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In the previous lecture, I have discussed the problem of classification of an observation into 2

multivariate normal populations, and we had made the assumption that all the parameters are

unknown. I discussed one case in detail in which I assumed the multivariate normal population

mu 1 sigma and mu 2 sigma, that means covariance matrix was assumed to be equal and known.

In  that  case,  we  were  able  to  derive  the  distribution  of  the  discriminant  function  and  the

probabilities of misclassification.

That means the exact form of the rule was quite convenient to obtain. I also discussed the case

when sigma1 is != sigma2 and in that case we do not have a linear discriminant function if we

use the same methodology.
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The distribution will be dependent upon the central and north-central chi-square distributions and

it will be somewhat complicated. The form of the rule can be obtained but suppose we want to

study the properties or we want to derive actually the minimax rule here, then that is going to be

much  more  complicated  compared  to  the  case  of  sigma1=sigma2.  However,  in  most  of  the



practical situations it may actually happen that the parameters of the populations are not known.

I discussed the case of say disease etc., so from the experience of the medical practitioners, they

may actually identify that this disease has that this parameter vectors and covariance matrix and

similarly the other. But there can be various other problems where it is simply a problem of

classification. For example, land area, economic conditions and various kinds of things. In that

case, low-income group, high-income group and so on.

So,  in  those  cases  parameters  although  we  may  specify  that  it  is  a  multivariate  normal

distribution but we may not be able to say what are the parameters of the distribution. In that

case, we consider the problem by substituting the estimates of the parameters in the discriminant

function.  This  procedure  was  initially  proposed by Fisher  in  1936 and he  called  it  a  linear

discriminant function. Basically, he used the same one which I have described in the previous

one but he substituted the estimates.
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So, let me specify the problem and then, suppose the problem is to classify an observation X into

one of 2 multivariate normal populations when the parameters of the population are not known.

So, we are having pi1, say that is NP mu1 sigma and pi2 is NP mu2 sigma. So, in this case, we

must have some information on the populations in form of samples. These are actually called

training samples.



So, for example from pi1 we consider a random sample, say X11 and so on, X1 we may consider

equal  sample  sizes  are  in  unequal  sample  sizes,  so  these  cases  can  also  occur. So,  we can

consider unequal sample sizes. So, this is from NP mu1 sigma. Once again you note here that

although parameters  are unknown but I have assumed the covariance matrix  to be common.

There can be another case when that is uncommon.

And again  you can see that  there  will  be complications  as  in  the  case of  known parameter

problem and from pi2 we have, so this is from X21, X22 and so on X2 and 2. This is the sample

from second population.  So,  when we have this  data,  we can  easily  consider  the  maximum

likelihood  estimators  or  we can  consider  unbiased  estimators.  We can look at  the  sufficient

statistics. So, this problem is well studied in the estimation theory. So, I will not dwell too much

into this and I will simply write the estimators.
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So, we can consider estimators for mu1, mu2 and sigma as mu1 head=X1 bar, that is actually

1/n1, sigma X1j, j = 1 to n1 and mu2 head=X2 bar=1/n2 X2j, j = 1 to n2. In fact, for sigma we

can  consider  separately  and then  since  sigma is  common and we write  the  joint  likelihood

function etc.
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So, the sufficient statistics basically reduces. Basically, we can consider then pooling and if you

want consider unbiased estimators, then it will become 1/n1+n2-2, sigma X1j-X1 bar*X1j-X1

bar transpose, j=1 to n1+sigma J=1 to n2, X2j-X2 bar X2j-X2 bar transpose. Actually, this one

will be unbiased if you consider 1/n1+n2, then that will be the maximum likelihood estimator.

So, far large sample it will not make any difference whether you take this.

So, now if you consider the discriminant function that I introduced in the previous lecture, this X

prime sigma inverse mu1-mu2-1/2 mu1+mu2 prime sigma inverse mu1-mu2 >= log K. So, this

part if we substitute the estimates of sigma mu1, mu1, etc. then we get the form as. So, we use

these estimates in the discriminant form. In fact, you can look at the definition of U which I gave

here which was basically the left-hand side of this rule, that is this particular term.

