
Statistical Methods for Scientists and Engineers
Prof. Somesh Kumar

Department of Mathematics
Indian Institute of Technology – Kharagpur

Lecture - 38
Nonparametric Methods - XI

We were discussing the theory of general linear rank statistics in the previous class and we have

discussed the distributions, then we also talked about how to find out the asymptotic distribution

of  the  general  linear  rank  statistics.  Now  using  that  theory,  we  will  derive  the  asymptotic

distribution of Mann–Whitney U statistic and the Wilcoxon rank sum statistics for two sample

problems. We will show that they are actually asymptotic normal.

So this is proved in the following theorem.
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So we consider that m and n tend to infinity such that m/n goes to lambda. That means where

N=m+n, that means basically what we are saying is that it  is not that abnormally one of the

sample sizes becomes very large. It will be that both of them will have a fixed ratio. So here, of

course,  your lambda will  be between 0 and 1.  Then the standardized Wilcoxon statistic  and

similarly the standardized Mann-Whitney statistic.



That  is  the  W-expectation  W/square  root  variance  of  W  and  U-expectation  U/square  root

variance of U. These 2 have limiting normal 0, 1 distributions under the null hypothesis that is

theta=0. To prove this, let  us consider here the definitions of this. Let me rewrite this thing.

Suppose I consider Tij=1 if Yj is >Xi and it = 0 if Yj is </=Xi. So if I consider U*=double

summation Tij, then actually it is =mn-U.

Because U was defined as the sum of sigma Tij where Tij was one when Yj is < Xi, that means it

is reverse of this. We are assuming that the ties are not occurring, then we will have expectation

of Tij=1 under the null hypothesis. That is when theta = 0. Let us consider say W*, which is

based on Tij. If we define this thing, then we will have expectation of W also = 0 under H not

that is when theta = 0.

Now let  us consider the conditional expectation of Tij-1/2 given that Xk = X under the null

hypothesis, then it is nothing but the probability of Yj>Xi given that Xk=X-1/2. So we can then

write.
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Expectation of Tij-1/2 given Xk=X. This is = 0 if k is != i and it is = probability of Y > X-1/2 if k

is = i. Similarly, if I consider expectation of Tij -1/2 given Yk is =Y, then this is =0 if k is != j and

it is equal to probability of Y>x-1/2 if k=j. Now we are assuming that under the null hypothesis



that is theta = 0, X and Y will have the same distribution under H not, that is F. So if we consider

expectation of double summation Tij – 1/2 given Xk=X.

Then that will become simply =, now you see here that I will get this value when k=i for all other

values it will be =0. So how many times that will occur when k=i, that is how many Xi are there.

There are n, so this will become n * 1-FX-1/2. So this I can write like this. Similarly, if I consider

expectation of double summation Tij-1/2 given Yk=Y, then this is = m*FY-1/2. You can see here,

this is X<Y, so that is FY and here it is Y>X, so it is a CDF of Y that is F.

So it is 1-probability Y</=X that is 1-FX here. Now the projection of W*.
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We are writing it as Vp=n*sigma 1/2, so this is i=1 to n, - F(Xi) + m* sigma j=1 to n F(Yj-1/2).

So let us consider here square root n/mn Vp that is = square root n/n * sigma Vi, i=1 to n+ square

root n/n sigma Vi* i=1 to n. What are these Vi and Vi*, we are considering Vi and Vi*, they are

uniformly distributed on interval -1/2 to 1/2. So they will have basically 0 mean and variance

will become 1/12. Now these are in the form of the summation.

So we can apply the central limit theorem on the 2 terms on the right hand side. Basically what I

have  done,  I  adjusted  these  terms  here.  See  this  particular  term because  of  the  probability,

integral  transform,  this  becomes  uniform distribution  on  the  interval  0  to  1,  F(Yj)  becomes



uniform distribution on the interval 0 to 1. So 1/2-F(Xi) becomes uniform distribution on the

interval – 1/2 to 1/2.

Similarly, F(Yj) – 1/2 becomes uniform distribution on the interval -1/2 to 1/2. So both of these

are summations now and we apply the central limit theorem. So applying central limit theorem

on the 2 terms of the right hand side, what will happen, we will get square root n/n sigma Vi, I=1

to n, this will converge to 1/root lambda Z1 where Z1 is following normal 0 (1/12) and in a

similar way, if we consider Vn* converging to Z2 and Vn and Vn* are independent.

