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Now, I will discuss the variance, covariance matrix S the sample variance covariance matrix. So

for  that  if  we  derive  the  distribution  it  will  be  a  matrix  distribution,  it  is  called  Wishart

Distribution.
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So we can consider this Wishart distribution as a generalization of the chi-square distribution in

the Univariate case the sample variance had a chi-square distribution, in fact we wrote it in the

form that sigma x/x square/sigma square that follows a chi-square distribution on m-1 degrees of

freedom. So now we consider all the components of the dispersion sample dispersion matrix, so

we are having sigma x1i-x1 bar square sigma x1i-x1 bar*x2i-x2 bar and so on. 

So what is the distribution of that? So let us define the Wishart distribution. So let U1, U2, Uk be

independent Np Mu, j, sigma where j=1 to k. Then we say that sigma Uj, Uj prime, j=1 to k, this

is said to follow. Wishart distribution with k degrees of freedom and we write as following Wp k

sigma, M. This S is p/p, so we let us write this as S here. And here M is the non-centrality matrix.

This is of order k/p. 



Now, when M= null matrix then S is said to have a central Wishart distribution. And the density

function of-- so we write Wp K, sigma Mu M this will exist if k is > or = p. For p=1 Wp k, sigma

that is in W1 k, sigma square that is sigma square, chi-square k. Similarly, non-central Wishart

will  reduce to non-central  chi-square for p=1. Before talking about the density function of a

Wishart distribution it is quite complicated actually. 
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So we firstly look at its properties like the case for multivariate normal distribution. So, some

important properties of Wishart distribution. The first properties are that if I have S following

Wishart with parameters p, k sigma and here I am not writing that M here because I can consider

both the case of central and non-central here. And L is a fixed vector in the p dimensional space.

Then L prime SL that will have sigma L square chi-square k.

And again if S is central Wishart then L prime SL is central chi-square. And here the sigma L

square I am defining to be L prime sigma L. For proof of this now we will make use of the non-

central  chi-square.  So  S  is  written  as  sigma Uj,  Uj,  prime  j=1  to  k  where  we are  actually

considering Uj as the multivariate normal. So if I consider and these are independents, okay U1,

U2 but because that was a setup that we consider here, U1, U2, Uk are independently distributed.

So let us write here L prime SL that = sigma L prime Uj, Uj prime L that = sigma L prime Uj

square j= 1 to k. So L prime Uj these are independent, these are independently distributed normal

1 L prime Mu j and sigma L square. So L prime SL, this will follow sigma L square, chi-square



on k degree of freedom and this non-centrality parameter will come there as we discussed in the

previous lecture.

That  if  I  am  considering  x  following  Np  Mu,  I,  then  x  prime  has  an  non-central  square

distribution with p degrees of freedom and non-centrality parameter is given by summation Mu, I

square/2. So if you use this then-- because what we are getting here this L prime Mu j they are

univariate normal so of course we have put sigma L square if I divide by that then that will come

here. So this result follows here. 

Now if my original Wishart is central then M will be 0 so expectation of y that will be 0, so chi-

square will be central. Let us write that also.
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If Wishart is central then M is 0 null matrix, this implies expectation of y is ML that is 0, this

implies chi-square is central. So we have shown a direct correspondence between a Wishart and

Chi-square  distribution  as  we  have  seen  in  the  case  of  multivariate  normal  every  linear

combination is univariate normal. So here in place of linear combination it is quadratic form, so

S is a positive (()) (09:07) matrix and considering L prime SL so this is a quadratic form.

But the quadratic form will have a chi-square distribution. Let us look at the second property. So

once again we are considering Uj following Np Mu, j sigma where j=1 to k, suppose they are

independent then if I consider. Now in the previous one I defined what is U, I defined the matrix



here as U, so if I use this U as components of U1, U2, Un then if I consider U prime A U then

this will have Wishart. 

