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Friends  in  the  last  class,  I  had  introduced  various  tests  for  the  single  sample  location

problems and then I had also introduced a 2 sample location problem. Let me recapitulate this

thing.
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We have 2 distributions  F and G and so we want to  basically  check whether one of the

distributions is a location shift from the other one. So if we consider say theta>0 theta<0 or

theta != 0, it is meaning that the median of the distribution of F is either smaller than the

median of G or it is larger than the median of G or it is simply != the median of G.

Now for this one we had proposed a 2 sample test based on the observations X1, X2, Xm

from F distribution and Y1, Y2, Yn based on the G distribution.
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So  we  had  defined  a  Mann  Whitney  Wilcoxon  U  statistic,  which  is  given  by  double

summation Dij where Dij is 1 if Yj<Xi, it is = 0 if Yj>Xi. So if U is large then naturally it

means that the median of G will be larger than the median of F. If U is small, so like that we

propose the test  here.  Now we discuss the null  distribution  of  U etc.  So let  us start  the

discussion on that.
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So  we  start  with  the  null  distribution  of  U.  So  suppose  r  m,  n  u=  to  the  number  of

arrangements of m X’s and n Y’s for which U=u. So U consider then it is = r m, n u/the total

number of choices m+n C m as we know that the values of u can be from 0 to mn. The first

fact that we observe is that the distribution of U when theta=0 is symmetric about the mean

value that is mn/2.



To prove this, we should show that P0 U=mn/2+u=P0 U=mn/2-u, for all u it should be true.

Now consider any arrangement and I name it as A, arrangement A of m X’s and n Y’s which

gives U=u. Now we consider the conjugate arrangement of X’s and Y’s that means in which

the positions of X’s are replaced by the position of the Y’s that means the roles of X and Y’s

are interchanged.

I call that as the arrangement A prime. Let A prime be the arrangement of X’s and Y’s, which

is conjugate. Then the value of U for A prime that will be mn-u because all the X’s have

become Y’s and Y’s have become X’s, so if we look at this definition here.
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In this definition it will become reverse of that. So if you do that then this will become mn-u.

Another point which we have seen that if U is large that means there are more number of Xi’s

which are larger than the Yj’s. Then the distribution of X will be larger than the distribution

of the F, so I think I have written it the reverse here, median of F will be larger than the

median of G. So we can make a correction in that way. Now if I consider P0 A=r m, n u/m+n

C m, P0 A prime= r mn mn-u/m+n C m.
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So P0 U=mn/2-u=r m, n mn/2-u/m+n C m. Now that is = r m, n mn-mn/2+u because here we

have just interchanged them divided by m+n C m=r m, n mn/2+u/m+n C m=probability of

U=mn/2+u. So we have proved that the distribution of U is symmetric about mn/2. To derive

the distribution of U actually in general if I have m and n values, then what is the probability

of U=u as I have written it is r m, n/m+n C m.

So if I take any values of mn then it is quite complicated because (()) (07:44) the number of

permutations will be very large. So we can develop a recursion formula for this. We can

develop a recursion formula for evaluating probabilities for distribution of U that means if I

consider P0 U m, n that means based on mn observations m observations from X and n

observations from Y.

Then it is m/m+n P0 U m-1, n=u-n+n/m+n P0 U m, n-1=u. Let us look at the proof. If I

consider P0 U mn=u that is r m, n u/m+n C m that is r m-1, n u-n+r m, n-1 u/m+n C m

because if the last observation is X and it is the largest then the value will increase by n

otherwise it will remain the same. So either it is u-n or it is u in the previous step.

So then that is = now this you can adjust as r m-1, n u-n/m+n-1 C m-1 m+n-1 C m-1/m+n C

m+r m, n-1 u m+n-1 C m m+n-1 C m/m+n C m.
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So these 2 terms can be simplified and we get this = m/m+n P0 U m-1, n=u-n+n/m+n P0 U

m, n-1=u and for evaluation for higher order thing, we look at what is U 1, 1? U 1, 1 can take

2 values 0 and 1, so it will be 0 with probability 1/2 and P0 U 1, 1=1 that will be with

probability 1/2. Now let us look at the mean and variance of the u statistic under general

hypothesis that means when the true parameter value is theta.

