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In the last few lectures, I have introduced the problem of classifying an observation into one of

the 2 populations. I discussed various procedures. In particular, I showed that one can define

Bayesian classification rules or what you can say as good classification rules, so we call them the

admissible rules or minimal complete class, that means the rules beyond which you need not

discuss. In particular, we consider applications to the classification for an observation into 2

multivariate normal populations.

The first case was when all the parameters are known and then second case we discussed when

the parameters are unknown. Now, I will generalize this concept to the problem of classification

of one observation into several populations. So, let me introduce the concept of optimal rules

here and how to derive these rules. 
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So,  classifying  an  observation  into  one  of  several  populations.  So,  supposed we are  having

populations pi1, pi2, … pi m, these are m populations and we are considering the associated

density functions say P1X, P2X, … PmX, etc., okay. So, we wish to classify or we can find out



m mutually exclusive regions. We want to specify say mutually exclusive and exhaustive regions

of the sample space, say R1, R2, … Rm.

So, if the observation x belongs to say Ri, we classify x into the i population for i = 1….m. We

can also consider the cast of misclassification as we have done earlier. The cost function we can

introduce  the  cost  of  misclassifying  and observation  which is  actually  from say pi  i  but  we

classify into pi j. Then, we call this function as Cji. Now, we can define it like this Crj given

i=see the observation is initially from the i-th 1 but we have classified it as into Jth 1.

So, the probability of misclassification or the cost of misclassification can be considered like

this. Now, if you remember the case of classification into 2 populations, I had considered one

particular case when we fix the initial proportions of the population as q1 and q2 where q1+q2 =

1. In a similar way, if I have m populations I may consider the case when the initial proportions

of these populations are known. We call them prior probabilities say q1, q2, ….qm.

(Refer Slide Time: 04:35)

Suppose q1, q2, …qm are prior probabilities of populations by pi1, pi2, …pi m respectively, that

means 0 < qi < 1 and sigma of qi = 1. If I am considering the expected loss of classifying i*j then

I can consider based on the prior probabilities the total expected loss. So, the total expected loss

can be defined, so let us consider see we are having. Okay, I just made a small mistake here. This

should be Pr, that is the probability of misclassification. This is the cost. 



So, this is actually the probability of misclassifying an observation from pi i*pi j. So, Prj given i

and the cost of misclassifying is Cji. So, if I consider Cji*Prji, then this will become the expected

cost.
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Now, let us consider the total expected loss. So, let us consider this, Cj given i, Prj given i. This r

denotes the classification rule. This is the classification rule. Now, what we have done here is

that observation is from i-th population and we are classifying it as into the Jth population. So,

this is the expected cost or expected loss you can consider. Now, you may put it into any of the

remaining populations. So, we vary j from 1 to m where j is != i. Now, this term which is written

here.

So, now the observation is from the i-th 1 and we can put into any other population, other than

the i-th population. So, this the total expected loss that is coming there. Now, the probability or

the proportion of the i-th population that is qi. So, I multiplied by that and then I sum over all i

from 1 to m, then this is the expected loss using classification rule R, so this is the expected loss

that we can consider.

You can remember  the value  which  I  wrote for the case of  2 populations.  In the case of  2

populations, let me show you the expression here which we discussed earlier. I will show you the



thing and then you can compare, so it will be clear that how this has been obtained here. If you

remember the case of 2 populations, we had only 2 value C21 and C12. In this case, we have

several values Cji where i am j both can vary from 1 to m where i is != j.

So, this is the difference that is coming here. In place of 2 values C21 and C12, now I have Cji

for all j != i and for all i. So, total number of values will be m*m-1 that you will get here. Let me

also show you the expected loss that we had considered here. So, the term that I wrote here Prj

given i. In the case of 2 populations, we had only 2 values Pr2 given 1 and Pr1 given 2.

Now,  I  have  m*m-1  values  once  again  that  will  be  there  and  the  expected  loss  of

misclassification was only C21 Pr21 q1+C12 Pr1 given 2*q2. Now, you compare this with the

value that I wrote just now because any observation from the i-th 1 can get into any of the other

than the i-th 1 one, then you consider all such cost then you add them. Then you look at the i-th 1

and multiply by the prior probability of that and then you sum over.