This is equivalent to saying Y prime AY; this will be sigma L square chi-square r.. I will skip the

proof of this because it involving lot of terms and I do not want to make this course extremely

theoretically work. Let us move to further properties of the-- U prime A1, U and U prime A2, U

they are independent, independent Wishart iff L prime U prime A1, UL and L prime U prime A2,

UL they are independent chi-square for any L. 

Further U prime B and U prime AU are independent Np and Wishart P if Y prime B that = L

prime U prime B and Y prime A Y that = to L prime U prime A U L they are independent N1 and

chi-square for any L. This relation is actually similar to the relation that in the sampling form

univariate  normal  distribution  the  sample  mean  and  the  sample  variance  are  independently

distributed. So this is of similar nature.

So now let us talk about the Joint Distribution of the Sample mean and the Sample Covariance

matrix.
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So let U1, U2, Un be a random sample from Np Mu, sigma distribution. Then if I consider L

prime U1 and so on L prime Un for any L, L is a p dimensional vector then this is a random

sample from N1 L prime Mu, L prime sigma L. So if I consider the sample mean 1/n sigma L



prime Ui. And if I consider the sample covariance matrix L prime Ui-U bar square i=1 to n that =

L prime sigma Ui-U bar Ui-U bar prime L that = L prime S L.

So from the distribution theory of a univariate  normal distribution the sample mean and the

sample  variance  covariance  matrix  are  sample  variance,  sample  covariance  is  independently

distributed.  They are independently distributed further L prime U that will be univariate normal

L prime Mu, L prime sigma L by n and L prime SL will have L prime sigma L chi-square on n-1.

So now if  we use this  result  this  is  iff and non-if  here so we will  get that U bar will  have

multivariate normal and S will have Wishart.
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So by using property 3, we get that U bar and S are independently distributed and U bar will

follow Np Mu,  sigma/n  and  S  will  follow Wishart  n-1  sigma.  So this  is  a  central  Wishart

distribution. Now like the additive property of chi-square distribution Wishart also has additive

property. Let S1 and S2 be independent so Wishart k1, sigma and k2, sigma, then S1+S2 will

follow Wishart k1+k2, sigma.

Once again we can prove this result by considering L prime S1 L and L prime S2 L, so there will

be central chi-square and then there will be additive so it will become k1+k2. In the case of

multivariate normal distribution, we have considered linear combination that means if I consider



x as a Np and if I considering B as a q/p matrix then bx will have Nq distribution. Now a similar

thing is proved Wishart also.

So this is linearity we can say. If S follow Wp, k, sigma and the B is the q/p matrix then BSB

transpose that will follow Wishart q with B sigma B transpose. So the result will follow from

definition  of the Wishart  distribution.  Let  us  talk  about  the density  part  here.  Let  us follow

Wishart k, sigma and let us denote the density of S/ say Wp S, k, sigma. Let us define S* that =

CSC transpose where C is non-singular. 

Then density of S* is given by, so by a transformation of this we get determinant of C to the

power –p-1 Wp c inverse S* c inverse prime, k, sigma. 
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Let us S ij be the inverse of S ij that is equal to S and sigma ij be inverse of sigma ij that is equal

to  sigma.  Now, if  S  is  having the  Wishart  distribution  then  we have  sigma pp/S pp that  is

following chi-square k-p+1and this is independent of S ij ij=1 to p-1. At the same time L prime

sigma inverse L/L prime S Inverse L that follow chi-square k-p-p+1 for any L naught 0. 

In the case of multivariate normal we have seen the conditional distribution, a similar thing is

true for the Wishart also. Now, we have these properties I am stating without proofs because the

proofs are quite involved using multivariate parts here.
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So you should know the results here. So Conditional distribution of components. So suppose I

assume Wishart distribution with parameter k and sigma and S is partition S11, S12, S21 and

S22. Suppose these are r components and these are S components here. Similarly, here this is r

components this is S components here.
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Then S22-S21 S11 inverse S12 that has a Wishart on S k-r, sigma22-sigma21-sigma11 inverse

sigma12. One more representation of the decomposition of the Wishart determinant is given by

the  following.  If  I  say  S  follows  Wishart  k,  sigma  determinant  of  sigma  is  non-zero  then

determinant of S/determinant of sigma is distributed as a product of p independent central chi-

square variables with degrees of freedom k-p+1 and so on k-1, k.