So since it is dependent upon the probability of Yj<Xi or when we have 2 then Yj<Xi, Yk<Xi

or  Yj<Xi Yj<Xh so we have  to  give  some notation  to  that.  Let  us  consider  say P theta

Yj<Xi=pi P theta Yj<Xi Yk<Xi for j != k=pi 1 P theta Yj<Xi Yj<Xh for i != h=pi 2. In this

one  j  is  same  and  here  i  is  the  same.  So  let  us  consider  the  expectation  of  U=double

summation expectation of Dij i=1 to m, j=1 to n.

So Dij will be 1 when Yj<Xi this probability=pi=simply mn pi. Similarly, if I look at variance

of U=double summation variance of Dij+covariance between Dij Dik. j is != k and then there

will be other terms also like there will be terms covariance between Dij Dhj+i != h, j != k,

covariance between Dij and Dhk.
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So variance of Dij that is becoming pi*1-pi square+1-pi*pi square=pi*1-pi. Let us look at the

various covariance terms here, this covariance, this covariance and so on.
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Covariance between Dij and Dik where j is != k. Then this is = expectation of Dij Dik-

individual expectations that is expectation of Dij*expectation of Dik that is pi square. Now

this term is going to be 1 when you have Yj<Xi and Yk<Xi for j != k but this value we have

assumed to be pi 1 so this  is becoming pi 1-pi square.  Similarly, if  I look at  covariance

between Dij and Dhj term where i is != h.

Then this is equal to expectation of Dij Dhj-expectation Dij*expectation Dhj both are pi so

this is becoming pi square. Now this value will be = 1 only if you have Yj<Xi and Yj<Xh. So



this value we have assumed to be pi 2. So that is = pi 2-pi square. So now if we look at

variance of U after substitution of all the terms here and of course this last one will be 0 why?

Because this is involving Yj and Xi and this is involving Yk and Xh since X1, X2, Xm, Y1,

Y2, Yn they are independent random variables. Therefore, Dij and Dhk will be independent

and therefore the covariance between them then will become 0. So then we are left with these

terms and let us count how many terms will be coming. So the first one is the sum over all the

values.

So that is = mn pi*1-pi+how many terms are here that will = mn in this one mn*n-1 terms,

pi-pi square+mn*m-1 pi 2-pi square. Now let us also see what are these values under H0?

Under H0 what happens to pi? That is probability of Yj<Xi that will be simply = 1/2 because

this is becoming dGy dFx -infinity to x -infinity to infinity. Under H0 they are same dFy dFx.

So that is equal to simply in the first integral this will give me Fx and then Fx dFx that will

give F square x/2 so that is = 1/2.
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Similarly, we can evaluate pi 1 and pi 2 under H0, pi 1=probability of Yj<Xi Yk<Xi where j

is != k so that is = integral probability of Yj<x Yk<x dFx. When x is fixed, then Yj and Yk

become independent. So this can become equal to the product of these values and that is

simply becoming G x square dFx. Now under H0, G=F so it is becoming F square x dFx and

this is nothing but 1/3.



Because this is becoming F cube/3 so from –infinity to infinity this will be evaluated to be

1/3.
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Similarly, if we look at pi 2 that is probability of Yj<Xi Yj<Xh where i is != h. Then that is =

P0  y<Xi  y<Xh  dGy=1-F  of  y  whole  square  because  when  y  is  fixed  Xi  and  Xh  are

independent. So this becomes probability of Xi>y that is 1-Fy and this becomes probability of

Xh>y that is also 1-Fy so this becomes square dGy. So when G=F under the null hypothesis,

then this is becoming 1-Fy square dFy that is = -1-Fy cube/3.

So at +infinity this will become 0 and at – infinity it will become 1 so this is also = 1/3. So

under the null hypothesis when F=G, the value of pi is 1/2, the value of pi 1 is 1/3, the value

of pi 2 is also = 1/3 and we can look at the expressions here, 1/3-1/4 if I substitute the values

here pi=1/2 then this becomes mn/4. This value will become 1/3-1/4=1/12.

And here also it will become 1/3-1/4 this will become 1/12, so we can simplify so under H0

expectation  of  U=mn/2,  variance  of  U=mn/4+mn*n-1/12+mn*n-1/12.  These  can  be

simplified. This actually becomes = mn/m+n+1/12. So for various purposes this distribution

of U can be utilized  here.  The general  use of this  2 sample Mann Whitney Wilcoxon U

statistic is to test the location.

