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Now, we move on to the next problem that is called the goodness of fit test, in this problem we

want to test whether the distribution is a particular distribution or not. So basically this is the

problem of modelling of distributions.
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So roughly speaking we have a sample, so let us consider say X1, X2, XN this is a random

sample from say if F x alright, and we want to test whether F x=F0 x or not. If you want to test F

x=F0 x against F x=F1 x where F1 is different from F0, then we have the most powerful test

using the Neyman–Pearson lemma. However, it is not that, here we want to null hypothesis we

are specifying completely, but alternatively we are not able to specify.

Therefore, we cannot apply the Neyman–Pearson lemma here, so what we do? We consider say

we  classify  the  data  into  K  categories  say  C1,  C2,  Ck,  and  we  calculate  probability  of  X

belonging to Ci where X is of course F x, what is the probability of X belonging to Ci let us

denoted by theta i okay, when the distribution is F for i= 1 to k. Now suppose this probability

that X belonging to Ci that is say theta i0, when F is taken to be F0.



So actually we make use of this fact that means under the null hypothesis the probability of each

category is specified, so we actually frame it as a multinomial testing problem, so our hypothesis

testing problem can be transformed to H0 theta i=theta i0 i= 1 to k, against at least 1 inequality in

the above statement. So you can see that in this Kolmogorov this Chi square test for goodness of

fit, I am going to discuss it is one of the oldest nonparametric test it  was developed by Karl

Pearson.
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In this test actually cleverly the problem of full  testing has been transformed to checking K

categories, so we can actually consider let fi be= number of Xi’s which are belonging to category

Ci for i= 1 to k, then we can say that this f1, f2, fk this is having a multinomial distribution, total

number of observations is n and the probabilities of categories C1, C2, Ck they are theta 1, theta

2, theta k respectively.

The simplest things that we can do is we consider a likelihood ratio test for this problem, so for

likelihood test we know that we would like the likelihood function, we develop a likelihood ratio

test, so here the full parametric space that is theta 1, theta 2, theta k, where theta i’s are >=0 and

sigma theta i that is =1, theta i to the power of fi n factorial/f1 factorial and so on fk factorial i=1

to k. So basically this part is constant, so maximization problem is reduced to this part only.



So to maximize L over the parametric space omega, we maximize fi so we take a log here, log of

theta i sigma i= 1 to k, subject to the condition that summation theta i=1, so introduce Lagrange’s

multiplier, let us called this term as =Lagrange’s multiplier let we call it LM here or we can give

some other notations say M here. So that means we differentiate with respect to each theta i, then

I will get fi/theta i-lambda that is = 0 that gives me theta i=fi/lambda for i=1 to k.

This  gives me the  value of n,  because I  can apply the condition  here sigma theta  i= sigma

fi/lambda so this=1, this=n/lambda this means lambda=n, so theta I head=fi/n here. So this is the

maximizing L theta.
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So what is the maximum value then, so the supremum value of L theta for theta belonging to

omega=L head omega=n factorial/f1 factorial and so on fk factorial product of fi/n to the power

fi i=1 to k, because I have substituted the values of theta I is a fi/n here, and L head omega 0 that

means supremum of L theta for theta belonging to H0 that=n factorial/ f1 factorial, f2 factorial,

fk factorial product of theta i0 to the power fi i=1 to k.

So if we consider the likelihood ratio that is L of omega 0/L head omega, so this term will get

cancelled out you will left with product n theta i0/fi to the power fi, let me call it say lambda then

-2 log of lambda that=, so this what we are doing to develop the distribution here, that is -2 fi log

of n theta i0-log of fi for i=1to k. Now this term log of n theta i0 I expand around fi, so that=-



twice sigma i=1 to k fi log of fi+n theta i0-fi then the derivative of this that is becoming 1 by that

at fi so it is simply becoming i/fi.