So, this you can be considered as, then we get let us call it W, so W=X prime S inverse, so this I

call S, okay. This term I call S, X1 bar-X2 bar, you can actually match here term by term. X

prime,  this  I  am substituting  S,  then  mu1-mu2 I  am writing  as  X1 bar-X2 bar-1/2.  This  is

mu1+mu2, so this will become X1 bar+X2 bar prime and S inverse X1 bar - X2 bar.

This function is actually because the right-hand side does not depend on the X value. So, this

will be same for all observations which we want to classify. So, this one is the Fisher's linear

discriminant function which he proposed sometime around 1936.
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This  function  has  greatest  variance  between  samples.  So,  this  can  be  considered  as  the

classification criteria because earlier we have used U as the classification criteria because we are

getting the terms like U > K, U < K. There it was actually proved that it is one of the base rules

and therefore it falls in the class of admissible rules and therefore it is desirable and we could

actually choose a minimax choice there.

Now, unlike that this one has not been derived in that fashion, because the main reason is that P1

and P2 are not completely known here. We have actually substituted the estimates but we can

expect that this will actually be having in the same way as the previous one.
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So, let me can then write here. We can use W for classification, i.e., the region R1 if W is >=

some C and R2 is if W is < C. So, as I mentioned here that we actually do not have the multi-

property in the same way as we proved in the known parameter case but since we are directly

substituting good estimates of the parameters, therefore we expect that this rule will also be good

rule in terms of having smaller probabilities of misclassification.

Now, another problem which will be immediately coming into mind, that means in place of one

observation,  we  will  have  to  classify  several  observations,  that  means  a  sample  like  in  the

previous case I mentioned. Now, if it is one of the 2 things. For example, here X is there. Now, in

place X you have say X1, X2, Xn. Now, in that case also the coherent matrix will be sigma. Now,

one thing can be there if it is from first one then the mean is mu1 and otherwise it is mu2, so that

part is not known.

But for sigma we can actually make use of this sample also, the third sample because when you

write the joint density this will be added there. So, in place of pooling of 2 here, we can actually

add the third one also. So, that gives you a higher level you can say accuracy for the estimation

of sigma. So, we consider this problem also when we want to classify a sample say X1, X2, XN.

Let me change this n to capital N here just to discriminate because there I am using a small n1,

n2.
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Suppose, we want to classify a sample this into pi1 r pi2, then we may define S=1/n1+n2+n-3,

that is equal to sigma of X1j-X1 bar X1j-X1 bar transpose, j=1 to n1 and basically second term

will also come, let me put it here I, I=12+sigma Xr-Xr-X transpose, r=1 to n. Here this X bar is

actually 1/N sigma XR, r=1 to n. Then, the criteria that will come here, so actually you can mark

these 2 terms here. 

You can take come as inverse X1-X2 because that is in both the terms. So, you are getting X-1/2

X1+X2 prime.
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So, let  me give it  a new name, say let  me call  it  S a star here.  Then X-1/2 X1 bar+X2 bar



transpose  S  star  inverse  X1  bar-X2  bar.  General  comment  is  that  the  probability  of

misclassification reduces when the sample size increases because the behaviour of X bar will be

approaching more towards the true  mean,  that  means if  true mean is  mu1.  It  will  approach

towards mu1 and if true mean is second one, then the true mean will be mu2 and it will approach

towards that.

So, therefore what will  happen that the discrimination will  be much superior because of the

strong law of large number, the sample mean converges to the population mean and therefore it

will  be really  coming out nicely there.  The distribution of the criterion,  that  is  this  term, so

basically this is W here, the distribution, let me call it W star. So, we have actually either W or W

star here, that is this term which I can write as again X bar-1/2 X1 bar+X2 bar transpose S

inverse X1 bar-X2 bar, okay.