So, this is the expression that you will be getting. So, this is the full explanation of the expected

cost as compared to the case of 2 populations. So, as you can see here the expression becomes

much more complex here. However, our aim or the motive remains the same, that is to minimize

the expected cost of classification, expected loss by misclassification. So, our aim is to find a

rule R so that the expected loss 2 is minimized.

As again in the case of 1, we had considered q1p1xyq1p1x+q2p2x, in a similar way, we can

consider the conditional probability of an observation coming from a population given the values

of the components of x. So, given that it is coming from pi i. So, that is defined as an qipix/sigma

qkpkx. Earlier it was q1p1x/q1p1x+q2p2x or q2p2x divided by the same term, but here now I

will have all the m terms in the denominator.
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If we classify the observation as from pi j, then the expected loss is qipix/sigma qkpkxk=1 to m

multiplied by Cji, I = i to m, i != j. We minimize the expected loss if we choose j, so that 4 is

minimized, that is we consider the term qipix Cji given i because the denominator is common

here for all j and select that j that gives the minimum. So, in principle if you look at this is a

direct extension of the case of 2 populations.

If of course there may be a case when 2 different j give you the same value, in that case you can

choose the one, well it does not matter because then whichever you choose it will give the same

minimizing constant. So, now I consider this procedure assigns the value. So, we are assigning

towards a j. So, that is region Rj here.

So, we consider then the following result then that if qi, ….qm are prior probabilities of pi i and

the cost function is given here, then the region of classifying Rk is given, so Rk region is sigma

qipix Ck given i < sigma qipix Cj given i, here i =1 to m, i != j and here it is i = 1 to m, i != k,

that means for the kth 1 if this is the minimum, then you are getting the rule, that is you should

classify X into pi k if this is happening.

I will not get into the proof of this. In fact, the proof is almost the generalization of the proof for

the 2 population, that means if I consider any other rule which is minimizing, then I can consider

the expected loss from the 2 given rules and write down the difference and as in the case of 2



populations, you can consider the conditions for greater than or equal to thing. So, it will come

immediately. So, I am skipping the proof here.
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Like the case of 2 populations, we can consider the optimality criteria like admissibility, Bayes

rules etc. Let me just formally define that here. We can consider the conditional expected loss if

the observation comes from pi i, that is sigma Cj given i, Prj given i, this term I wrote earlier, this

one basically. So, I am writing this one. So, this is for j = 1 to m, j != i. I will use the notation rR

i here. 

So, a procedure R is at least as good as procedure R star if and only if we are having rR i <= rR

star i for i = 1 to m. If strict inequality holds for at least some i, then R is said to be better than R

star. R is said to be admissible if there is no procedure better than R. A class of procedures is said

to  be  complete  if  for  any rule  not  in  that  class,  a  rule  within  the  class  is  better. So,  these

definitions are similar to the one which I gave for the case of 2 populations.
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We can consider that this result is also similar as we had earlier that if qi is positive, then a Bayes

procedure is admissible. Once again, the proof is almost the same. Let me exhibit at least this

proof here.
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Let R be the Bayes procedure and R star be any other procedure. Now, Bayes procedure will give

you the expected loss <= the expected loss corresponding to the rule R star, okay. Now, let us

take say one of the components to be strictly smaller than the corresponding component for the

rule R. So, what I am saying is that actually if I want to show that R star is better than R, then we

should have R star i <= rR i for all i and strict inequality for at least one value. 



So, for the time being I am assuming less than or equal to for 2…m and strict inequality at least

for the 2, then let us see what happens. So, if we substitute it here, so what we get q1rR1-rR star

1, this will be <= sigma i = 2 to m, so from here actually I am writing her, qirR star i-rRi. Now,

let us look at these 2, I am writing for 2 to m, so for 3 to m, it is less than or equal to and at least

there is one strict inequality and all qi are positive.

Therefore, this will be strictly < 0 as all qi are positive. If this is happening, this is implying that

rR1 is strictly < rR star 1, so R star cannot be better than R. So, that means the Bayes rule R must

be  admissible.  Actually, you can  see  that  the  proof  is  similar  to  the  case  for  the  case  of  2

populations, that is m = 2. There I had taken only strict inequality for 2 and then for 1 I got the

reverse one and similarly for the other case. Now, if the cost functions are given then also the

Bayes procedure are admissible. 
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The  converse  of  this  result  is  also  true,  that  is  every  admissible  procedure  is  also  a  Bayes

procedure.  I  will  not  give  the  proof  of  this  also  as  the  proof  is  similar  to  the  case  of  2

populations. Now, what we want to do is that let us consider the classification of multivariate

normal population. So, let us look at this problem which had considered for the case of m = 2.

