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Friends,  yesterday  I  have  discussed  in  detail  the  procedures  of  classification  into  2

populations. We have given a general framework. one is called the Bayesian framework and

another I call  as the Minimax method of procedures and what we have done is we have

assumed the probability  distributions say p1(x) and p2(x) the 2 populations  and we have

given that if we know in advance that the proportion of the 2 population. 

That means how many observations actually belong to the first population and how many to

the second. That means we can assign a priori probability say q1, q2 then we can develop a

Bayes  procedure.  That  means  which  will  minimize  the  expected  probability  of

misclassification. We also gave the concept of admissible procedure, minimax procedure, etc.

and in particular, we proved that every Bayes procedure is admissible and every admissible

procedure is Bayes.

And  therefore  the  class  of  all  the  Bayes  procedure  is  the  minimal  complete  class.  In

particular, a member of the class of Bayes rules will be minimax procedure. Therefore, for all

practical purposes we can restrict attention to the rules which are of the Bayesian form and

the  form is  also  of  a  very  nice  nature  that  we  got  that  say  p1(x)/p2(x)  is  greater  than

something or p1(x) / p2(x) is less than something. 

So then, you classify in the population pi1 or pi2. So now, this gives the general framework

for preparing classification rules for various problems. Now the problem of classification

usually  started  on  the  discussion  on  the  normal  distributions.  So  we  firstly  discuss  the

procedures for that.
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So classification procedures for 2 multivariate normal populations. Let me state the problem

first. So we have say population pi1 it is specified by say p dimensional normal distribution

with mean vector say mu1 and (()) (03:11) covariance matrix say sigma and pi2 where p

dimensional normal distribution with mean vector say mu2, sigma. It is like this you can

think of for example there is a patient. 

A patient goes to a say medical practitioner and certain tests are conducted on the certain

measurements. So it could be blood test and it could be certain other measurements on the

patient and then it has to be decided. For example, the first population may correspond to a

particular disease and second population parameters may correspond to another disease. So

on the basis of the observations on the patient that is x. 

We are having say x = x1 to xp we have to decide whether they are matching more with pi1

or more with pi2. So this is a classical example. We can think of in other areas also like land

classification or classification on the basis of the economic characteristics of a country or

individual or an organization.  So these are the problems were we model according to the

multivariate normal distribution. 

That  means  different  characteristic,  different  components  will  individually  normally

distributed and at the same time, the correlated structure is giving you a multivariate normal

distribution.  Now in  the  first  model  I  am starting  with  the  covariance  matrix  to  be  the

common. So here we specify like this the mu1 is actually your vector. So let me write it in the



form of row vector mu1 1, mu1 2 and so on mu1 p and similarly your mu2 vector is mu2 1,

mu2 2 and so on mu2 p. 

So the form of the, we assume that sigma is positive definite. If we assume positive then the

density functions can be written in the form of the pdf of pi is: so let us say pi (x, mu i,

sigma) that is 1/2 pi to the power p/2 determinant of sigma to the power 1/2. Then we have in

the exponent – 1/2(x – mu i) prime sigma inverse x – mu I for i = 1, 2. Let me call it question

number (1). 

If we want to classify according to the rules that we discussed yesterday, then the Bayes rules

or the Minimax rules.  So the class is,  class of all  admissible  rules is of the form that  is

p1(x)/p2(x)  say > k or <= k says for classifying k into first  population or in  the second

population. Of course, when the priori probabilities are known then directly the form of k is

known to us. That is q1 / q2 kind of thing. 

But even it is not known then it is by Bayes rule with respect to some prior, okay. So that

means the desirables are of this form only. If the prior probabilities are given, we can choose

the corresponding Bayes rule in that class. If that is not, there we can choose any rule or we

can choose the Minimax choice. So but the framework is given that means all the consider

the rules of this nature. 
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So let us consider the region of classification into pi1 that is we call it R1. That is the p1(x) /

p2(x) is >= k where k has to be chosen in a suitable fashion. So if we substitute here. p1(x)



and p2(x) here then this term will be cancelled out and here we will be left with e to the

power. Let me write down the expression. See in numerator we are writing p 1 so here it will

become mu1 and in the denominator, we have mu2.

So it will come in the mu2 here. So if I write the ratio here. So it will become something like

this. (x – mu2) prime sigma inverse (x – mu2) – (x – mu1) prime sigma inverse (x – mu).