So, this W or W star, the distribution of that will be really complicated. The distribution of W or

W star is complicated. Now, in the case of known parameters, we saw that whatever population

is there, that means whether it is pi1 or pi2, we got it as the univariate normal distribution and the

means and the variances were easy. Actually, we got it as half delta square and delta square and

in the second case we got as -1/2 delta square and delta square was known.

Now, in  this  particular  case  it  will  not  be  simply  that.  It  will  depend upon because  that  is

unknown here. So, it will depend upon the unknown parameter. It will depend on n1, n2 and of

course n also and unknown value of delta square, that is (()) (21:02) D square term here. I will

give some representations here and in fact some work has been done by various authors on the

distribution of W and W star etc. So, let me just mention briefly some of these facts here.

One representation is given in this particular fashion that we can consider say Y1 vector as C1,

X-n1+n2. Basically, I  can write  it  like this  n1X1 bar+n2X2 bar/n1+n2,  let  me call  it  4 and

Y2=C2 times X1 bar-X2 bar and here I am choosing C1=square root of n1+n2/n1+n2+1 and

C2=square root of n1n2/n1+n2.
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Then,  we  can  say,  actually  the  way  this  is  defined  here  we  can  say  that  Y1  and  Y2  are

independently distributed with normal distributions and both will  have the covariance matrix

equal to sigma, their covariance matrices will be sigma. Then expectation of Y1 under pi1, that

will be equal to C1 n2/n1+n2 mu1-mu2 and expectation of Y1 under pi2 that will be equal to -C1

n1/n1+n2 mu1-mu2. The term Y2 does not involve X. 

So, this expectation will be same for both. That means if I consider expectation of Y2 that is

always equal to C2 mu1-mu2 under both pi1 and pi2.

(Refer Slide Time: 24:24)

Let us define say Y=Y1/Y2 and M=Y prime S inverse Y, that is m11, m12, m21, m22. Then W



can be written as square root of n1 +n2+1/n1n2 m12+n1-n2/2n1n2 m22. So, the density of M, it

has been studied by Sitgreaves in 1952, the density of M; then Anderson in 1951, Wald of course

in 1944, they have studied the density of W.

One special case that is when the sample sizes are equal, then some simplification does occur,

because actually in that case this term will simply vanish. If this term vanishes and also you can

look at here, this will become half, half, etc. So, things will become much simpler. Here also it

will become symmetric. So, if you look at this one then also symmetry will occur here. So, we

will discuss this case separately.

(Refer Slide Time: 26:00)

When the sample sizes are same, the distribution of W for from pi1 is the same as that of –W for

X from pi2. So, if we consider W >= 0 as the region of classification into pi1 and W < 0 as the

region of classification in this one, then P2 given 1=P1 given 2. Basically we can say that the

probability of misclassifying X when it is from pi1 is equal to probability of misclassifying X

when it is from pi2. 

So, this case is a simplified version actually and basically what is happening if you use this, then

basically you are considering a good rule there because the probability of misclassification for

both the population will be same. That means whether it from pi1 or from pi2. So, this rule will

be somewhat alright. Exact distribution is quite complicated but if we look at the expressions



here since the expression of the criteria is involving. 

For example, you look at W here, so if we consider the strong law of large number then X1 bar

will converge to mu1, X2 bar will converge to mu2, S will converge to sigma inverse and so on.

We can also look at the for example weak law of large numbers, that means convergence and

probability. See, these convergences in probability or convergence is almost surely, that is strong

law and weak law, they will actually satisfy algebraic operations. 

For  example,  we  may  consider  the  summation,  the  products,  multiplications,  they  will  be

invariant, that means this will converge to exactly U. If I take the previous U which I gave when

the known parameters were there, then this will actually converge to U in probability. In fact, it

will converge strongly, that means it will converge with probability one. Now, if that happens

that means for large sample sizes, the distribution of W is almost the same as the distribution of

U and in that case the probabilities of misclassification etc. have been already considered. 