Then second term will give me n theta i0-fi square/2 factorial second derivative will give me

-1/fi+ n theta i0-fi cube i/fi cube, this will be square here and so on - log of fi that is this term

here So we can now adjust the terms here, this term will get cancelled out, this term will give me

n theta i-fi this fi will get cancelled out, and in other terms here fi will come here.
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So let us write this there is-2 log of lambda that=-2 sigma-n theta i0-fi-1/2 sigma n theta i0-fi

square/fi+ 1/3 n theta i0-fi cube and of course summation will be there and so on, this term is

simply so sigma theta i=1 so sigma theta i0 is also=1, this is n then sigma fi is an so this first

term will become 0, second term is giving me sigma n theta i0-fi square/fi-2/3 sigma n theta i0-fi

cube/fi square and so on.

Now fi/n converges to theta i0 in probability under H0 that is you can say fi converges to n theta

i0 that we denote by ei under H0 in probability. So therefore, I can say that - 2 log of lambda is

asymptotically= sigma n theta i0-fi square/fi for i= 1 to k, this is written as ei-fi/fi square i=1 to k

that= Q here, so this is converging so therefore, the higher order terms we neglect here and we

are writing only this, fi’s are called observed frequencies, ei’s are called expected frequency of

the ith class.



And we have an alternative formula for this, this is also see if I expand it this will becoming ei

square +fi square-2 ei fi/fi that= sigma of ei square/fi, +sigma fi-twice sigma ei fi both are n here

so this will becoming -1 i=1 to k. So this is the test statistic which is coming from the likelihood

ratio, in the likelihood ratio we know that we accept the null hypothesis, if L head omega 0/L

head omega is so we reject the null hypothesis if the denominator is log.

So basically we have taken -2, so lambda is should be small for closer to H0, and for rejection

lambda should be small, so this -2 I have taken - 2 times log of this so outcome will be reverse

that means for large values of -2 log lambda will be rejecting. Another interpretation you can

make out from here this is actually the difference between the observed and expected frequencies

square, so if the 2 distribution is not f0, then there will be large difference here that means these

differences will propagate and this term will become large.

So basically this gives an indication the value of -2 log lambda whether the null hypothesis is

true or not, now that gives a rough indication, but to get a real picture of this we will need the

distribution of that, for that we see that this is multinomial. Therefore, asymptotic distributions of

this  simply will  become the some of the chi-square, because we considered 2 then binomial

convergence to normal, so here it is converging to k-1 dimensional thing.

And therefore when we are taking some of the square it will convert to chi square on k-1 degrees

of freedom, so asymptotic distribution of this quantity let me call it W or Q we have called it that

is chi square k-1, so we reject H0 if Q is >= 5 chi square k-1 alpha at significance level alpha.

This test is widely used in all the applications for modelling of the statistical distributions and it

is extremely useful.

However,  since  it  is  asymptotic  certain  assumptions  are  there,  for  example  the  expected

frequency of each cell must be >5 for a good approximation, if that is not so then this test is not

very good.
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Now another test for the goodness of fit was developed by Kolmogorov and Smirnov, so this is

called Kolmogorov-Smirnov one sample statistic, as before we are writing down our hypothesis

testing problem as F x=F0 x for all x or F x !=F0 x. We have at our disposal a random sample

from this population, we define the sample distribution function that is Fn x that is empirical

distribution function of X1, X2, Xn that is the ordered statistics from this.

We define the maximum absolute difference between the empirical distribution function and the

assumed the distribution function, so here actually you take F0. So what is the idea for this? The

idea for this is the result about the empirical distribution function, which we gave earlier that was

that it is strongly consistent not only strongly consistent.
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We had actually proved that the limit of the probability supremum Fm x-F x >epsilon actually

goes to 0, so because of this, this is a very good indicator of the actual discrepancy between the

assumed model  and the sample  that  means based on the sample  actually  we calculating  the

empirical distribution function, so if there is too much discrepancy then this statement or this

value  will  be  large.  So  based on this  idea  this  Kolmogorov-Smirnov they have  defined  the

statistic called the Dn.

Now suddenly as in the previous chi-square goodness-of-fit, we need to discuss the distribution

of  Dn,  if  we  are  looking  at  Fn  then  certainly  we  knew  the  distribution,  but  since  we  are

considering the maximum here so then this problem become slightly different. So we further

define, so this one is actually the Kolmogorov-Smirnov statistic we call it Dn okay, so we further

define 2 quantities called Dn+ that is= supremum of Fn x-F x.