Then  the  characteristic  function  of  Vn+Vn* converges  to  characteristic  function  of  Z1+Z2.

Basically what we get then here.
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So root n/mn Vp, this will converge to, that means I am considering the sum hereafter adjustment

here. So this is converging to 1/root lambda Z1 and this is converging to 1/square root 1-lambda

Z2. So this coming to 1/root lambda A1 + this means converges and distribution 1/root 1-lambda

Z2 where Z1 and Z2 are independent normal 0, 1/12. So if we apply the linearity property of the

normal distribution, we get that root n/mn Vp converges and distribution to Z, which follows

normal 0, 1/12 lambda *1-lambda.



We can also talk about the asymptotic variance. So variance of square root n/mn Vp, this will

converge to 1/12 lambda *1-lambda and variance of square root n/mn W* that will also converge

to that is = n*n+1/12 mn that is also converging to same value. Because this was just a linear

combination of this thing. So if we now use the projection theorem, which I gave in the last

class, let me just repeat it here.

That expectation V-W square is minimized by choosing Pi*x as expectation of V given xi and

this is the projection and expectation of V-Vp square = variance of the –variance of Vp. So we

use this result here now. So by projection theorem and the relation 2 which I just now showed

you, we get that expectation of root n/mn W*- root n/mn Vp. This goes to 0. So if we use the

theorem, which I gave for the limit part.

That is if Wn is asymptotic distribution and expectation of Un-Wn square goes to 0, then Un also

has an asymptotic normal distribution. So if we use this.
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Hence square root n/mn W* has the same limiting distribution as root n/mn Vp. So now if we

write U*-expectation U*/square root variance of U* and apply Slutsky’s theorem along with

limiting normality of square root n/mn W*. We get the result.  So thus we have obtained the

asymptotic distribution of the Wilcoxon rank sum statistic and the Mann-Whitney U statistic and

both are found to be asymptotically normal.



Now in the general linear rank statistics, we are writing the statistic of the form sigma of Ci A of

Ri. Now in this one, we may consider some sort of permutation of the ranks or you can say

permutation of the indices. Then what happens to the distribution. Our next result is regarding

the distribution  of the permuted form of this.  So if  C1 prime,  C2 prime,  Cn prime is  fixed

permutation of C1, C2, Cn.

A prime 1 and so on A prime n, this is a fixed permutation of A1, A2, An, then S=sigma Ci A (Ri)

i=1 to n is having the same distribution as S prime = where the vector of ranks has uniform

distribution over the set of all permutations of the numbers 1 to n. So this is on the testing result

and it allows us to use the ranks in it. That means basically the way the data has been obtained, it

will not matter when we consider the distribution of the linear rank statistics, which is based on

that. Let me give the proof of this here.
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Since C1 prime, C2 prime, this is a permutation, so we can write C1 prime as some C of alpha i

for some alpha = alpha 1, alpha 2, alpha n belonging to R. Basically this means that it is the i-th

value of C under permutation alpha. Similarly, we can consider A prime i as = A of beta i. This is

for some permutation beta of the numbers 1 to n. Let us define a function from R to R as phi R =

beta composition with R alpha inverse.



Here the alpha and beta are this. This is actually the composition of the permutations. So you can

look at it like this, that R is a vector in R, that means it is permutation of the numbers 1 to n. On

that we apply beta from the left end and alpha inverse from the right end. So here alpha and beta

are  fixed.  As  we  have  mentioned  here  that  these  are  fixed  permutations.  So  for  fixed

permutations, this result is being proved.

We have already fixed alpha and beta here. So now let us consider. Take any R belonging to R

which is arbitrarily fixed. So S prime that is based on i=1 to n=sigma C alpha i A beta Ri, i=1 to

n. Why this is so, because A prime i=A of beta i. So if I am writing Ri here, then this will become

beta Ri here. So this I can now write as sigma of Ci A(beta R) since I have changed alpha to i

that means I have taken the inverse transformation for i, then this will become alpha i inverse,

i=1 to n. So this has then become = sigma Ci A (phi i) i=1 to n.
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Hence S prime = Ci A (phi i) i=1 to n = S with R replaced by phi R. Hence S will have the same

distribution as S prime. So we denote by this, S and S prime have the same distribution. Let us

repeat the argument here. I am expressing S prime, which is sigma Ci prime, A prime Ri as here

Ci prime has become Ci again and here A prime Ri becomes A of phi i here. So you can say that

phi is a 1 to 1 function. Because what is happening there is R.