So, that is fine here. So, let us see here asymptotic distribution of W. By laws of large numbers,

X1 bar converges to say mu1 in probability X2 bar converges to mu2 in probability and S will

converge to sigma in probability as n1, n2, to infinity and of course S inverse will converge to

sigma inverse in probability. The convergence in probability satisfies algebraic operations.
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Hence you will have S inverse X1 bar-X2 bar converging to sigma inverse mu1-mu2 and X1

bar+X2 bar prime S inverse X1 bar-X2 bar converging to the corresponding term mu1+mu2

prime sigma inverse mu1-mu2 as n1, n2 to infinity. So, the limiting distribution of W is the same

as that  of U. So, basically  we can say that  for large sample size,  we are behaving as if  the

parameters of the populations are known.

And therefore under the probabilities of misclassification will be similar to the probabilities of

misclassification as is the own parameter case. So, that means we are not going to do much

worse here. It will be basically almost the same here. There are other derivations of the criteria

based on regression criteria. Then, there is also a criteria called likelihood ratio criteria which is

the same as basically the likelihood ratio test procedure. 

In  fact,  if  you  remember  we have  written  P1X/P2X>K.  If  you remember  Neyman  Pearson

Lemma, for simple hypothesis testing problem that means if you have H0P1 and H1 as P2, then

basically your hypothesis testing problem is also decided on the basis of that. What is the most

powerful tests? The most powerful test is based on that is acceptance and rejection regions are

based on the ratio P0 and P1 and P2. 

There we write P0 and P1, so it is the same thing basically. That is, we (()) (33:32) for P1/P0

greater than something. So, it is the same thing. Now, in the likelihood ratio procedure of course

in that one we just tried the thing and we consider the size of the test and based on that we

consider the maximization of the power. So, the constant K was chosen subject to that condition.

The reason is that the problem of testing of hypotheses is interpreted differently.

Because there we have the probabilities of type I error and type II error and we cannot actually

consider those probabilities equal kind of thing. But in this particular case it is a different matter.

There  we  had  fixed  like  probability  of  type  I  error  say  alpha  and  we  try  to  minimize  the

probability type II error, here that criteria is not done. Rather we are looking at the probabilities

of misclassification.

And  in  the  base  rule,  we  are  actually  considering  the  minimisation  of  the  probability  of



misclassification and in the minimax rule we are considering the equating of those things. So, it

does not mean that we are proceeding in the same way, although the form is the same. Another

procedure in the testing was the likelihood ratio, that procedure can also be adopted. So, I will

derive the classification procedure based on the likelihood ratio criteria.

(Refer Slide Time: 35:10)

Let us look at this thing. Let me leave this here. Likelihood ratio criterion, so in the likelihood

ratio criterion if X is from pi1, then we have observations X, X11, … X1n1 from pi1 and also

X21, X22, … X2n2, these are from pi2, so this is my null hypothesis. If X is from pi2, then we

have X11 and so on… X1n1 from pi1 and X, X21 and so on… X2n2 from pi2. This we call as

alternative hypothesis. So, you can note that both hypothesis is composite. See this pi1 and pi2

we have already written here, pi1 is actually Np mu1 sigma and pi2 is Np mu2 sigma.

Here  all  mu1,  mu2  and  sigma they  are  unknown.  In  the  likelihood  ratio  criteria,  when  we

consider the null and alternative hypothesis and composite hypothesis, what we consider is the

maximisation  of  the  likelihood  function  over  the  null  hypothesis  space  and  the  alternative

hypothesis space, and then we take the ratio of the 2 likelihood functions and we consider greater

than or less than. 

So, let us consider this makes maximum likelihood estimation here. Basically, maximization of

the likelihood function; in the likelihood ratio testing procedure, we consider maximisation of the



likelihood function under both the null as well as alternative hypothesis. 
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It is equivalent to finding maximum likelihood estimators under the 2 hypotheses. So, let us

consider firstly. So, this is my H knot and this is my H1, okay.