And Dn- that is= supremum of F x-Fn x, so here I will put reverse that is Dn is actually = the

maximum of Dn+ and Dn- that means actually I am taking the maximum positive difference and

maximum negative difference.  Now we will  try to analyze this  distribution of Dn+ and Dn-

separately.
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So Dn+ that is the supremum of Fn x-F x overall x, we have ordered X1<=X2<=Xn, and I take

X0 and X infinity also or Xn +1, so this is I am taking to -infinity, this I am taking to +infinity.

So we can then express it as maximum of supremum value between Fn x-F x, let me put this into

one side,  this  is  for  i=  0,  1,  2,  n  that  means I  am considering  that  supremum value  in  the

intervals, so this is X1 that is -infinity to X1, then between X1 to X2, then between X2 and X3,

then between Xn-1 and Xn and then Xn to infinity.

So I have divided this problem into looking at the difference into each of the intervals, but the

advantage of this approach is that actually the value of the empirical distribution function in this

interval is i/n, so basically I am looking at that what is the difference of F x from i/n, when X is

in the interval Xi to Xi+1 and this we are doing over all i’s. Now capital F is an increasing

function because it is a cdf, so when I look at the supremum here.

Now it is supremum over X, so this will becomes a fixed quantity, so this becomes actually the

minimum value of F the minimum value of F in this interval is attained at Xi, so this is becoming

=maximum of i/n-F of Xi i=0, 1, 2, n, and now this F Xi’s are actually Ui’s that we have already

seen, so this is i/n-Ui’s, where Ui’s are the order statistics from the uniform 0,1 okay this is from

uniform 0, 1 here, and we are looking at the maximum for i=1 to n, and corresponding to 0 then

this is actually 0.



So this is maximum of this and this, now this is very interesting here, I started with some sample

here okay, now based on that sample I have considered the difference between Fn x-F x that is a

empirical distribution function-F x, but this quantity if you look at this quantity has become free

from the original distribution, because this is nothing but from the uniform 0, 1. Thus we have

shown that Dn+ is distribution free.

As I mentioned earlier in the beginning of this particular section on nonparametric methods that

here  we  develop  those  methods  which  are  free  from  the  distribution  original  distribution

assumption,  so  that  means  that  whatever  the  distribution  originally  it  does  not  affect  our

distribution  that  means distribution assumption is  not required except  of course we consider

continuity etc. here.
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Now in a similar way I can consider Dn- here, so let us consider Dn- now what is Dn-, Dn-=

supremum of F x-Fn x that means I am taking the negative value here, so this= maximum of

supremum F x-Fn x for Xi<=x<Xi+1 i=0, 1, 2, n that is= maximum of i= 0, 1, 2, n that is = F of

Xi+1-i/n, that is= maximum of 0, maximum of 1<=i<=n Ui- i-1, so I have shifted by 1 here

because I am taking 1 to n, so I can in place of i+1 I can write i then this becomes i-1.

So once again as in Dn+ here also you see so Dn- is also distribution free, now first thing is that

we are able to derive the form of Dn+ and Dn- in terms of the order statistics from uniform 0,1.



The distribution of U bracketed i is known that we have derived as the beta distribution, now

here the form that is coming out is the maximum that means when we are considering several

dependent distributions or dependently distributed random variables.

Then what is the distribution of the maximum of that, and then again maximum of the to2, let me

express it here. So now we consider the distribution of Dn, now one thing that you note these

values are between 0 to 1, and what are these values here i-1/n these values are also between 0 to

1, so these all values actually always lie between 0 to 1. If you look at this also this is i/n these

values lie between 0 to 1, so this values will also lie between 0 to 1 only okay.

So the  entire  thing is  that  Dn lies  between 0 to  1,  so that  means  when we are considering

distribution of this <= say some d then it is =0 if d is <0, and probability of Dn >say d that is =0

if d is>=1 okay. Now let us consider Dn<d between 0 to 1, so we put a particular form here, why

that  particular  form? It  will  clear  when we derive  the  expression  here.  Let  us  consider  say

probability of Dn<=1/2n.

