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In the previous class we have discussed methods for testing of parameters for 1 multivariate

normal distribution and also for 2 multivariate normal distributions. So for example if we

have 1 sample from normal mu sigma distribution of p dimension then we can test about

mu=mu0. We have seen that if sigma is known then the test will be based on a chi square

statistic whereas if sigma is unknown then the test is based on Hotelling's T square statistics.

And we have shown equivalence that the value of the T square statistics can be calculated

from an F distribution and the corresponding formula was given. We also discussed 2 sample

problem  that  means  we  can  consider  testing  for  the  equality  of  the  mean  vector  of  2

multivariate normal population mu1=mu2 and again if the co-variance matrices were known

the test was based on a chi square.

As  well  they  were  unknown,  but  equal  then  it  was  a  based  on  a  Hotelling's  T  square

distribution.  One  more  application  of  this  type  of  testing  I  also  showed  for  the  linear

functions of mean vector that we can consider the test for that. Now another application of

this is that we may consider equality of the components themselves. Now this could be like

this that.

For example, this mu1, mu2, mu p they may be denoting the characteristics of say different

components  of  something  which  may  have  similarities.  So  now we would  like  to  know

whether the mu 1= m2=mu p or not that is something like a test for homogeneity. Now we

know that in analysis of variance we have a test when we are considering several normal

populations then it is called a one-way analysis of variance test.

But  there  the  populations  are  considered  to  be  independent  that  means  the  sampling

procedure that means we are having then p independent samples. Now here by definition the

samples are not independent because it is coming from a multivariate normal population.
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So now I present a procedure for this. Let us consider a random sample x1, x2, Xn be a

random sample from Np mu sigma. So as usual mu vector let me write it in the row form then

mu transpose=mu1, m2, mu p. Now suppose we want to test say H0 mu1=mu2=say mu p

against at least one in equality. So what we do we write it like this. 

We can consider the hypothesis H0 can be written as mu1-mu2 say mu1-mu3=0 this is=0 and

so on mu1-mu p=0 which we can write as say 1-1, 0, 0, 0, 1, 0-1, 0 and so on 1, 0, 0,-1* mu

1, mu 2, mu p this is=0, 0, 0.

(Refer Slide Time: 04:48)

This is we can consider it as some C matrix multiplied by mu=null where C is actually p-1/p

matrix. Now you see this statement which is written in a linear form like mu 1=mu2=mu p. I

can consider it as p-1 simultaneous linear functions of the mu vector of the components of



mu. So we can write it as C mu=0.

(Refer Slide Time: 05:36)

So we are equivalently testing H0, C mu=0 against H1 say C mu is not= 0. So consider the

transformation say Y=CX. So this will become then p-1/1 vector then this will follow Np-1,

C mu and C sigma C transpose. So let us consider yj vectors or j= 1 to n and define then y bar

vector as the mean vector of yi and we can also define the variance covariance metrics based

on y as 1/n-1 sigma yj-y bar yj-y bar prime j=1 to n.

In fact, is nothing but see this one for example it is=1/n C times sigma Xi and similarly this

one is 1/n-1 C times sigma xj- x bar, xj-x bar prime C prime that is actually 1/n-1 CSC prime

where this S is based on x.
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And this is simply so we can make use of the test statistic. Let us call it Ty square that is=n y

bar  prime  S  inverse  y  bar.  This  will  have  T square  distribution  on  p-1,  n-1  this  is  p-1

dimensional here and of course n-1 because you have n observations here.

(Refer Slide Time: 08:17)

Let me give one example which is adopted from C. R Rao 1948 work and here N is the

amount of I have used the terminology of that only which is amount of the cork in a boring

from the north into a cork tree. And similarly you can consider E, S, W this is from East, this

is  from South and W is from the West and it  is  considered that  NSEW this follows a 4

dimensional  multivariate  normal  distribution  with  some  mean  vector  mu  and  variance

covariance matrix sigma.