And if Si follow Wishart ki, sigma i=1,2. S1 and S2 are independent, if k1 is > or = p then

lambda that = determinant of S1/S1+S2 is distributed as product of p independent beta variables

k1-p+1/2, k2/2, k1-p+2/2, k2/2 and so on, k1/2, k2/2. In case, k2=1, the product of beta variables

is will be same as a beta with k1-p+1/2, p/2. So this distribution is denoted the lambda p, k1, k2. 

So these distributions are use in the study of the covariance coefficient etcetera which I am not

paying too much attention at this  point here.  Now we move to another distribution which is

extremely useful. So here we have introduced a Wishart distribution as a generalization of a chi-

square distribution and we looked at some of the properties. 

So in the testing for the variance, covariance matrix of a multivariate normal distribution you can

make use of this and the test are other information will be based Wishart distribution. Let us also

consider  the  concept  of  t-distribution  for  the  univariate  distribution.  In  the  concept  of  t-

distribution came when we are considering the inference on mean but variance is unknown, so

we are divided by estimate of sigma that is S there and that was said to have a t-distribution.

Now a similar concept to exist are the when we are considering inference on the mean vector or

the multivariate normal distribution. And when the variance covariance matrix is not known. So

as a generalization of t-distribution we are considering Hotelling’s T square distribution.
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So let us consider say S following Wp k, sigma and say d follows Np delta c inverse sigma.

Suppose S and d are independent, in that case this Hotelling’s generalized T square statistics is

defined as T square=c k d prime S inverse d. Now this we can interpret as k d prime S inverse d

divided by d prime sigma inverse d into d prime sigma inverse d. And this c also we write here.

Now if you look at this term here, this is having chi-square k-p+1 for a given d.

So this property we did at the earlier, this was L prime sigma L/L prime SL. So we have written

this property but this will have a chi-square distribution, rather arrears of this, not this d prime

sigma inverse d/d prime S inverse d, this is having a chi-square distribution on k-p+1 degrees of

freedom. And it is independent of d. 
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So this can also be considered as unconditional distribution of d prime sigma inverse d/d prime S

inverse d.
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Now, d is following multivariate normal. So if I consider the c, d prime sigma inverse d that will

have chi-square with p and c Tau square where Tau square=delta  prime sigma inverse delta.

Hence your T square/k is actually chi-square p, c Tau square/chi-square k-p+1. So these are ratio,

so this is something like a non-central F distribution which I used in the previous class, that if I

consider ratio of-- 

If I have a central chi-square and in the denominator I have an in the denominator I have central

chi-square and in the numerator I have a non-central chi-square, then the ratio is a non-central F.

So actually we are able to get come to that situation now that this is and these 2 are independent.

Basically we are writing here k-p+1/p T square/k follows F distribution so that is non-central F.

If delta = 0 then we have a central F. Let us consider an alternative representation.
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In the alternative representation let us consider as T square = c k d prime S inverse d. So we can

write 1+T square/k inverse = 1/1+c d prime S inverse d this = determinant of S/determinant of

S+cd d prime. See to prove this statement we can actually consider c s which is p/p-cd which is

p/1,  d prime which is of course 1/p and 1. Let us consider the determinant then this can be

determinant of s+c d d prime which I can write as determinant of s*1+c d prime s inverse d. 

Now c d d prime that will have Wishart 1 sigma when delta = null. So Hotelling’s T square after

monotone transformation is a special case of lambda=S1/S1+S2 with k=1. 
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So this we have already proved that this will have--1/1+T square/k has beta distribution with

parameter k-p+1/2 and p/2. So we are actually able to divide find out the distribution which is a



generalization of the student t-distribution here. I will not be giving the derivation of the density

of the Wishart distribution, we simply give the expression here the density of Wishart, so we

have the following result. If we U prime p/k has density of the form U prime U then density of S

that is equal to U prime U is proportional to F(s) determinant of S to the power k-p-1/2. 