That means whether the median of one of the distributions is larger than the median of the

other or less or it is simply !=. We have been able to derive the null distributions so it can be

used for several purposes. Now let us consider a variation of this that is called simply the



Wilcoxon statistic for 2 samples. So first we do that we combine all the observations X1, X2,

Xm and Y1, Y2, Yn and we treat it as 1 sample.

Let us call it Z1, Z2, Zn. Arrange X1, X2, Xm, Y1, Y2, Yn as one sample say call it Z1, Z2,

Zn where N=m+n that means we are saying Zi=Xi for i=1 to m and it is = Yi-m for i=m+1 to

m+n=N okay.

Now if the null hypothesis is true that means if the 2 distributions are the same then basically

it becomes simply one random sample from the entire population F. Otherwise, there will be

some discrepancy that means we are mixing some different kind of things.
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Let  W  be  the  sum  of  ranks  of  Xi’s  in  the  combined  sample.  So  if  we  consider  say

W=summation of Ri i=1 to m okay. That is = sigma number of Yj’s which are < Xi+number

of Xj’s which are <= Xi and this we are doing for all i=1 to m. So if I sum this this is nothing

but the Dij’s i=1 to m, j=1 to n and the second term if you look at when I sum this, this is

simply m*m+1/2.

Because what we are doing, how many Xj’s are <= 1 particular Xi and this we are doing for

every i,  then this is nothing but the sum of all the ranks so it is becoming m*m+1/2. So

basically you are saying this Wilcoxon W statistic is U+m*m+1/2 so it is simply a shift from

u. Therefore, this can also be used for testing the hypothesis here. So we can have in general

expectation of this will become = mn pi+m*m+1/2.



The variance of W will be same as the variance of U because it is simply a location shift.

Also the null expectation of this will become mn/2+m*m+1/2=m*m+n+1/2. So the use of

Wilcoxon W is same as the use of Mann Whitney U. Both can be used interchangeably. In

certain problems it is easier to calculate W rather than the U. Now I consider general simple

linear rank statistic for the 2 sample problems.
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Let  Z1,  Z2,  ZN be  N random variables.  c1,  c2,  cN be  N constants.  Here  we call  them

regression constants and let us call a1, a2, aN scores. So these are also some constants, but I

call them scores so these have to be chosen. So now let us consider say Ri=rank of Zi, i =1 to

N. So then S=sigma of ci a of Ri i=1 to n. This is called simple linear rank statistic. See in

Wilcoxon case, we have chosen Zi to be Xi for i=1 to m and it is = Yi-m for i=m+1 to m+n

and ci is 1 if i =1 to m and it is = 0 for i=m+1 to m+n and ai=i for i=1 to N.
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Let  us  also  consider  what  happens  under  H0.  Under  H0,  this  Z1,  Z2,  ZN they become

independent and identically distributed random variables because they are coming from the

same distribution if F=G. So if I consider R=R1, R2, RN that is the vector of the ranks, so

this  is  any  permutation  of  numbers  1  to  N.  Let  us  consider  say  script  R  the  set  of  all

permutations okay of the numbers 1 to N.

Then first result is that under the null hypothesis each of the permutation will be equally

likely. Let us look at an elementary proof of this. If we consider say let us fix say some value

R as a fixed value in the set of permutations. Now if I am considering say Z1, Z2, ZN then

corresponding to this we are having r1, r2, rN these are the ranks here okay. Let us consider

di to be the anti-rank so this is the new terminology that I am introducing here.

This is nothing but the position of i in the vector r, i=1 to N. See this is like this suppose I

consider 3 numbers.
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Suppose I have say 1, 2, 3 okay and I consider say the arrangement of the ranks as say 2, 3, 1

suppose this is an arrangement here. Then what is the anti-rank here? d1 is 3, d2=1, and

d3=2. These are the anti-ranks here.
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So let us write say d=d1 d2 dN that is the vector of the anti-ranks here. Then what we are

saying is  that Zd1 is < Zd2 < ZdN. Now under H0, Zd1, Zd2, ZdN will  have the same

distribution as Z1, Z2, Zn because this is simply one permutation of numbers 1 to N. It is

some permutation of numbers 1 to N here. So if I consider say probability of say R=1 to N

then that is = probability that Z1<Z2<ZN.