So, let us consider the problem of classifying an observation into one of several multivariate

normal populations.



The populations are pi1, pi2, …. pi n where pi i is the population normal mu i sigma. So, let us

define say Ujk function that is equal to log of Pjx/Pkx. Actually hear, Pjx will be 1/2pi to the

power P/2 determinant of sigma to the power 1/2 e to the power -1/2x-mu j, j I am writing so it

should be  j  here,  prime sigma inverse x-mu j.  So I  am assuming sigma is  positive  definite

because I am writing down the existence of the density function for j = 1 to m. So, this quantity

that is the ratio here log of Pjx/Pkx. 

You can consider here, see this term will get cancelled out. So, you will get e to the power 1/2

and the term will be corresponding to k in the numerator and j in the denominator and then you

take log. So, e will go way, so you will get basically 1/2 of x-mu k prime sigma inverse x-mu k-

x-mu j prime sigma inverse x-mu j, that is equal to after simplification x-1/2 mu j+mu k prime

sigma inverse mu i-mu j.
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Then, the regions of classification, if we apply this method that is we are considering sigma qirRi

<= this.  Basically,  we  have  mentioned  here  that  the  one  which  is  minimizing  this.  So,  the

procedure will become, if we assume the cost functions that is Cji to be say equal, then the Bayes

classification rule is Rj that is classify the observation into jth population if Ujkx is > a log of

qk/qj for k equal to 1 to m, k is != j.

We can notice here that this function Ujk they satisfy the symmetry property. So, actually what



kind of regions are these. If you see it carefully, they are nothing but the RI are actually bounded

by the hyperplanes type of region because x-1/2 mu j+mu k prime sigma inverse mu y-mu j. So,

what kind of regions you will be getting.  You will  be getting the regions of the type of the

hyperplane.

So, if the mean (()) (28:55) m-1 dimensional hyperplane, then Ri is bounded by m-1 hyperplanes

that you will be getting, because the X value that will give you a hyperplane, X greater than

something or less than something and if the prior probabilities are not given, then in place of log

of  qk/qj,  you  can  put  some  value  and  in  order  to  maintain  some  sort  of  symmetry  of

representation, actually what is the value of log qk-log of qj because these are probabilities.

So, basically you are getting them to be negative because they are lying between 0 and 1. So, we

can write log of qk-log of qj. So, with minus signs were are getting, so we can put a log of qj

before because there is a minus sign, so we can put it in terms of the non-negative values. If no

prior probabilities of populations are assumed, we can consider Rj as Ujkx >= Cj-Ck for k=1 to

m, k to 1 to m, k != j, where Cj’s are positive constants.

Actually, any rule of this type is a Bayes rule. So, in case of prior probabilities, if we are putting

some other numbers we can actually define respective probabilities in such a way that they will

be equal to something. So, all such procedures, they will be giving you the Bayes admissible

rules. So, basically, this is you can say minimal complete class of the classification procedures

for classifying into one of several populations. These rules are admissible rules.

They are also Bayes because the class of Bayes rules and admissible rules is the same here. Now,

if you want to find out a minimax procedure, then we can consider say probability of the correct

classification and we can make them to be equal.
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For minimax procedure, we may find R so that Pri given i are all equal.
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Let us look at what are the probabilities of correct classification which we can also call PCC. So,

x is the observation to be classified, then we can consider say Uji=x-1/2 mu i+mu j transpose

sigma inverse mu i-mu j. This is the classification function that we got and of course Uji-Uij they

are related here, so that means basically we can consider MC2 classification functions, because

we do not have to consider both here, MC2 classification functions are there. 

Of course, this is because if they span in m-1 dimensional hyperplane. So, now if x belongs to

pij, that means x is having Np mu j sigma distribution, then what is the distribution of Uji. See



this is normal and we can apply the linearity properly. So, this will become actually mu j-mu y

and here also you are having this thing here. So, this is mu j-mu i prime sigma inverse mu j-mu i

1/2 can be taken outside.