So I am considering the density of S as a constant times I will write only the final expression

here 1/w(p,k) which is  some constant  determinant  to  the sigma-k/2; determinant  of S to  the

power k-p-1/2 e to the power – 1/2 sigma of inverse S. Many times we consider generalized

variance that is determinant of S. The distribution of the determinant of S can also be obtained.

In terms of this we also define sample correlation coefficient etcetera.

Let me express this terms of Wishart.
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Consider 2-dimensional case. In the 2-dimensional case S will follow Wishart 2 k sigma. Then

r=S12/square root of S1 s22, this is actually the sample correlation coefficient. This is actually

maximum likelihood estimator of row that is sigma12/square root sigma11 sigma22. 

So the distribution of r, or it function can be determine it is given by the density of r square is

given by 1-Rho square to the power k/2/gamma k/2 gamma k-1/2 1/r square to the power k/3/2

sigma Rho to the power 2l (gamma/2+l)  square/L factorial  gamma L+1/2,  L=0 to infinite;  r



square to the power Rho-1/2. And the density of r can be obtained from here. We also have the

asymptotic distribution of r which can be used for the inference purpose.
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Square root k r-k/1-Rho square, this converges following normal 0,1 as k times to infinite that is

n times to infinite, here k=n-1. And we also define Fisher’s Z that is half log 1+r/1-r. And if I

consider xi=half log 1+Rho/1-Rho then square root n Z- xi this also converges to normal 0,1 as

intense to infinite. So for testing H naught say Rho=Rho naught again say H1 Rho is not equal to

Rho naught, we can use root n Z-xi > Z alpha/2. 

Sometimes root n-3 is found to be better  approximation.  Next, we define multiple correlated

coefficients which is used in the multivariate analysis. Like in the case of one variable in the case

of 2 variables we have discussed the Karl Pearson coefficient of correlation. Similarly, in the

several variables we defined multiple correlation coefficients, so let me define that here.
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“Professor to student conversation starts” I have avoided deriving the distributions of various

terms in this multivariate portion, those who are interested can look at the book Introduction to

Multivariate Analysis by T. W. Anderson, the chapter on multivariate analysis in the book Linear

Statistical Inference and its application by C.R. Rao. And there are some other books also for

example, M S Srivastava book on Multivariate analysis they consider this distribution theory.

Not considering here to save the time here. “Professor to student conversation ends”

So let us consider say, let x be a random variable and let y be a random vector. Then the multiple

correlation coefficient between x and y is defined to be the maximum of correlation coefficient

between x and all  linear combinations a prime of Rho. If x and y are one dimensional  then

maximum of Rho and -Rho multiple correlation coefficient between x and y be maximum of Rho

and –Rho that is equal to modulus of Rho x, Rho y. Now let us consider say x=y and z.

So this is one dimensional and this is say p-1 dimensional. So x is a p/1 vector, and we want to

define the multiple correlation coefficient here. And we partition the special matrix as sigma 11,

sigma 12, sigma 21, sigma 22. So this is here 1 dimensional scalar and this is p-1 dimensional.

So let us consider say maximum of correlation coefficient let us put this square here between y

and a prime z, where a is a p-1 dimensional vector.

So we want to maximize this with respect to a. So this = a prime sigma 21 square/sigma 11 a

prime sigma 22 a. We are considering the maximum of this with respect to a. so this we can write



as we can substitute b as sigma 22 1/2 a. So if you put that we will get this as maximum with

respect to b, b prime sigma 22 to the power-1/2 sigma 21 square/sigma 11 b prime b. 