R is transferred using beta and alpha inverse. So for a given R phi R is uniquely defined. If that is

so, then basically the original combination will be preserved here for the distribution. That means

whatever  probability  we are  saying  for  that  particular  thing,  it  will  remain  the  same.  As  a

corollary if we consider like we are going 1 to n and then we take from the reverse side, so if we

consider the permutations, which are counted from the left hand side, if you count from the right

hand side, then the distribution must be the same.

So as a corollary we have the following result, that is the sigma Ci A (Ri). This will have the

same distribution as S prime = sigma i=1 to n Ci A (n-Ri+1). As a consequence, we can prove

another  important  theorem.  Let  R  have  uniform  distribution  over  R.  That  means  we  are

considering each permutation is equally likely. If either Ai + A n-i+1 = a constant say Kor Ci+C

(n-i+1) is a constant, then S=sigma Ci A (Ri) has a symmetric distribution about n A bar C bar.

We will take both the cases. Firstly, when Ai+A (n-i+1) is a constant and secondly the case when

Ci+C (n-i+1) is a constant. So Ai+A (n-i+1) that is a constant = K. This implies sigma Ai+A (n-

i+1) = Nk.
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This implies 2 A bar = Kor A bar = K/2. So Ai + A (n-i+1) = twice A bar. Let me call this relation

#1. So S = sigma Ci A Ri, this is having the same distribution as S prime, that is = sigma Ai Ci A

(n-Ri+1). So as a consequence, let us consider the probability of S = N A bar C bar + S. That is



probability of S prime = N A bar C bar + S. That is probability of sigma Ci A (n-Ri+1) = N A bar

C bar + S. This we can write as probability of sigma Ci.

And here we change A (n-Ri+1) as 2 A bar – A (Ri) using this relation here. Because Ai+A (n-

i+1) = 2A bar = N A bar C bar + S, so that is = probability of sigma Ci A (Ri) and this becomes N

C bar, so twice N A bar C bar, this you bring to the left hand side, and you take this term to the

right hand side. So you get N A bar C bar – S, which is same as probability of S = N A bar C bar

– S. So this will prove that the distribution of S is symmetric about N A bar C bar.

So we have proved this theorem for the case when Ai + A (n-i+1) is a constant. Now let us take

the second case.
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Ci + C (n-i+1) = K, which implies that Ci + C (n-i+1) = 2C bar. This proof will be same because

we can sum over all the values, we will get 2K and then since both the sums will be the same,

therefore this is = 2C bar therefore K=2C bar. So now let us consider S=sigma Ci A (Ri) i-1 to n.

Now this we write as Cdi, A (i) i=1 to n where di is the anti-rank of. Basically what we are doing

is that if the i-th observation has rank Ri, so i will have the reverse di.

That is have changed Ri/i so what is the corresponding reverse value here, so that is called Cdi.

So this will then have the same distribution as sigma C (n-di+1) A (i), i=1 to n. So if I consider



the probability of S=N A bar C bar + S, then it is = probability of sigma C (n-di+1) A (i) = N A

bar C bar + S = probability of 2C bar – Cdi A (i),  i=1 to n that is = N A bar C bar + S =

probability of sigma Cdi Ai, again this term you take to the other side.

So this becomes N A bar C bar –S that is same as saying sigma Ci A(Ri) = N A bar C bar – S. So

once again, you are proving that the distribution of S is symmetric about N A bar C bar. We can

actually  apply  this  result  to  various  statistics  and therefore  they can  be used for  the testing

problems in the 2 sample testing problems. Let me give some examples.
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1 is called Van der Waerden statistic.  Here the scores are taken as based on the CDF of the

standard normal distribution, that is phi inverse i/n+1. So if we consider the statistic as sigma Ci

phi inverse i (Ri/n+1), i=1 to n. So this will be = sigma Ci because for n+1 up to n, this will be 0.

This is i=1 to m Ci phi inverse Ri/n+1. So expectation of x under the null hypothesis is = mA bar.

Actually you can determine A bar here.