And we want to test whether the amounts are the same on all sides. So we can write so as I

have explained here we can use this set of hypothesis mu1-mu2=0, mu1-mu3=0, mu1-mu4=0

or we can also use say mu1-mu2-mu4+say mu3=0. Mu2-mu4=0, mu1-mu2=0 etcetera. So we

can write it in any other fashion and against H1 some inequality here.
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So the experiment that was conducted and reported in Rao it was having 28 observations

based on that y bar was find to be 8.86, 4.50 and 0.86 and S was calculated 128.72, 61.41-

21.02, 61.41-21.02, 56.93-28.30, -28.30, 63.53. So if we calculate the T square value here/n-1

that turns out to be 0.768. And if I consider compared to the F here then multiplied by 25/3

that is 6.402 and if I consider F value on 325 say at 0.01 then this is more than this.

So this turns out that this is significant. That means the amounts which are collected from all

the 4 sides they vary. So this is an application of Hotelling's T square we can basically what

we are showing here is that we can consider linear functions here. Now as in the case of 1

variable  the  importance  of  the  normal  distribution  (())  (12:24)  from the  fact  that  if  we

consider the sums of the observation from a sample or the means of the observation from the

sample then using central limit theorem we get the approximate normal distribution.

Now a similar result holds for the multivariate data also.
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So we can call it Multivariate Central Limit Theorem. So that is one reason that why the

methods for the multivariate normal distributions are widely applicable. So we had in the

following form that let x1, x2, Xn and so on be a sequence of independent and identically

distributed p dimension random vectors with means as mu and covariance metric say sigma.

Then the asymptotic distribution of say 1/root n sigma Xi-mu I=1 to n.

This is Np 0, sigma as n tends to infinity. So this is a version of that I have not considered

divisions that means in the case of univariate we were considering deviser as sigma here, but

that we are not putting here because you have a matrix here. So at the most you can consider

multiplication by sigma to the power -1/2 here but that is of course easy to understand. So

this type of result is helpful to establish that we can actually use the 1 sample and 2 samples

procedures that we have discussed here for the multivariate normal distribution.

They will be widely applicable. Now one more case that for which in the univariate case we

had some approximate procedure that was when we are considering the test for equality of

variance  means,  but  the  variances  are  unknown  as  well  as  we  do  not  have  any  other

information  on them like  they  are  equal  then  we have  a  procedure  which  is  the  pooled

procedure and for which I have presented the analog for the multivariate case also for the

pooled Hotelling's T square.

But  when they are not equal  then in  the case of one variable  we had some approximate

procedures. Now in the case of multivariate we present some procedure which is based on

considering a curtailment of the observations. So let me present one procedure here. So two



sample problem with unequal dispersion matrices. So we consider let x11 let us go back to

the notation that I introduced earlier x11, n1 here.

This is Np mu1 sigma 1 and another random sample say x1 2 and so on xn2 2 this is random

sample from Np mu 2 sigma 2.  So we have 2 independent  random samples and these 2

samples are also considered to be independent here.

(Refer Slide Time: 17:00)

We are considering the test of hypothesis mu1=mu2 against mu1 is not=mu 2. Let me write

the summary statistics here for example if I consider the mean. The first mean that will be Np

mu1 1/n1 sigma 1 and the second mean which I call X2 that will be Np mu2 1/n2 sigma 2.

(Refer Slide Time: 17:39)

So if I consider let n1=n2=n. Then if I considered y bar that is= X bar 1-X bar 2 then that will



be normal  mu 1-mu 2,  1/n sigma1 + sigma2. You can see here that  this  because of this

coefficient  getting  1/n1  and 1/n2 being same I  can  combine  this  sigma1 + sigma2.  And

therefore I can consider here say yj=x1j-x2j. Based on this we can define S=1/n-1 sigma yj-y

bar, yj-y bar transpose.

And we can consider Hotelling's T- square n y bar prime S inverse y bar. So this will follow T

square on n-1 when H0 is true. So this gives a generalization of paired t test. The paired t test

that we defined in the case of univariate populations which is used for univariate populations.