This I have noted here.and you are getting e to the power 1/2 of this >= k. So if I take

logarithmic here and I arrange the terms. So this will become 1/2 (x – mu2) prime sigma

inverse (x – mu2) – (x – mu1) prime sigma inverse (x – mu1).

This is >= log of k. Let us call this as (2), this as (3) or let us further simplify this. So if we

consider the expansion of these terms. I will get x sigma inverse x – mu2 prime sigma inverse

x. It is 2 times here which you can also write this term as twice x prime sigma inverse mu2

and then you have + mu2 prime sigma inverse mu2 – x prime sigma inverse x + 2x prime

sigma inverse mu1 + mu1 prime sigma inverse mu1.

So after expansion these are the terms I will be getting. You can see that this gets cancelled

out and you can adjust the remaining terms as x prime sigma inverse (mu1 – mu2) and you

are left  with this  term here I  can adjust  the terms  for  actually  getting  mu2 prime sigma

inverse mu2 and this is actually becoming -  here, - mu1 prime sigma inverse mu1.
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So I can add and subtract the terms corresponding to mu2 prime sigma inverse mu1. If I do

that then I can factorize and write this term as – 1/2 (mu1 + mu2) sigma inverse (mu1 –



mu2). This is >= log of k. So this result was actually obtained by Abraham Wald in 1944.

This  is  actually  called  the  discriminant  function  because  this  term  will  be  same  for  all

observations.

When you are taking the observation x, which you want to classify then this part, is actually

used for discriminating between the populations. So we call this as the discriminant function.

So we have the following result. Then we are considering the density function of the form (1)

that is multivariate normal distribution the best regions of classification are given by. 

If we want to classify an observation x into pi1 (Np (mu1, sigma)) or pi2 that is (N p(mu2,

sigma)), then the optimal regions of classification they are given by say R1 where we write x

prime sigma inverse(mu1 – mu2) – 1/2(mu1 + mu2) prime sigma inverse(mu1- mu2). This is

>= log of k. This is for the classification into pi1 and for pi2, this will become simply less

here.

Why am I saying these are the optimal regions of classification? Because in the previous

lecture I have proved that, the minimal complete class is exactly the class of Bayes rules.

That means for good rules we do not look beyond the Bayes rules and the Bayes rules are of

the form p1(x)  /  p2(x) >= k where k would be suitably  chosen.  It  is  a number between

basically it is a ratio q1 – q2 particularly depend upon what values of q1 and q2 we are

chosen. That is why I have written where k has to be suitably chosen.
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In particular, if we consider prior probabilities of pi1 and pi2 as q1 and q2 respectively. Then

k is nothing but q2 / q1. If cost function c (1 | 2) and c (2 | 1) is used, then k = q2 c (1 | 2) and

q1 c (2 | 1). So this can be chosen. In general, k can be anything but all of the choices will

give you a rule in the minimal complete class. That means it is an admissible rule and it is a

Bayes rule. 

Now you were taken by extreme case when q1 and q2 are same,  that  means we do not

discriminate between the 2 populations. In case when c (1 | 2) = c (2 | 1) and q1 = q2 then the

region R 1 will simply because k will become I and therefore log of k will become 0. So this

will become x prime sigma inverse (mu1 – mu1) is >= 1/2 times (mu1 + mu2) prime sigma

inverse (mu1 – mu2). Now there can be a question where priori probabilities are either not

assumed simply we have no information. 

That means we cannot discriminate between 2 populations on the basis of prior probabilities.

In that case, 1 can look at the, that means we can look at that we make the expected losses

due to misclassification as the same. So let me just that point here.
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If we do not consider prior probabilities, then we may choose k in such a way that the 2

expected losses due to misclassification are equal. That means I will need the probability of

this. That is classifying into pi1 when it is belonging to pi2. That is under the assumption that

x is having mu2 sigma and the other one will be less than this that must be classified to but

we assume x to be in pi1. 



That means x is following N p (mu1, sigma). So that means we need the probability of this

statement greater than or equal to or less than. So in order to see that we actually need the

distribution of. For this we need the distribution of, so this quantity I denote by U = x prime

sigma inverse (mu1 – mu2) – 1/2 (mu1 + mu2) prime sigma inverse (mu1 – mu2) under the

assumption that x follows N p (mu i, sigma), i = 1, 2. 