So there is a reason that why I am considering 1/2n, the reason is that if you look at these values

here they are of the form 1/n etc. in each interval if I look at this, so the differences will be of this

nature and let me firstly derive this here. So Dn is nothing but probability of maximum of 0

maximum of i/n-Ui where i is from 1 to n, and maximum of Ui-i-1/n and again here i=1 to n, so

what we are saying is that this is <= 1/2n, so maximum of this and this, and this <= 1/2n.
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We splitted, so 0 is <=1/2n is always true, so this probability then can be expressed as probability

of maximum of i/n-Ui <=1/2n for i=1 to n, and maximum of Ui-i-1/n<= 1/2n this is 1<=i<= n,

this is = probability of now these are already ordered here, so this we can considered as i/n-

Ui<=1/2n and Ui-i-1/n<=1/2n this is true for i=1 to n, these 2 statements I can combine. Then

this is nothing but Ui i/n-1/2n and on this side I have I now if you take it to the other side then it

is becoming i/n-1/2n i=1 to n.

So this is interesting both the sides are the same so this is actually becoming= probability of

Ui=i/n-1/2n so that  was the reason that  I  mentioned that  why I  am considering  Dn <=1/2n,

because for this particular part this is giving extremely simple expression that is the probability

of Ui, so certainly Ui’s are continuously random variable therefore, this probability will be=0. So

what we are finding here that the probability of Dn <=1/2n.

That means Dn has to start from 1/2n from the original definition it is not clear what is the

starting point, so we said Dn lies between 0 to 1, but now we see that even Dn <=1/2n it is giving

you probability  0. So we consider then probability  of Dn<1/2n+something okay ae going as

before what will happen here? Here I will get 1/2n+v, here I will get 1/2n+v, so here 1/2n+v, here

I will get 1/2n+v, then if I am having this term here I will get -v here and here I will get +v.



So proceeding as above we get this= probability of 2i- 1/n-v <Ui<2i-1/n+v i=1 to n, now this is

the joint probability for the random variables U1, U2, Un which are the order statistics from

uniform 0,1, the joint pdf of this is known, so it is nothing but the n-fold integral over this region

like for U1 you will have from 1/n-v to 1/n+v, for U2 it will be maximum of so actually then this

region because you also have even U1<U2<Un and they are lie between 0 to n.
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So this is nothing but, this is an n-fold integral over the joint pdf of U1, U2, Un that is n factorial

for 0 <u1<u2<un<1 over the given region okay, so if I have to take say n=2 or n=3, then these

things can be evaluated. Then Owen, Birnbaum and Smirnov, they have tabulated the values of

the  upper  100% alpha  points  of  the  distribution  of  the  Dn,  let  us  call  it  Dn,  alpha  of  the

distribution of Dn that is probability of Dn>Dn, alpha=alpha for various values of n and alpha.

We can actually consider probability of Dn>Dn, alpha that= under H0= alpha.

So he also considered some asymptotic distribution also that is probability of Dn<v/root n if we

consider as limit n tends to infinity, it was shown that it is=1-twice i=1 to infinity-1 to the power

i-1 e to the power i-2i v. And if I consider say a number c between 0 and 1, then probability of

Dn+1<c that is= probability of maximum i/n-Ui<c for i=1 to n that is= probability of i/n-Ui<c

i=1 to n that  is= probability  of  Ui>i/n-c for  i=1 to  n.  Once again  you see that  this  can  be

evaluated in terms of the joint distribution of the U1, U2, Un.
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Similarly, if we consider Dn-1<c then this will be Ui<c+i-1/n i=1 to n that is= probability of 1-

Ui>n-i+1/n-c, i=1 to n, if we consider say U1, U2, UN they are i i d uniform 0,1 then 1-U1, 1-

U2, 1-Un are also i i d uniform 0,1 that means if I consider V1, V2, Vn which is 1-Ui then they

are i i d uniform 0,1, so this is actually the same that means Vi=U of n-i+1, so this one then we

can write as probability of Vn-1-Vi>n-i+1/n-c, i=1 to n.

