variance what we do if I say variance if I

say that T is an unbiased estimator for g theta, then variance of T should be always >= certain

number. Now, if that is so then, if I am able to obtain an estimated T which is having variance

= to that bound, then certainly it will be minimum variance unbiased estimator. 

So,  there  are  methods  like  we  have  Frechet,  Rao,  Cramer  lower  bound  then  we  have

Bhattacharyya  bounds,  we  also  have  Chapman-Robbins,  Kiefer  bounds.  For  detailed

discussion about these bounds, you may look at the lectures on statistical inference. Let me

briefly mention about the concept of sufficiency and completeness here. 

So, sufficient statistic, so we have the same setup that we have a random sample X1, X2, Xn

from a population with distribution FX theta, so a statistic TX is said to be sufficient, if the

conditional distribution of X1, X2, Xn given T = say small t is independent of theta, almost



everywhere.  Now, to  give a  simple  example,  suppose I  consider  say X1,  X2,  Xn follow

Poisson lambda distribution. I consider T = sigma Xi i = 1 to n. 

Then if I considered the conditional distribution of X1, X2, Xn given T = t, then certainly this

= 0, if t is not = to sigma Xi. 
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If we consider t = sigma Xi, then this probability = probability of X1 = x1 and so on. Xn =

xn, T = t divided by probability of T = t. This can be then further simplified as probability of

X1 = x1 and so on Xn-1 = xn-1. Now this T is X1+X2+Xn-1+Xn. So, if the value of T is

fixed, then the value of Xn is also fixed. So we can write this as Xn = t-sigma Xi, i = 1 to n-1

divided by probability of T = t, that is equal to now we can use the independence here. 

So, probability of X1 = x1 and so on probability of Xn-1 = xn-1 probability of Xn = t-sigma

Xi i = 1 to n-1 divided by probability of T = t. Now, we also have seen the additive property

of the Poisson distribution. If X1, X2, Xn are independent Poisson lambda, then sigma Xi

will follow Poisson n lambda distribution. 

So, we can make use of this fact here in the calculation and this one then becomes e to the

power-lambda,  lambda  to  the  power  X1/X1 factorial  and  so  on  e  to  the  power-lambda,

lambda to the power Xn-1/Xn-1 factorial e to the power-lambda, lambda to the power t-sigma

Xi i = 1 to n-1/t-sigma Xi i = 1 to n-1 factorial divided by now this capital T follows Poisson

n lambda. So this becomes e to the power-n lambda n lambda to the power t/t factorial. 



So easily you can see that lambda is simply canceling out and we are getting here t factorial

divided by X1 factorial and so on Xn-1 factorial*t-sigma Xi factorial i = 1 to n-1. So, this is

independent of lambda. So T that = sigma Xi is sufficient statistic here. Now, we have a very

strong result in a given decision problem or in a given estimation problem if the sufficient

statistics exist, we can make use of this to create better estimators and ultimately it will lead

to minimum variance and estimators. 
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So we have the result called Rao Blackwell theorem. Say if T is sufficient and say UX is

unbiased for g theta, then expectation of UX given T, let me call it say hT is also unbiased for

g theta and variance of hT will be <= variance of UX for all theta. We will show that by

combining  this  concept  with  another  concept  of  completeness,  we  can  actually  get  the

minimum  variance  and  by  the  estimator  in  estimation  problems  where  the  unbiased

estimators exist. 

So,  before that we also mention another result,  this  method of proving the sufficiency is

somewhat complicated in this particular case, I was able to already guess an estimator or

guess a function which I could prove that it is sufficient. But in general problems, it may not

be so easy and another thing is, this involved the computation of the conditional distribution

here, which again may not be easy. For example,  here we were dealing with the discrete

distribution and therefore, it is easy to derive the conditional distribution. 

But suppose we are dealing with a continuous distribution, then this interpretation will not be

there and the calculation of the conditional density may involve lot of algebraic calculations.



So, there is another result called Neyman-Fisher factorization theorem which involves writing

down the joint distribution of the observations that is f X1, X2, Xn as a product of two terms.

One is g theta say TX * another term called hX. 

If this factorization is available, then that means this term is involving the parameter and the

statistic T and the second term is free from theta, then we say TX is sufficient. Now, this is

necessary and sufficient condition of course under certain conditions and therefore this can be

easily used for calculation of the or obtaining sufficient statistics in a given problem. In the

following lecture, I will also introduce the concept of completeness and how these can be

used to derive the uniformly minimum variance and by estimators. 

I will also introduce the concept of method of movements and the maximum estimator for

deriving the estimators. 