Now you can use the linearity property of the multivariate normal distribution here. See if x

is following, since x is following N p (mu i, sigma) therefore x prime sigma inverse (mu1 –

mu2) we can actually obtain. Due to linearity property of multivariate normal distribution, U

will have p. So basically, the dimension will remain the same because this is also, so this will

become univariate normal basically. 

Because what is happening is x is a multivariate normal now what term you are writing is

becoming a scalar quantity because this is 1 by p the you are having p by p and then you are

having p by 1. So this is becoming a scalar quantity. So U will have a univariate normal

distribution. Now let us calculate it separately when x follows N p (mu1, sigma) then it will

be expectation of say U, we will call it expectation 1. 

Then here it is becoming equal to mu1 prime sigma inverse (mu1 – mu2) – 1/2 (mu1 + mu2)

prime sigma inverse (mu1 – mu2). Now this term we can simplify. Here you look at this is

actually becoming mu1 prime sigma inverse (mu1 – mu2) and here I get 1/2 mu1 prime

sigma inverse mu1. So this is the – sign it will become +. Similarly, you look at the cross

product term that is mu1 prime. 

In fact, if you go back to the original term where I derived this from there it will be clear how

this term is coming. Initially I have written here. This term was mu2 prime sigma inverse

mu2 - -mu1 prime sigma inverse mu1 which is written like this particular term. So this term

is in the + and this is in the – here. So this is – and this is being cancelled out here – this one.

So 1/2 is there so it will become + 1/2.
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So then this term can be simplified to which is = 1/2 (mu1 prime – mu2) prime sigma inverse

(mu1 – mu2). Let us put some question number here. So this is the definition of U let me put

as (7) and this I put as (8) and then in this cases what will be the variance of U. For the

variance you have the formula that because for x it is sigma. So it will become mu1 – mu2

prime sigma inverse then sigma and then sigma inverse this term will be coming. 

So sigma sigma inverse will become identity. This term will be remaining. That means you

will get it as (mu1 – mu2) prime sigma inverse (mu1 – mu2). Let me call it equation number

(9). We also write here see this particular term which is written here actually this is basically

a major, a distance major whi9ch was given in 1930 by P C Mahalanobis and it is called

Mahalanobis distance major and it is called Mahalanobis d square.

This is the Mahalanobis distance. So let us call it as delta square. We give this term name as

delta square, okay. So what we have, actually we can write in terms of this here. Expectation

of mu1 is basically 1/2 of this. So this is 1/2 delta square. So what we have proved is that we

have shown that if x belongs to pi1 then this U is following normal distribution with mean

1/2 delta square and variance delta square. 

Now consider the other case that is N p (mu2, sigma). Then expectation of U in this case

what will happen it will  become mu2 prime here.  So this will  become mu2 prime sigma

inverse (mu1 – mu2) – 1/2 (mu1 + mu2) prime sigma inverse (mu1 – mu2). Once again this

can be simplified here. See this is – mu2 prime sigma inverse mu2 and here I will get + mu2

prime sigma inverse mu2. 



So this will get cancelled out and you will get – and this term is -. So basically, you will get –

1/2 of delta square and similarly if you look at variance that will be same because in the

variance that term does not change. That is, we are saying that if x belongs to pi2 then the

distribution of U is normal with – 1/2 delta square and delta square. Now you can see this

result is very interesting. 

We have used U for basically discriminating between that populations pi1 and pi2 and here

you can see the clear  demarcation  the average  values  of U under  pi1 and pi2.  They are

showing opposite behaviour like here it is 1/2 delta square and here it is – 1/2 delta square

and delta square I am giving a name Mahalanobis distance measure. 

So if that 2 populations distance is given in terms of delta square then clear cut demarcation

between the populations pi1 and pi2 is coming that means if it is actually belongs to pi1 then

the mean of that is 1/2 delta square and in other case it is becoming - 1/2 delta square. So it is

exactly on the opposite side. So this is quite interesting and you can think that heuristically it

is actually a good classification rule. Now let us look at that, we want to make the 2 expected

probabilities of misclassification to be the same then let us consider this.
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So the probability of misclassification if the observation is from pi1. So that is p (2|1) that is

now you classify into 2 if you are getting x prime sigma inverse (mu1 – mu2) less than this

quantity. Basically you are saying U is < c. So our original classification rule that I have



described here it is terms of U only. So basically this term was U. So U greater than some

quantity or U less than some quantity. So we will use exactly that thing. 