Now let us consider the second case which is the more important one that is n1 is not=to n2.

So if n1 is not= to n2 without loss of generality let us consider that n1<n2.

(Refer Slide Time: 19:58)

In this case let us define say yj that is= xj1-squre root n1/n2 xj 2+1/root n1, n2 sigma x k 2

k=1 to n1-1/n2 sigma r=1 to n2 x r 2. You see here that in what way we have defined see this

is the observations from the first sample and here the observation from the second sample are

considered  here.  This  definition  we  are  considering  from  1  to  n1.  So  the  remaining

observation that we are putting together here. Let us see the effect here.

If I consider the mean of this, then I get here the mean of the first one that is mu 1-root n1/n2

the mean of the second one that is mu2+ now here the mean of xk2 is mu2 and these are n1

observations so it becomes n1/root n1 n2 mu2-and here it will become n2/n2 mu2. You look

at this terms here this term will simply get cancelled out. So we are actually getting mu 1-

mu2.



That means if we base our test on the mean of yj then it will be able to test about equality of

mu1 and mu2. Also let us consider the covariance matrix between say 2 observations say y

alpha and y beta that is=expectation of y alpha-y beta-expectation y beta transpose. So this

we expand this is= x alpha 1-mu1-root n1/n2 xj 2-mu 2+1/root n1 n2 sigma r=1 to n1 sorry

this is k= 1 to n1 x k 2-mu2-1/n2 sigma x r 2-mu 2.

This is from r=1to n2 * this transpose. Now if we consider this if I consider this into the first

term here then that will give me simply the first one that is sigma one the variance covariance

matrix of x alpha and let us adjust the terms for the other one also.
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So this gives us that is= this coefficient we combine together delta, alpha, beta. See this delta,

alpha, beta will be 1 when alpha=beta otherwise it is 0 sigma 1+n1/n2 delta alpha beta sigma

2+sigma 2-2/n2+n1/n1 n2-twice n1/square root n1 n2 * /n2 +n2//n2 square + 2/n2 root n1/n2.

So after simplification I get simply delta alpha beta sigma 1+n1/n2 sigma 2. So based on this

I can easily define suitable statistic for testing mu1=mu2.

It is based on so n1 y bar prime S inverse y bar this will have T2 on n1-1 where y bar is

nothing, but 1/n1 sigma yj j=1 to n1 and n1-1 S that is nothing but y alpha-y bar y alpha-y bar

transpose alpha=1 to n1. Again this can be simplified if I substitute the terms here that is if I

write the full form of this y alpha and y bar here then this is actually giving us sigma U alpha-

U bar U alpha-U bar transpose where U bar is=1/n1 sigma U alpha alpha=1 to n1.

And U alpha are nothing, but x alpha 1-square root n1/n2 x alpha 2. This is for alpha=1 to n1.
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So this  procedure  was  proposed by Scheffe in  1943 for  the  univariate  case  and Scheffe

actually showed that this gives us the shortest confidence interval for the T distribution using

the T distribution. Here we are actually making sacrifice of some of the observations and

Benneth in 1951 he gave an extension to the multivariate case. Now one can actually consider

it for several populations also when we are considering the linear combinations.

So what  you will  have to  do you have to  consider  the minimum sample  size  of  all  the

observations and based on that you can construct the statistics. Let me just demonstrate that

thing here. This approach can be extended to more general cases. Let us consider say X alpha

i or alpha= 1 to ni i= 1 to k. So these are samples are Np say mu i sigma i.  So we are

considering k independent samples from k Np mu i sigma i population.

And we are considering testing for a linear combination of the mean vectors against say not

equal where this beta 1, beta 2, beta k are given scalars and this mu * is given vector.
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If ni’s are equal, then there is no problem then we can combine as in paired test. If ni’s are

unequal, let n1 be the smallest and like in the previous one we consider based on n1. So again

here we will do it on base of n1.