(Refer Slide Time: 40:07)

So, under H knot. So, you can look at this problem carefully. We are considering X, X11, …

X1n1, this is a sample from Np mu1 sigma. So, when we write the likelihood function, it will be

the joint likelihood function of n1+1 observations from this and similarly for the second one, it

will be these n2 observations from this.  So, we will get a combined term here and when we

consider the maximum likelihood estimators.



The maximum likelihood estimators of the parameters mu1, mu2 and sigma, so I will call it mu1

head 1=n1x1 bar+x. This observation will come because you are considering the mean of these

n1+1 observations. For the second one, it will be simply the mean of n2 observations. So, in the

first case it is in n1+1 observation. In the second case, it is n2 observations here. So, that is this

one and the sigma head, let us call it under 1=1/n1+n2+1.

Now, you will see that it will remain common here, sigma I=1 to 2 sigma j=1 to ni Xij-Xi bar,

rather than this it will be actually the mean here, that is mu i head 1, right*Xij-mu i 1 head

transpose and extra term will come here because of X here. So, if you consider X, then X-mu1

head 1*X-mu1 head 1 transpose. If we want, we can substitute these values here. Basically you

can consider in the first case X1 bar and in the second case X2 bar, then there will be some sort

of simplification here and the terms then can be written like this.

Let me express it here, this can be further written as 1/n1+n2+1. Let me write it separately, it is

becoming sigma Xij-Xi bar Xij-Xi bar transpose, j=1 to n i, i=1 to 2. Then, there will be some

extra term coming in here, i.e., +n1X1 bar-mu1 head 1*X1 bar minus mu1 head 1 transpose+X-

mu1 head 1 X-mu1 head 1 transpose. See, these terms that I am getting here, I can define the

term called A. So, this particular term which I have written here. This term let us call it A.
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So, then we can actually express it in this particular fashion as 1/n1+n2+1. See these 2 terms

again there is some sort of combining that can be done. You look at the nature here nature of the

terms. Here it is X1 bar-mu1 head, X1 bar -mu1 head prime and here also X-mu1 head 1*X-mu1

head 1 prime. So, we can actually consider expansion of this and then combine this term here. If

we do that, so basically if you look at this term here, then there is a mu1 head prime which is

coming here also, but here it is n1. So, it will become actually n1+1.

So, if you take it out and consider the division there, then we can express the terms as n1/n1+1

X-X1 bar, X-X1 bar transpose. So, you can see here that I am able to write down the maximum

likelihood  estimator.  See  this  part  we spent  some time  just  to  express  it  in  a  nice  fashion.

Otherwise,  these  terms  are  also  fine  but  this  form you  can  see  it  will  be  helpful  because

ultimately we have to write down the ratios of the terms. So, then you consider here.
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Under H1, the maximum likelihood estimators  of mu1,  mu2 and sigma,  then what  this  will

become equal to, mu1 head 2, that will be X bar 1 mu2 head that will be n2 X2 bar+X/n2+1 and

for covariance matrix, it will become 1/n1+n2+1 and if we express in the same fashion, then it

will become. Now the likelihood ratio criteria what we do, we write down the ratio of the joint

likelihood functions. So, if you look at the exponent term.

In the exponent  term after shifting these terms, it  will  actually  become E to the power -1/2



something, that is -1/2 and 1+ and 2+1 P/2. So, that we will cancel out. Now in the density

function, you have in the denominator determinant of sigma. So, the determinant of sigma term

that is coming there that will appear and since the estimates are there sigma head 1 and sigma

head 2, so they will appear here and the power will become n1+n2+1/2.

So, we consider the likelihood ratio that is let me call it L head under H knot under the null

hypothesis divided by L head alternative hypothesis. If we consider this, then this is equal to

sigma  head  2/sigma  head  1  to  the  power  n1+n2+1/2.  Now,  these  expressions  are  already

available here, i.e., sigma head 1 and sigma head 2. So, if I put it here this is becoming equal to

1+n2/n2+1, X-X2 transpose A inverse X-X2/1+n1/n1+1 X-X1 bar prime A inverse X-X1 bar.