That is = probability of Zd1<Zd2<ZdN because the distributions are the same. But this is

nothing but the probability that R=r1, r2, rN that means what I am saying for any permutation



it is equal to the same probability that means each of them will have the equal probability 1/N

factorial. So this proves that the distribution of the ranks is discrete uniform distribution over

all permutations.
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Now we consider individual ranks also. That means I consider the ith rank, then of course this

can be from 1 to N then we will prove that it is actually for k=1 to N for i=1 to N. For each of

them it will take the same number of values with same probabilities. See how do I derive

this? This is equal to the sum over r for which ri=k. So how many such things will be there?

It will be N-1 factorial/because 1 rank I am fixing for the ith one and other N-1 positions will

interchange.

They can be permutated in N-1 factorial ways so it is becoming simply = 1/N. Similarly, we

can consider say probability of say Ri=k or j=l where i is != j. Then of course this is 0 if k=l I

am dealing with the continuous distributions so I will not assume that the 2 values can be

same because the 2 values will be same with probability 0.

Now if I am fixing 2 values then N-2 factorial/N factorial=1/N*N-1 where k is != l and both

k and l can vary from 1 to N. So the joint distribution of 2 ranks can also be obtained and that

is also bivariate, you can say discrete uniform distribution. Let us consider say a function

which is on 2 function from R to R and also one-one and onto. Then fR let me call it R star.

So this  is  actually  a  vector  here,  so this  has  a discrete  uniform distribution.  That  is  if  I

consider  then  that  is  =  P0  fR=r  that  is  probability  of  R=f  inverse  r=probability  of  R=r



star=1/N factorial for r belonging to R. So we are able to talk about this basic distribution of

the  ranks  of  the  observations  when I  consider  the  combined  samples.  So under  the  null

hypothesis it is from the same distribution.
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Therefore, these statements are valid. Let us consider now S=sigma ci a of Ri that was our

expression for the simple linear rank statistic. So if I consider expectation of a Ri=sigma ah

probability that Ri=h. This will be Ri=h, for h=1 to N because Ri can take values 1 to N here.

This probability is 1/N so it is simply becoming 1/N sigma ah, h=1 to N. Let us denote this

quantity by a bar here.

So expectation of S that is becoming sigma ci a bar, which you can also write as N a bar c bar

where c bar is nothing but the mean of ci’s i=1 to N here. We can also consider the variance

here, so firstly let us consider the variance of a Ri=sigma ah-a bar square probability of Ri=h,

h=1 to N. So this is 1/N so it is becoming 1/N sigma ah-a bar whole square, h=1 to N. For i !=

j, let us consider the covariance between a Ri and a Rj.

That is equal to double summation ah-a bar ak-a bar probability of Ri=h Ri=k=1/N*N-1 ah-a

bar ak-a bar, h != k.
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This we can write  as 1/N*N-1. This term we write  as the square of the sum-sum of the

squares that means it is = sigma ah-a bar whole square-sigma ah-a bar square. So this term

becomes 0, so we are left with -1/N*N-1 sigma of ah-a bar square, h=1 to N. So these 2 terms

we can use in the variance of S and we will get here.
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Variance of S=sigma ci square variance of a Ri+double summation ci cj covariance a Ri a Rj.

The values of variance a Ri and covariance of a Ri and a Rj have just been calculated. So we

substitute here so we get sigma ci square and this term is nothing but 1/N sigma ai-a bar

square+double summation i  != j  Ci Cj that  is  1/N*N-1 sigma ai-a bar square.  So this  is

becoming 1/N-1.



See this term I can take outside, so this will become simply sigma of ci-c bar square 1 to

N*sigma of ai- a bar square 1 to N. So in the general function that means if I consider general

constants and that means regression constants and general score function we can derive the

null  mean  and  the  null  variance  of  the  distribution  of  the  linear  rank  statistics.  As  an

application you can see to some of the 2 sample problems.

Let us consider some applications to 2 sample problems. Let us consider say ci=1 if i=1 to m

and it is = 0 for i=m+1 to N. When S=sigma a of Ri 1 to m and c bar=m/N, so sigma of ci-c

bar  square  1  to  N=m*1-c  bar  square+n  c  bar  square=mn  square/N  square+nm square/N

square=mn/N. I can take out mn then this will become m+n that is N so N square cancels out

to get U mn/N.