(Refer Slide Time: 29:14)

And we can define y alpha to be beta 1, x alpha 1+sigma beta I root ni/n1. This is from 2 to k

and now we adjust the terms x alpha I-1/n1 sigma beta=1 to n1 x beta I + 1/ square root n 1 n

2 sigma Xri r=1 to ni.  Then if  we consider  say expectation  of y alpha then it  is  simply

becoming beta 1 mu 1 from first term here +sigma beta i root n1/ni i=2 to k mu i-1/n1 n1 mu

i+ni/ root n1 this should be ni here n1 ni and mu i.

So this term gets cancelled out n1/ni this gets cancelled here. So you get simply beta i mu i

which is the desired term in the hypothesis here. So we can consider and similarly if we



consider the variance covariance matrix of this based on y alpha y beta-expectation y beta

transpose then that is= delta alpha beta sigma beta i square n1/ni sigma i i=1 to k. If I assume

y bar as the mean of this based on n1 observations only.

And so this is-= sigma beta i x bar i where of course x bar i is the mean of the (()) (31:46)

sample. And n1-S is y alpha-y bar y alpha-y bar transpose alpha=1 to n1. Then if I consider t

square as n1 y bar-mu * prime S inverse y bar-mu * then that will have t square p n-1. So we

can consider the Hotelling's T square test based on this here.
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If I define say u alpha=sigma beta i root n1/ni X alpha i=1 to k for alpha= 1 to n1 then based

on this S is nothing, but sigma u alpha –u bar u alpha-u bar transpose. So one can use this

based on the Hotelling's  T square statistics.  Another problem which may also arise that I

consider the 2 sub vectors of the full vector and now I want to test whether they are having

equal components that means like first one I write as mu 1 mu 2 second as mu 3, mu 4 then

whether mu 1= mu 3, mu 2= mu 4 etcetera.

So this type of problem can also be handled using the Hotelling's T square. Let me give one

example. Suppose I consider x1 and x2 here and mu=say mu 1, mu 2. So these are partitioned

here, these are partitioned here and similarly the variance covariance matrix is partitioned.
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So we are assuming here this as q components this as q components okay. So if I consider say

x bar 1-x bar 2 then that will have q dimensional normal distribution with mean mu1-mu2

and variance covariance matrix sigma * where this sigma * can be then written as sigma 11-

sigma 21-sigma 12+sigma 22.

(Refer Slide Time: 34:48)

So if we want to test say H0 mu 1= mu2 against say H1, mu 1 is not=to mu 2. So we can

consider the statistics n x bar 1-x bar 2 S11-S21-S12+S22 inverse X bar 1-x bar 2 transpose.

So this will be based on Hotelling's T square on n-1 q-1 here sorry q and n-1 here. I have

shown that various inferential problems for the mean vectors of 1 or 2 multivariate normal

populations  or  several  multivariate  normal  population  or  they  can  be  handled  using  the

Hotelling's T square statistics.



So there are other things which are based on the variance covariance you have something

based on the Wishart distribution. However, I am not discussing that part right now because

the testing for the variance covariance matrix will be somewhat little more complicated rather

we  move  over  to  a  more  practical  oriented  problem  which  is  called  a  Problem  of

Classification. 

(Refer Slide Time: 36:42)

Let  me introduce  this  problem here  Problem of  Classification  of  Observations.  So  quite

frequently we are encountered with various kind of problem for example you consider a new

entrant for example college. Now the students of the college can be described into 2 parts.

One who go for an academic career and another who go for corporate job. Now based on the

previous data we have the distribution of the 2 student performances.

Now when new student is considered then to which group he would belong to. Now this kind

of problem can be considered in a more general setting. We have k population say pi 1, pi 2 pi

k.  We want  to  classify  a  new observation  X into  one  of  the  k  populations.  So  broadly

speaking this is the problem of classification. Now here there can be several variations for

example we may know the forms of pi 1, pi 2, pi k.

For example, this could be normal say mu 1 sigma 1, normal mu 2 sigma 2 normal mu k,

sigma k and now we have another vector say x new observable we want to classify where it

will belong to. Here it could be that mu 1 sigma 1 mu 2 sigma 2 mu k sigma k are known.