So it is probability of U < c when the true population is say pi1. Now under pi1 we have just

now derived that U follows a normal distribution with mean 1/2 delta square and variance

delta square. So we can consider probability of (U – 1/2 delta square / delta < c – 1/2 delta

square / delta). So this is becoming standard normal random variable. So this can be written

in terms of the cumulative distribution function of standard normal (c – delta square/ 2) /

delta phi denotes the cdf of standard normal distribution. 

Similarly, let us calculate the probability of misclassification if the observation is from pi2. If

the observation is pi2 then the probability of misclassification is P (1|2) that is the observation

is from 2 but I put it in 1 that is P pi2 of U >= c. So that is equal to probability of U when U is

from, x is from pi2 then U has normal – 1/2 delta square , delta square.

So this will become U greater than well we will put it as (U + delta square / 2) / delta >= (c +

delta square/2) / delta and again this is having a standard normal distribution. So this is equal

to probability of Z where Z is a standard normal random variable (c + delta square / 2) / delta.

So this is nothing but 1 – P (Z < (c + delta square / 2) / delta which is nothing but actually (c

+ delta square / 2) / delta which we can also write as phi (-c + delta square / 2) / delta. 

So you can see here we are able to evaluate that 2 probabilities of misclassification. So we

can choose c such that these 2 are same. If there is a cost function, then we can include that

also.
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If c (1|2) and c (2|1) are given as costs of misclassification, then one can choose c such that c

(1|2) p (1|2) = c (2|1) p (2|1) or c (1|2) phi (- c+ delta square /2) / delta = c (2|1) phi (c – delta

square/2)/delta. Let me call it as question number (13) here. Now this is quite interesting we

are  actually  able  to  restrict  our  attention  to  a  rule  for  which the  expected  probability  of

misclassification is same. 

Since all the terms in this equation will be known because delta is based on the mu1, mu2 and

sigma, which is the parameters of the 2 populations. c (1|2) and c (2|1) are the costs of this

classification which will be some numbers. So all the terms here are known that means from

the tables of the normal distribution that is the tables of the cumulative function of the normal

distribution we can actually find c for which these 2 values will be are these 2 equations will

be satisfied. 

So this is actually Minimax classification procedure that is c = log k is chosen so as to satisfy

equation  number  (13).  You can  look at  this  theorem.  This  is  the  point  you have – delta

square / 2 and this is the point + delta square / 2. So of course there will be so this is some 0

here say. So this is the (()) (37:27) area here and c will be somewhere here. May be c is here

or it could be here etc. So we cut of like this actually if the point is here or here then there is

no problem. 

But in this portion, we have to decide whether we have to put in the population 1 or in the 2.

So depending upon the value of c, which is here, or here etc. depending on the nature of mu1

and mu2. Because mu1 and mu2 will  affect the value of delta square.  If there is a large



difference or if there is a small difference and also the magnitude of sigma all of this will

affect the value of c. 

So it could be that this intersection part is very small and in that case the classification will be

good. If the intersection is more then suddenly classification rule will be slightly worse. That

means the determination power of the rule will be much less. If we consider say c(2|1) = c(1|

2) then it  becomes much simpler  problem. Because if  you have c(2|1) = c(1|2) then this

equation is reducing to. Let me write it here.
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If the cost terms are, also same then (13) becomes. The first part will become – delta / 2 and

the right hand part will become, sorry, that is (– c /delta) – (delta/2) = (c/delta)-(delta/2). So

you can see here c = 0. So the rule which is written for q1 = q2 that means when we equate

the 2 that is actually coming as the Minimax classification procedure. So if the costs are the

same and if q1 = q2 then whatever rule is obtained that is actually become the Minimax rule. 

But if c (1|2) is != c (2|1) then certainly you will find from the tables of normal distribution

using the cdf of the standard normal distribution. We can also notice some further fact. We

can also see that the ratio c (1|2) and c (2|1) then what do we get.c (1|2)/c(2|1) = phi ((c –

delta square / 2)/delta) / phi ((- c + delta square / 2)/ delta). Let us call it say some g(c). This

is, this g(c) is because if I consider increasing c then this will decrease. 