If I define the term say delta ji square which is a generalization of the Mahalanobis D square

function which I wrote in the case of 2 populations, then this is equal to mu j-mu i prime sigma

inverse mu j-mu y. So, in terms of this, this is actually Mahalanobis D square as a distance

function between populations pii and pij. So, then this is equal to normal 1/2 delta ji square, delta

ji square. Also, we can look at the covariance of Uji and Ujk.
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So, this is a scalar because Uji is a scalar function. The covariance matrix between Uji and Ujk,

so that is equal to I use a notation delta jkji=mu j-mu k prime sigma inverse mu j-mu k. In the

classification  rule  when  the  prior  probabilities  are  not  fixed  in  advance,  then  we  have  to

determine constant Cj, Ck, etc which I mention that we can choose them to be nonnegative. So,

we can consider the probability of classifying in 2j when it is from j=Fj that is the observation is

from the jth 1, duj1 and so on…d mu jj-1, d mu jj+1 and so on d mu jn and these are Cj-C1 and

so on…Cj-Cn the because upper side is infinity here.

Where Fj is the density of Uji for i != j. So, we can choose Cj so that Prj given j is equal for all j.

Now, the another situation arises if the parameters are not equal, they are not known then we can



substitute estimates. For example, mu i head can be xi bar and similarly you can have sigma head

= 1/sigma ni-m, i = 1 to m and Xij-Xi prime, j is equal 1 to say ni, i = 1 to m. When we have

random samples xi1, xi2, …xini from pii then we can consider these estimates.
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The analog of Uij, this will become Uij that will be x-1/2 xi bar+xj bar prime S inverse xi bar-xj

bar. Now, as we discussed the case of 2 normal populations, the distribution theory for this part is

somewhat more complicated; however, the exact distribution theory is not very difficult because

strong of large numbers  will  hold and if  I  take here a large sample sizes and then you can

consider here that xi bars will converge to corresponding mu i, xj will go to mu j, S inverse will

go to sigma inverse in probability and so on. 

Therefore, the asymptotic distribution of Uji, Wij will be almost the same as the Uji. So, the

problem can be handled.
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So, the exact distributions of Wij are quite complicated; however, for large sample sizes we can

use laws of large numbers and the asymptotic distribution of Wij will be same as that of Uij. So,

this problem can be solved. Now let us also go back to one of the problems that I discussed

earlier that is classifying into 2 multivariate populations when the variance covariance matrices

were unequal.

I discussed the rule when the 2 populations had known parameters, so if you remember the rule

that I had mentioned here. It was given by this that is when sigma1 and sigma2 are different, I

mentioned that in place of hyperplanic regions, you are actually getting much more complex

regions because I mention that one of them becomes central  chi-square distribution.  So, this

region becomes much more complicated.

Now, we also consider this case for the unknown sigma1 and sigma2 case. In that case, we have

to substitute the estimators. So, let me briefly discuss this case also. Next, we consider the case

of unknown and unequal covariance matrices. So, in particular let us consider say pi1 as the

population Np mu1 sigma1 and pi2 is the population Np mu2 sigma2. So, let me go back to the

expression that I derived earlier.

The expression that we obtained was in fact there was a power here which I would have missed

at that time. It should be power half here and power half here also and it is e to the 1/2 x-mu2



prime  sigma2  inverse  x-mu2-x-mu1  prime  sigma  inverse  x-mu1.  So,  we  can  consider  a

likelihood ratio procedure. We are having the samples here say xi1 and so on…xini. This is from

a random sample from pii, i is equal 1 to 2.

We can consider a likelihood ratio test procedure for null hypothesis, that is the observation x,

x11, x12, …x1n1, they are from pi1 and x21, x22,…x2n2 this is from pi2 and the alternative

hypothesis will be that is x11,… x1n1 this is from pi1.
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x21 and so on…x2n2 this is from pi2. Now, in the likelihood ratio procedure, I have to consider

the maximization of the likelihood function under both null and alternative hypothesis. So, in the

null hypothesis, I will have n1+1 observations from pi1 and n2 observations from pi2. In the

alternative hypothesis, I will have n1 observations from pi1 and n2+1 observations from pi2.

Since all the parameters are unknown and unequal, this is simply reducing to the problem of

finding out maximum likelihood estimators for these cases.

(Refer Slide Time: 46:57)



So,  we  can  easily  write  down  the  maximum  likelihood  estimators.  In  the  likelihood  ratio

procedure, we are required to determine the maximum value of the likelihood function under null

as well as alternative hypothesis. Thus, we find MLE’s under both cases. So, this we can write

easily because the procedure for finding out the MLE is known in the case of multivariate normal

distribution. 