There could be another problem when these parameters are unknown in that case we need

some sort of observations from each of the populations.



Because then we will need to estimate mu 1, mu 2 mu k and sigma 1, sigma 2, sigma k. These

are called training samples. There can be yet another type of problem when the forms of pi 1,

pi 2 pi k are completely unknown. So in that case we have non parametric procedures. So let

me introduce this problem that means what are the procedures and in what way we can study

this.

So what are the standards of good classification? In a very rough way simple way we can say

if we classify an observation into one of the population then either it is a correct classification

or it is a incorrect classification. So a criteria for checking the goodness of the classification

procedure  could  be  the  probability  of  incorrect  classification  that  means  we  call  it  the

probability of misclassification.

So if the probability of the misclassification remains low then it is a good procedure. So it is

something like in the testing of hypothesis problem where we accept or reject the hypothesis

based on the sample. Now the hypothesis could have been true and we would have rejected it

and the hypothesis could have been false and we could have accepted there were the two

kinds of errors.

But when we are dealing with the k population here in the classification then the probability

of misclassification or the probability of correct classification also becomes manifold that

means an observation could have belonged to pi 1 and we classify it as pi 2 then observation

could have been from pi 1 we could have classify it as pi 3 and so on and similarly the other

way round that means the observation could be from any of the pi j.

And we can classify it  as one of the pi i.  Along with that  we can also have the cost of

misclassification along with the probability another additional thing could be that if you do

the wrong classification then there can be some additional  cost.  So in a general  decision

theoretic setup one can also consider that. The particular case can be that if you have a correct

classification you have no loss and if no cost is implemented.

And if you make a wrong classification then you are incurring say one cost then you can get a

0, 1 loss function kind of thing. So now let me give some notation here the classification of

an  observation  depends  on  the  measurements=x1,  x2,  xp  on  that  individual.  So  we  can



actually consider R1 and R2 as a partition of the p dimensional space here where R 1 is the

space where classify that is if x belongs to say R1 classify x as belonging to pi 1.

And if x belongs to R2.
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Then you classify x as  belonging to  pi  2.  This  R1 and R2 are  disjoint  regions  in  the  p

dimensional sample space.

(Refer Slide Time: 43:25)

I mentioned about the kind of errors suppose in the beginning we consider only 2 populations

say pi 1 and pi 2. So we may consider C/2/1 as the cost of misclassification if individual is

classified  as  coming  from pi  2  whereas  he  actually  came  from pi  1.  Similarly,  we  can

consider C/1/2 that is classified as pi 1 and he actually came from pi 2. So we have 2 cost of



misclassification.

So in a decision theoretic setup if we consider it as a loss metric we can guide it in this

fashion pi 1, pi 2 that is the statistician decision and on this side we have pi 1, pi 2 that is the

true population. So if the true population is pi 1 we classify it as pi 1 then there is a 0 cost.

Similarly, if  true population is  pi  2 and we classify as pi 2 then also it  is  0.  If  the true

population is pi 1 and we classify it as 2 then the cost is C1 2 1 and similarly here the cost is

C/2/1.

So these two terms are taken to be positive in general. A good classification procedure will

have  minimum cost  of  misclassification.  As  we have  seen  in  the  previous  discussion  in

general in the statistical decision making problem it is not possible to completely minimize

the misclassification cost like in the case of testing of hypothesis problems also we have seen

that the type 1 error and the type 2 error cannot be completely eliminated.

So there was a  compromise which was worked out that  you can consider  fixed level  of

significance and then you consider the probability of type 2 error to be the smallest or the

power of the test to be the maximum. So this was one of the compromise solutions that we

considered. So if we consider it as a true population then it is actually a part of you can

consider it as a testing of hypothesis problem.