But then it is in the denominator and it is the non- negative function. So this will increase

when this is increasing. So this is an increasing function of c. So if it is an increasing function



then certainly there exist a value of c for which equality will be attained. So there exists a

value of c say c * such that g(c*) = c(1|2)/c(2|1). That means a solution will always exist. See

both the terms in the expression (3) that means go back to the expression (3) here. 

That is the original discriminant is here x prime sigma inverse (mu1 – mu2) – 1/2 (mu1 +

mu2) prime sigma inverse (mu1 – mu2). So look at this. This part and this part is common. If

we call it say delta, then basically we are looking at the solution of the equation of the form

sigma delta = mu1 – mu2. So we can consider the involved vector delta is equal to sigma

inverse mu1 – mu2.
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This is obtained as solution of sigma delta = mu1 – mu2. This is regarding the computational

part of x. because we suddenly need to calculate and this involves the inverse here. Actually,

this term is not difficult x prime and then mu1 + mu2 prime. Only difficulty is to evaluate

sigma inverse and then of course multiplication with something. So if we look at the solution

of this type that means delta equal to this. 

So if I consider some efficient computation procedure, numerical computation procedure then

we can actually obtain the solution. For example, (()) (44:16) or any other method this is

basically becoming a system here because I need the solution delta = mu1 – mu2. So this can

be done by using an efficient computational procedure. We have further interpretation of this

that the discriminant function x prime delta is linear function which is maximizing [E 1 (x

prime d) – E 2 (x prime d)] whole square / var (x prime d) for all choices of d. 



In fact, if you look at the numerator, the numerator here is (mu1 prime d – mu2 prime d)

whole square. But this we can also write as (mu1 prime d – mu2 prime d) and prime of that

into (mu1 prime d – mu2 prime d). If we write like this, then it is becoming d prime(mu1-

mu2) (mu1 – mu2) prime d. So we can express this in a different way here and in a similar

way if you look at the denominator here this var (x prime d) = d prime E(x – E(x)) (x-E(x))

prime d that is actually d prime sigma. 

So basically we consider that we want to maximize (17) with respect to d such that 18 is a

constant. So basically we are considering the term d prime (mu1- mu2) (mu1 – mu2) prime d

– lambda (d prime sigma d – 1). So this is called Lagrange multiplication. Lambda is the

Lagrange’s multiplier. So you can consider derivative of this with respect to d equating to 0

what we will get? (mu1- mu2) (mu1– mu2 prime) d = 2 lambda sigma d. 

There will be 2 here also so this 2 is actually cancelled out and this is actually a scalar. So we

can actually write it as some nu, mu1 – mu2 = lambda/nu, this quantity I am calling nu, into

sigma d. So you consider the solution is proportional to delta. Because delta you see here was

sigma  delta  =  mu1  –  mu2  that  is  the  solution.  Here  you  can  see  that  the  solution  is

proportional to delta. 

Now here it is a classification of a single observation x into 2 populations. But the general

problem  of  classification  is  that  in  place  of  1  observation  we  may  have  a  sample  of

observations.  If  we  have  a  sample  of  observations  in  that  case,  we  can  consider  the

distribution because of the sufficiency in multivariate normal situation x bar and x are the

sufficiency statistics.

We can actually consider the distribution of x bar. So x bar will have N p mu sigma1/n and

sigma 2/ n. Well, mu1 sigma/n and mu2 sigma /n. So the problem is just shifted in place of

sigma we are considering sigma/n and the entire procedure will be the same.
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So let me just mention this thing here. In case, we have random samples of size n to classify.

That is the samples say x1, x 2, ..., xN then we can use the sample mean vector and classify

into pi1 that is Np (mu1, sigma/n) or pi2, … Np (mu2, sigma/n). This is for the purpose

because we are this from the first population then the sample mean will have this distribution

and if it is from the second one then the sample mean will have this distribution.

So the  entire  problem is  just  modified  and the  procedure  will  remain  the  same.  So this

particular problem that I have discussed now it is for the classification when the parameters

of the population are known and therefore the procedure that I described in the previous

lecture is completely applicable here. That means I am able to derive a procedure which can

be Bayes considering the choices here because the density functions are completely known.

In case the prior probabilities are not assumed, we can find out the Minimax choice. I have

shown in the particular case that the choice can be explicitly found from the tables of the

normal distribution.