Here if we consider the property of the standard normal CDF here that is to determine A bar, we

use the fact that A (i) + A (n-i+1) that is constant. If I write say phi inverse i/n+1 = some x, then

this will mean that i/n+1 = phi of x, this will mean that 1-i/n+1=1-phi of x = phi of (-x). So you

will get –x=phi inverse of n-i+1/n+1. So what do you get then. Phi inverse i/n+1+phi inverse n-

i+1/n+1 = 0. That means this constant is actually becoming = 0.



This means that your A bar is 0 and therefore you will have expectation of x under the null

hypothesis that is also 0. That is mA bar. We can also write the expression for the variance of x

that is mn/N*N+1 sigma i=1 to n, phi inverse i/n+1. This kind of statistics are quite useful for

Gupta 2 sample testing problems. Let me also introduce the scale problem here and the 2-sample

scale problem.
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So we have a random sample, let X1, X2, Xm be a random sample from the CDF, F(x) and Y1,

Y2, Yn be another independent random sample.  This is from Gyx. So our null hypothesis is

whether the 2 distibutions are identical and alternatives that this is theta x for all x where theta

is != 1. So this is basically the scale model because I have introduced a scale parameter here. So

when you have theta = 1, then the 2 will be same, so that is the null hypothesis.

We may also consider it in terms of the variability. So if we consider say X square dGy=X square

dFx theta x = 1/theta square y square dFxy, so that is = Vx/theta square. So theta>1 will imply

that  Vx>Vy and theta<1 will  imply that  Vx<Vy. In some sense,  we can say that  this  testing

problem is equivalent to testing, which distribution has more variability. That is the distribution

of x or the distribution of y.



So basically we can consider this null hypothesis, and alternatives will be theta<1 that means

whether the variability of X is less than the variability of the distribution of Y or theta>1 that

means whether  the variability  of X is  more than the variability  of Y or simply say that  the

variability of X is different from the variability of Y. So all the 3 alternatives can be considered

here. So some of the 2 sample statistics that are introduced for the scale problem, they are as

follows. Let me give few of them.
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Certain 2 sample statistics for scale problems. So here I am taking Ci=1 for i=1 to n and =0 for

i=n+1 to n. So when we are mixing the 2 samples, I am assigning the value 1 and in the second

1, I am assigning the value 0. So 1 is Mood test statistic. In Mood test statistic, we take the scores

as i-N+1/2 square. You can easily understand what does it represent here. It will represent that

how much difference each value basically when we put ARi.

So N+1/2 is the mean rank here. So how much each rank is different from this 1. So this is a

major  of  variability  of  the  ranks and therefore  if  I  consider  by statistics  based on that.  For

example, if I write the Mood statistic as sigma Ri - N+1/2 square, i=1 to m. So basically this is

the rank of Xi in the sample, so if the ranks are closer to the mean value of all the, that means the

sample is well mixed up that is x's and y's are well mixed up and therefore it will mean that theta

is closer to 1.



Whereas the more variability will imply that m is large. So we can consider here, expectation of

M=MN square-1/12, Na bar will be equal to N*N square-1/12, and variance of N=mn/N*N, I am

not giving the derivations here. But this can be done in a easy way, M small is equivalent to less

variability of x's that is theta is < 1, and M large will imply that more variability, that is theta is >

1. So this can be used for testing, the test of hypothesis here.
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We can also consider another statistic which is named by several authors actually Freund, Ansari,

Bradley,  David,  Barton.  So  if  you  look  at  this  Mood  statistic,  here  it  is  taking  the  square

deviation here, so from the square deviation we take the absolute deviation, then we get this

statistics. So these are all very natural choices for their core functions here. So Ansari, Bradley is

given by sigma Ri-N+1/2, i = 1 to m.

Actually there are several variations of this that means whether you take directly like this or so.

So this one is actually Ansari, Bradley choice. Let us take the case when N is odd, that means

N=2M-1  kind  of  thing.  If  that  is  so,  then  Na  bar,  that  is=sigma  modulus  i-N+1/2,  that  is

becoming sigma i-M, that is 2M-1+1/2, so i=that is=sigma M-i + sigma i-M. So i=1 to m-1, and

this is from M+1 to 2M-1, corresponding to i=m this term becomes 0.