And therefore both cannot be minimized simultaneously. So let us consider here this cost

function  and  in  what  way  we  can  consider  the  minimization  etcetera.  So  one  type  of

terminology which we did not consider in the testing of hypothesis problem is to allocate

prior  probabilities  to  each  of  the  population.  For  example,  if  we  know  that  both  the

population may occur with equal probabilities or the population 1 may occur with probability

1/3.

And population 2 may occur with probability 2/3 and so on. For example, you get a satellite

image and you want to classify whether it is a land area or whether it is a water area. So if the

image is taken from the satellite of the earth area a portion of the earth then you know that

earth area is say the land area in the whole earth is 1/4 and the water area is 3/4. So you can

allocate the probability p1 and P2 the prior probability.



So if  you have the prior  probabilities  then we can reduce this  number the probability  of

misclassification to a single number. So you can consider the Bayesian Classification Rules.
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So let me introduce this here now. Suppose q1 is the prior probability that the observation

came from population pi 1 and let q2 be the prior probability that the observation comes from

population pi 2. So here of course q1+q2 should be=1. Let us consider say p i x is the so you

may have a discrete or continuous distribution or it could be mixture also, but in particular let

us take either purely discrete or purely continuous.

So you will have a pdf or pmf associated with the population pi i and we are considering R1

and R2 as the regions which are associated with classifying observation x into pi 1 or pi 2. So

we define probability of correctly classifying an observation in pi 1 which is actually from pi

1.  This we write as pR 1/1.  This we can write  as integral  p1 x dx. So I am considering

actually the density function form if it is a discrete case we can equivalently change it to the

summation also.

So I  am not  discussing this  case  separately  let  us  have this  interpretation.  So this  dx is

actually it would be multivariate because it depends upon what kind of observation you are

having. In general, we may be dealing with multivariate observations here.
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So similarly we can define the probability of misclassifying an observation from pi 1 that is P

R2 given 1 that means it is coming from 1 we classify it as 2 that means the density is

actually p1, but we put it as R2. And in a similar way we have the probability of correctly

classifying an observation of pi 2 that will be PR 2/2 and probability of misclassifying an

observation from pi 2 that we will write as PR 1/2. That will be integral p2 x dx R1.
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So we can consider now expected loss from cost of misclassification. Let us call it E that will

be =C/2/1 PR 2/1 q1+C/1/2 PR 1/2 q2. Let me explain this if the observation is from 1 so the

prior probability of the population 1 is q1 and we are incorrectly classifying it into 2. So the

probability  is  this  and  we  also  incur  a  cost  C/2/1  of  misclassification.  Similarly,  if  the

population is actually 2 then the prior probability is q2.



And  we  misclassify  it  as  1  so  the  probability  of  that  is  PR  1/2  and  then  the  cost  of

misclassifying an observation from 2 into 1 that is C/1/2. So this becomes the expected loss.

So a procedure R that divides Rn into R1 and R2. So we consider this sample space say x not

in Rn because I have not mentioned the dimension here. Let us consider x here this is the

sample space of x into R1 and R2 such that E is minimized for given q1 and q2.

This is called a Bayes procedure. So we will mention that how to obtain a Bayes procedure

here. There can be another way when there is no prior information then I will have 2 different

terms  that  is  the  probability  of  misclassification  from  first  one  and  the  probability  of

misclassification  on  the  second one.  So let  me define  that  also.  When  there  is  no  prior

information about the probabilities of each population.

Then we consider 2 terms. Expected loss if the observation is from pi 1 that is we call r R1

that is=C/2/1*PR 2 given 1.
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And similarly expected loss if the observation is from pi 2 that we call rR2 that is=C/1/2 PR

1/2. We can give some decision theoretic definition which I will be explaining in the next

lecture like we can call about a procedure being better than another procedure, a procedure

being as good as another procedure and admissible procedure, a Minimax procedure and we

will  show  that  when  the  prior  probabilities  are  known  the  Bayesian  procedure  can  be

determined.

When the prior probabilities are not known we will try to find out the Minimax procedure.



We will also develop the procedures for classification into multivariate normal populations.

So these things we will be covering in the following lecture.