So under this if I consider expectation of S=N a bar m/N=m a bar and variance of S=1/N*N-1

mn sigma ai-a bar whole square. For Wilcoxon rank-sum statistic ai=i so if I put that value

here what I will get?
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For Wilcoxon rank-sum statistics ai=i so a bar becomes N+1/2 and sigma ai-a bar that will

become = N*N square-1/12 that is  the mean of the discrete uniform distribution and the

variance of the discrete uniform distribution. So if I consider expectation of W=m*N=1/2 and

the variance=mn*N+1/12. So if we compare with the values that I derived earlier, you can

match here whether it is the same or not.



So if you look at here, this was = m*m+n+1/2 m+n=N so it is the same value. Variance of this

was  same  as  the  variance  of  U,  which  was  actually  mn*N+1/12  so  here  also  you  get

mn*N+1/12. So you can see that this general structure helps us to perceive of various other

new test statistics that can be utilized for various purposes in the testing problems. Next, we

consider the concept of projection.

So we state a theorem here,  we call  it  projection theorem. Suppose say X1, X2, Xn is a

random sample from an arbitrary distribution Hx. Let  V=V of X1, X2, Xn be a  random

variable such that expectation of V=0. Now if W=sigma pi Xi i=1 to n then expectation of V-

W square is minimized by choosing the function pi x as pi star x=expectation of V given

Xi=x. 
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So this random variable which is obtained as Vp, the random variable Vp that is defined as

sigma pi star Xi, this is called projection of V and expectation of V-Vp square=variance of V-

variance of Vp. Let me name these relations as 1 and 2 here okay. Let us look at this. What

we are saying is that we have the function WS sigma pi Xi, so this is minimized when we

consider the conditional expectation of V with respect to Xi.

And then when we do this for every Xi then if we sum it then it is called the projection of V

okay.
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Let us look at the proof of this here. By adding and subtracting Vp, so expectation of V-W

square that is = expectation of V-Vp square+expectation of Vp-W square+twice expectation

V-Vp Vp-W. So if I look at the expectation of V-Vp*Vp-W=expectation of sigma pi star Xi-

pi Xi*V-Vp for i=1 to n. Now this we can write as the summation expectation of expectation

pi star Xi-pi Xi*V-Vp given Xi.

So this becomes = expectation of pi star Xi-pi Xi, this term can be separated out, expectation

of  V-Vp  given  Xi.  Now  if  we  consider  expectation  of  V-Vp  Xi,  so  V-Vp  given

Xi=expectation of V-pi star Xi-sigma pj star Xj given Xi. Now if we look at the definition 1

here, then this is actually = 0 so this part is 0 and so this part becomes 0 and if I look at this

term, expectation of pj star Xj given Xi then what it is equal to?

Expectation of pj star Xj because Xi and Xj are independent so it is equal to expectation of

expectation V given Xj that is expectation of V that is = 0 because I am assuming V to be

random variable such that expectation V is 0, so this term si also 0. So basically this entire

term is becoming actually = 0, this term is becoming 0 so this term is entirely becoming = 0.
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So what we are getting is that expectation of V-W square is nothing but expectation of V-Vp

square+expectation of Vp-W square. That means it is the expectations of the 2 positive terms

not negative terms. So this is minimized if we choose W=Vp here. If we choose W=0 then the

expression  2  also  follows.  So  this  completes  the  proof  of  this  projection  theorem.  As  a

remark, let me mention here.

The  proof  also  works  if  X1,  X2,  Xn  are  independent,  but  not  necessarily  identically

distributed. So in some applications this theorem can be used because when Xi’s are coming

independently  but  they  are  not  having  the  same  distribution  then  also  this  concept  of

projection can be used here. So we have the following theorem, which is following from here.

Suppose Wn has asymptotic normal 0, sigma square distribution and expectation of Un-Wn

square this goes to 0 as n tends to infinity. Then, Un has asymptotic normal 0, sigma square

distribution. For proving let us define Rn=Un-Wn, so probability of Rn >= epsilon that is <=

expectation of Rn square/epsilon square=expectation of Un-Wn square/epsilon square. This

goes to 0 as n tends to infinity.
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So this proves that Rn goes to 0 in probability. So now you add it here, this implies Rn+Wn

that will converge in distribution to normal 0, sigma square. Using these properties, I will be

deriving the asymptotic distributions of the Mann Whitney U statistic and the Wilcoxon rank-

sum statistics in the next lecture, so that I will be covering in the next lecture.