We know  actually  that  the  sample  mean  and  the  sample  covariance  matrix,  they  are  the

maximum likelihood estimators. So, under the null hypothesis MLE's are, so we write it as mu1

head 1=n1x1 bar+x/n1+1 because this is a sum of all the observations from the first sample plus

x because we are saying that it is coming from the first population, mu2 head 1, so 1 means

basically under the null hypothesis. 

This  is  given  by  x2  bar  and  sigma1  head  1  that  will  be  1/n1+1  sigma,  so  we  call  it  say

A1+n1/n1+1 x-x1 bar x-x1 bar transpose and sigma2 head 1=1/n2 A2. Here Ai are Xij-Xi bar

Xij-Xi bar transpose, j = 1 to ni. Under H1 that is the alternative hypothesis, actually this null

hypothesis I am calling H knot and this alternative hypothesis I am calling H1. So, under H1 this

will turn out to be mu1 head 2 that will become X1 bar and mu2 head 2. Now here I will have

n2+1 observations from the second one, so it will be n2x2 bar+X/n2+1. 

For sigma1 head, this  will  become equal  to 1/n1 A1 and for sigma2 head, this  will  become



1/n2+1 A2+n2/n2+1 x-x2 bar x-x3 bar transpose.
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So, if  we consider the likelihood ratio  criteria  that  will  give us the likelihood ratio.  So,  the

exponent term will get cancelled out and we will get sigma1 head to the power n1/2 sigma2 head

2 to the power n2+1/2 divided by sigma1 head 1 to the power n1+1/2 and sigma2 head 1 to the

power n2/2 which we can also write after simplification as 1+x-x2 prime A2 inverse x-x2 bar

whole to the power n2+1/2/1+x-x1 bar prime A1 inverse x-x1 bar to the power n1+1/2*n1+1 to

the power 1/2 n1+1p n2 to the power n2p/2, determinant of A2 to the power 1/2/n1 to the power

1/2 n1p n2+1 to the power 1/2 , n2+1p A1 to the power 1/2.

If we consider the costs of misclassification to be the same and the prior probabilities to be equal,

we can consider this ratio to be > 1, then you classify into pi1. So, we classify X*pi1 if the ratio

is more than 1. Else classify X*pi2. Now, this is one criteria that is the likelihood ratio criteria.

Let me also again come back to this original observation that I got here. Another thing could be

that I substitute direct estimates, that means here I put x2 bar, here I put S2 inverse, here I put S1

inverse, here I put x1 bar.

So, in both the cases, the exact distributions of the criteria are not easy. The exact distribution of

the criteria is quite complicated.
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An alternative approach can be to simply plug-in estimates into this function, that is x-x2 bar

prime sigma, that is S2 inverse x-x2 bar-x-x1 bar prime S inverse x-x1 bar. So, you put this as

some greater than or equal to something and less than something. So, this could be another one.

Once again, the distribution of the criteria is quite complicated.

Even if I look at the asymptotic distribution for the large sample sizes by applying the laws of

large numbers, I will get this one. I have already discussed that if x belongs to pi1, then this is

non-central chi-square. This will be something like a central chi-square. So, the difference of 2

and it is going to be quite complicated. In case it is from pi2, then this one is central and this one

is non-central. Once again the exact distribution of these things are difficult to obtain.

So, in particular we are saying is that when the variance covariance matrices are unequal, the

classification rules no doubt can be easily found out but in order to obtain desirable rules such as

a  minimax  procedure  among  them  is  a  difficult  task.  Because  the  probabilities  of  correct

classification are the probabilities of misclassification will be quite complicated. Friends, so we

have actually discussed so many classification rules. 

In  fact,  I  framed  a  general  decision  theoretic  approach  to  the  classification  problem  by

considering  the  Bayes  decision  rule  and  the  criteria  of  admissible  rules,  the  minimax

classification procedure, the minimal complete class, etc and in particular, I showed applications



to  the  classification  of  multivariate  normal  populations.  We  have  considered  2  normal

populations and multivariate normal population.

So, I actually wind up the discussion on the problem of classification now. One can consider

some other classification procedures which are available nowadays but that can be a subject of

full-fledged  discussion.  I  will  move  over  to  another  topic  that  is  the  problem  of  principal

components. So, in the next lecture I will briefly introduce the problem how to determine the

principal components and also maybe I will touch up on the canonical correlations. So, that will

be the topic of next lecture.