So if you look at this, this is becoming M*M-1/2 and this will also give the similar thing -M*M-

1/2+sigma j, j= 1 to m-1. So this actually gets cancelled out, so you simply get M*M-1, which is

N+1/2 N-1/2, that is N square-1/4 here. So if Na bar is this one, then we are able to get the value.
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Expectation A that is = mN square-1/4N, of course this I have done for N odd. If N is even, say

N=2M, in that case you consider Na bar that is = sigma i-2M+1/2, that is N+1/2, i=1 to 2M. So

again we split in to 2 parts i=1 to N, then this is = 2M+1/2-i+sigma i-2M+1/2 for i = M+1 to 2M.

Once again we can easily simplify these terms, it becomes M*M+1/2-sigma i, i=1 to M, +sigma

j, j=1 to M-M/2, that is M square, that is N square/4.

So a bar is then = N/4, so expectation of A in this case becomes = mN/4. So variance of A can be

calculated, once again if actually the interpretation of this is same as the Mood test statistics,

because if A is large it will mean that there is more variability in the X data, that is theta is > 1,

so basically  we say that  large A indicates  theta>1, small  A indicates  theta  is  <1. Now some

variation of this form is given here, see you are considering the absolute derivation here. So and

we are taking direct sum here.
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We may also consider the reverse form ai=N+1/2- as you can see the logic behind it, that this is

just a little variation from this. This form is actually called Freund-Ansari form. So this function

let me write i=1 to m, N+1/2-Ri-N+1/2, so that is = m*N+1/2- basically Ansari-Bradley. So it is

just the reverse 1. So small F indicates theta>1, and large F indicates theta is<1. Expectation of F

will be m*N+1/2-expectation of A, and the expectation term, I already calculated here when N is

odd then it is m*N square-1/4N, and when N is even it is = mN/4.

There is yet another variation of this which is David-Barton variation. You can consider ai as this

is the Ansari Bradley choice, but you shift it little bit, that means basically it is just adjustment of

the even and odd values. So basically, B = sigma a of Ri, i=1 to m, that is = m*N+2/2 - the

Freund Ansari choice, that is this choice here, because if I take this - this - in the bracket, then

this will become the Freund Ansari choice. Therefore, once again we can obtain, this is also the

N+2/2-m*N+1/2+Ansari Bradley choice.
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So here large value of B indicates that theta is>1, and of course small B will indicate theta is<1.

Then there is Siegel Tukey choice. In Siegel Tukey choice, we take ai to be = 2i if i is even, it is

= twice i-1, if i is odd, for 1</=i</=N/2. And it is = 2*N-i+1, if i is even, and it is = twice N-i+1-

1 if i is odd, N/2<i<=N. And S = sigma a (Ri), this is the small m here. Small values of S indicate

that theta is>1.

We have one final comment here, that this mood, Freund- Ansari, Ansari-Bradley and David-

Barton, these statistics they are more sensitive to 1 sided hypothesis, that is theta>1, or theta<1.

But the Siegel- Tukey, this is more sensitive for theta !=.
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Let me briefly mention one more here, that is called the Klotz normal score. In this 1 we define

phi inverse i/N+1 whole square. You can compare it with the 1 which I gave earlier, that was phi

inverse of i/N+1, Van Der Waerden statistics. In this 1 we had phi inverse i/N+1 and here you can

see this is = phi inverse i/N+1 whole square here. So the Klotz statistics is given by phi inverse

Ri/N+1 whole square, i=1 to N.

I am not getting to much into detail  of the working out of this  of course it  is slightly more

complicated than the Van Der Waerden statistics, because if I take this one I am getting the sum

X square+1-X whole square, so that is not a constant here. So this will require some working out

to get the outcome of this. In the next class, I will discuss about the (()) (54:21) 2-sample test, I

will discuss the null distribution of this and we will also introduce the concept of the consistency

of the statistical test.

You might have seen that when we considered the parametric tests, so in the parametric test we

discuss about the power of the test and we considered the type 1 error and type 2 error. But when

we consider the 2-sample test since we are not having the form of the distribution so we are not

using you can say most powerful, that the usual Neyman-Pearson theory is not being applied

here.

And  therefore  the  test  functions  are  based  on  these  linear  ranking  statistics  and  the  exact

distribution are quite complicated. So we consider the asymptotic properties of these things. So

in the next lecture, I will be discussing about the asymptotic properties of the test here. Firstly, I

will discuss about the (()) (55:25) and then we will discuss about other asymptotic properties.