Then this can be written as Un-i+1>n-i+1/n-c, i=1 to n, then this is nothing but Ui>i/n-c, i=1 to n,

now you compare this with this expression here, probability of Dn+1<c is probability of Ui> i/n-

c and it is the same thing here also. So what we are getting that Dn+ and Dn- have the same

distribution, so one can directly use of the Dn+ and Dn- for the testing problem. We can directly

use Dn+ and Dn- for testing H0 F x=F0 x, H1 F x!=F0 x for some x.
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The asymptotic distribution of Dn+ etc. is also being worked out, if I look at Dn+1<z/root n as n

tends to infinity that is= 1-e to the power-2 z square that is F z=1-alpha, if I define U=4n Dn+

square then probability of U<=u then that is= probability of 4n Dn+ square<=u that is probability

of Dn+<= root u/2n. So if I apply this formula the limit will become=1-e to the power-2u/n*n

that is 1-u/2.

So the limiting pdf of u that=1/2 e to the power-u/2 that is negative exponential  distribution

which also can be said as the Chi square distribution on 2 degree of freedom, of course since it is

a negative exponential distribution the percentage points of this can be easily calculated, and we

can express the test in terms of this also, so asymptotic test, asymptotic confidence interval can

be obtained in terms of this, if we call this as say star.

Then from star we can choose say Dn+ alpha such that 1-alpha= probability root n Dn+1<z=

probability 4n Dn+ square<4z square, that is 4z square=Chi square 2 1-alpha okay, so this can be

easily calculated, one can easily find out the confidence interval for F x.
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We can also use Dn to find confidence interval for f x that is probability Dn<=Dn, alpha that is=

1-alpha, so we write it as supremum of Fn x-F x this is equivalent to saying Fn x-F x this is

<=Dn, alpha for all x that is=1-alpha, this is equivalent to saying probability Fn x-Dn, alpha<=F

x<= Fn x+Dn, alpha that is=1-alpha. So 100 1-alpha% confidence interval for F x is of the form

maximum of 0 Fn x-Dn, alpha to minimum of 1, Fn x+ Dn, alpha.

So we have seen that this test Kolmogorov-Smirnov test it is actually this is using more values

compared to the Chi square test for goodness of fit was developed by Karl Pearson, in the Karl

Pearson test essentially we reduced it to category problem that means we consider K classes out

of the full distribution, and therefore, the test is more sensitive because what categories you are

choosing, how many categories you are taking it will be dependent upon that.

Whereas this test is more robust, of course it is having sensitivity in the heavy tailed distribution

but that is beside the point, there have been some modifications they have been proposed but

essentially what we have seen is the distribution of the Dn is actually derivable here, so this is a

much you can say improved thing compared to the chi-square test for goodness of fit, only thing

is that the use of Kolmogorov-Smirnov is not that straight forward for the persons who have no

idea about use of the statistics.



Because they need to understand the tabular version of the distribution of Dn that means how the

percentage points are calculated, whereas for the Chi square test the percentage points are simply

the  percentage  points  of  a  chi-square distribution,  so with a  little  knowledge of  distribution

theory on can actually apply the test. So it is a say compromise ease of applications is there in

chi-square test, but the robustness is more in the Kolmogorov-Smirnov test.
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Next we consider single sample location problems, actually in the beginning I have given you

some applications of that 2 sample functions that F m, Yi that means which are based on F and G

you have 2 samples and based on that some restrict is for the location etc. are given. Now I am

getting into use of all this ranks here and to derive the few test for the location problem, so first

we let us consider 1 sample problem.

So let us consider X1, X2, Xn be a random sample, suppose you have the cdf f x, let theta denote

median of F x, and we assume let F be strictly increasing and continuous at x=0 that means we

are assuming median to be the unique. So we want to test theta= theta 0 against say theta is

>theta 0, or theta <theta 0, or theta !=theta 0, so these 3 types of alternative hypothesis we will be

considering, and you can compare it with the parametric testing problem.