Now here we can apply (()) (43:50).
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So this quantity will be < or = maximum of b prime b sigma 12, sigma 22 inverse sigma 21

divided by sigma 11 b prime b. But this term here is canceled out so here is quantity become free

from b. This is upper bound is actually obtained, this is attempt when a=sigma 12 sigma 22

inverse. 

So we are getting here Rho square y sigma 12 sigma 22 inverse Z that is = sigma 12 sigma 22

inverse sigma 21 square divided by sigma 11 sigma 22 inverse sigma 23 sigma 22 sigma 21, so

this becomes identity and we will get this term can canceled out so you get simply sigma 12

sigma 22 sigma 21/sigma 11. So this we call Rho m square. So Rho m is actually = sigma 12

sigma 22 inverse sigma 21/sigma 11 to the power half. 
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Now a maximum likelihood estimator of Rho m square, this will become simply r square which

is  calculated  simply  from  the  sample  analog  of  this.  Later  on  we  will  show  that  in  the

multiplication  analysis,  we use this  r  square as the coefficient  of determination  and it  is  an

important indicator of the goodness of the regression model that is fitted there. 

Now the distribution of r square can also be obtained by distribution theory that I have discussed

earlier but I will not be giving the final results here. Actually we can see here that if I consider r

square/1-r square then this term is actually = S12, S22 inverse S21/S11-S12 S22 inverse S21. So

if I am considering S following Wishart k sigma then this will follow this can be written as Z/chi-

square k-p+1.

And the general distribution of Z given chi-square k is chi-square p-1 Rho m square by twice 1-

Rho m square chi-square k. So if  Rho m is 0 then sigma 12 is 0 and this will imply that r

square/1-r square has F distribution on p-1 k-p+1degrees of freedom. So the distribution of the

multiple correlation coefficient after a transformation is shown to be F when Rho m = 0. So this

is used for the testing of hypothesis regarding multiple correlation coefficients.
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Likewise, we can also talk about Partial Correlation Coefficient. Suppose x is a p/1 vector with

expectation x=0 and dispersion matrix = sigma. Then expectation of x1 given x2 to xp this is

called regression of x1 on x2 to xp. So here x1 is known as dependent variable, we will discuss

this in detail in when we do the regression but right now let me just introduce for the purpose of

definition here. And x2 to xp these are called independent variables.

So this is use to predict x1 from x2 to xp. If we consider the correlation between x1 x2 keeping

x3 to xp fixed, then it is called partial correlation coefficient. So we have for example Rho12.3

up to p that is equal to –sigma 12 divided by square root sigma 11 sigma 22. And one can obtain

sample partial correlation coefficient. From here by considering –S12/square S11 S22.

“Professor to student conversation starts” I  will  conclude  today’s lecture  by giving some

exercise here for calculation of this coefficient and also for testing here. “Professor to student

conversation ends”
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So S/n is given by say 95.29 52.85 69.66 46.11 52.86 54.36 51.31 35.05 69.66 51.31 100.81

56.54 46.11 35.05 56.54 45.02. Fine R square. Let R square be = say xi. Then test the hypothesis

that H naught r square is equal to xi integer versus Rho square is not equal to integer part of zie.

Also find partial correlation coefficients. 

So this is one exercise another exercise I am asking. Let us consider the data on the performance

of student on 2 test, so some performance majors are given here 1 1.8 0.8 2 0.7 -1.5 3 1.0 -1.3

sorry -0.3 4 0.2 -1.3 5 0.2 and 0 6 4.2 3.2 7 5.3 3.9 8 1.5 and 0.7 9 4.7 and 0.1 10 3.3 and 2.2.

Here you find MLE’s of Mu sigma assuming x1, x2 follow N2 Mu sigma. Find Rho and test H

naught Rho=0.8 against H1 Rho is not equal to 0.8 using asymptotic test for Rho.     

In the next lecture, I will introduce the use of this Hotelling’s T square etcetera for testing for the

mean of the multivariate normal distribution or comparing the means of 2 multivariate normal

distribution. We will also consider the problems of classification of observations. So this thing I

will be covering in the next lecture.