In place of A, we can actually use the S term, S term we had derived earlier. Let me just show it

again. This was the S term here. If we consider this S term here 1/n1+n2-2 this term, this was the

S term. So, we can actually write in terms of S because he only the divisor is coming. A I wrote

as this term. So, A/n1+n2-2 is S.
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So, if we use this expression, then this is same as n1+n2-2+n2/n2+1 X-X2 bar prime S inverse

X-X2 divided  by n1+n2-2+n1/n1+1 X-X1 prime S inverse  X-X1.  So,  you can  consider  the

classification region. Suppose we consider  R1, then it  is  this  ratio which we can call  it  say

lambda is say >= some value K or C, okay. This can also be shown to be if you remember your



earlier criteria that was in terms of W, so you can see that they are equivalent.

If we consider W term here W was given by prime S inverse X1-X2 and this term. So, this term

and  this  term  are  having  some  equivalence  here  because  if  you  look  at  this  greater  than

something and then this term will get cancelled out and you adjust this term. You take this thing

come here, then this will be coming exactly of the same form. So, there is a particular case which

is equivalent to W >= say some C star if n1 and n2 are large. 

If we take C to be 1, then the rule is called ML rule, that is the maximum likelihood rule, that

means we are simply considering that choice where the likelihood functions maximisation gives

you the higher value. So, for example if we consider say z is equal to say 1/2 n2/n2+1 X-X2 bar

prime S inverse X-X2 bar-n1/n1+1 X-X1 bar prime S inverse X-X1 bar. Then, basically rule is

R1 region is Z > 0 and R2 if Z is < 0.

So, basically we can think of this as a distance. This is the estimated distance of X from pi1 and

this is distance from pi2. So, you are saying if the distance from pi2 is more than the distance

from pi1, then you put it into the first one, that is pi1. So, basically you can consider this as a

simple distance of the observation from a given population which is based on the sample from

that population. So, I think the rule is a straightforward and it is extremely heuristic rule that is

coming here.
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Basically if you look at W and Z here, they are not much different if you consider say W-Z, then

that is simply 1/2 1/n1+1 X-X2 S prime X-X2-1/n2+1 X-X1 bar S inverse X-X1. This basically

converges  to  0  in  probability  as  n1,  n2,  (())  (58:00)  to  infinity.  So,  basically,  asymptotic

probabilities of misclassification are same for W or Z, i.e., whether we consider W or Z, they are

almost the same.

So, basically what we are saying is that we can use either of these things and these statistics you

can say W and Z basically they are invariant also. If you consider say shifting. For example, you

look at this Z. So, if I translate all the observations, then it will not affect here. There is no affect

here. So, these rules are also translation invariant and therefore that is another plus point. In the

next lecturer, I will discuss the criteria for classification into several populations and also we will

spend some time on the principal component analysis and canonical correlation.

So that is  the remaining topic in this  thing.  The problem of classification  has been actually

studied in great detail but in this particular course we will cover only the popular one that is

based on normal distributions. There are results which are available for other populations also

there are certain current work going on when there are restrictions on the parameter displaces.

For example, in the 2 normal populations when you are considering.

For example, if all components of mu are the same, so like that. There can be several cases.



Suppose, you consider 2 univariate populations, mu1 sigma1 square, mu2 sigma2 square. Now,

you may consider say some additional information in the form of say mu1 <= mu2 or sigma1

square <= sigma2 square. In that case, what would be the classification rule. 

Similarly, we can consider exponential populations. Suppose mu1=mu2 and sigma1 square <=

sigma2 square, in that case what would be the classification rule. So, such problems are being

studied currently by various researchers. So, in this particular course, we have just given or you

can say the basic criteria how we can actually derive such classification procedures and we have

given some optimality criteria also. 

So, in the next case I will try to wind up this particular portion that is a problem of classification

and give some glimpse of 2 other problems, they are called problem of principal component

analysis and the problem of the canonical correlations, so that we will be covering up next to

lecture.