In the parametric testing problem for one sample we were testing whether the mean value is =

something < something > something != something, mu=mu 0 etc.  we have done that testing



problems under the assumptions of the normality. So here there is no distribution assumptions

made except that it is a continuous distribution and strictly increasing and continuous at theta

that means the medium is uniquely defined.

So now we want to test about some value theta 0, so whatever be the value theta 0 since this is

known, if we shift our observations Xi to Xi-theta 0 then median of new distribution will become

0, so actually we do that thing. So without loss of generality, we take theta 0 to be 0, so that the

problem becomes slightly simpler. We define say psi i= 1 if Xi is>0, it is 0 if Xi is<=0. And we

define S= sigma psi i, i=1, this is called sign test statistic.

Because this is giving you the number of positive Xi’s, how many Xi’s are positive did exactly

telling that thing. Actually under H0 if the null hypothesis is true then the 0 will be the median

then under H0 S will follow binomial n, 1/2. See in general you will have probability of Xi>0

some p, but under H0 we will p=1/2, so under H0 the distribution of S is binomial n, 1/2 so we

can actually device a simple heuristic test based on the sign test.
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So sign test, reject H0 if S is> let us say some k alpha, this is if alternative is H1, and if S is <k

alpha that is k 1-alpha if alternative is H2, and S<= k 1-alpha/2 or S>=k alpha/2 if alternative is

H3. Where k beta is the largest k such that probability of k 1-beta is the largest k such that

probability K<k is >= 1-beta, we have to take this largest etc. because the distribution is assumed



to be discreet, so we may not actually achieved equality here that is probability of K>k alpha

need not be alpha.

So that is why we choose the largest such cut off point, so basically we are saying that this

condition is equivalent to that sigma, basically we are saying probability K>=k is<=beta, so then

this small k is the smallest k that is sigma N C x 1/2 to the power n, x=k to n that is<=beta, so

this can be easily calculated from the tables of the binomial distribution. If the distribution is

symmetric, then we have this K>=k that is=1-probability K<k that is 1-P0 K<n-k that is<=beta.

Then we can say that probability of K<n-k is>=1-beta, so you will have n-k beta=k 1-beta.
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We can also calculate the power function here, power function of the sign test, probability of

K>=k alpha when theta is the true value true medium then it is= x=k alpha to n, n c x 1-F theta 0

to the power x*F theta 0 to the power n-x, where k alpha is the smallest k such that probability

K>=k under theta=0<=alpha or we can say 1/2 to the power n c x is<=alpha, for x=k to n. Let us

take us an example here.

Suppose, I consider F x to be normal theta sigma square, so F theta 0 that is probability X<=0

that is=phi of –theta/sigma, that is 1-phi theta/sigma, so F 0 0=1/2, let us take say alpha= 0.0 384

n=16, sigma square=1. Then we can see from the binomial  tables that k alpha=12, so if  we



consider the power function at say theta =1.04, then it is= sigma 16 c x 0.8508 to the power x,

0.1492 to the power 16-x, x=12 to 16, then that is approximately 0.9211.

If we consider the corresponding t test that is 4 x bar/S>t 0.0384 that is 1.77, then power of this

test is= probability of T>1.77 that is= 0.9918, so certainly we can say that the power of the sign

test is < the power of the usuality test that we already know, but this is under the assumption of

the  normality, if  we actually  have  known all  this  about  the normality  then this  test  will  be

measurable, it will fail because this will simply give a wrong thing.

Another  thing is  that  asymptotically  also we can use the sign test,  because we are saying k

follows  the  S  follows  the  binomial  distribution,  so  this  binomial  distribution  asymptotically

becomes a normal distribution. So one can actually use this also, so in both the cases the results

can be obtained and the cutoff point, the critical point and the power of the test can be easily

calculated.

In the following lectures, I will be describing some other test statistics which are based on the

order statistics, in the sign test actually the order statistics are not used only the sign of the term

is important. So therefore, in that sense you can say extremely simplistic test for the median of

the distribution. Next, we will define certain test which will be based on the actual values or the

actual measurements,  so that I will be starting like Wilcoxon signed-rank test statistic, Mann

Whitney and so on.


