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In this section of this course, we will introduce methods of multivariate statistics. Now we

have seen in the first section on random variables, that we can also discuss bivariate and

multivariate distributions. That means, for example you consider a data on the patient, when a

patient goes for some diagnostic test, so concerned physician or the doctor, he may record his

various characteristics.
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For example, his age is recorded, X2 for example is weight, and X3 could be his systolic

blood pressure, X4 could be his diastolic blood pressure, X5 could be his sugar/glucose level,

etc. So in general then for a particular patient you have the data on 5 variables. We can use it

as a row vector then I will put a transpose here otherwise we can consider column vector,

then it will be X1, X2, ... X5.

In  particular,  we  have  discussed  bivariate  normal  distribution  and  also  some  specific

problems on normal distribution in the course on probability and statistics. So the primary

thing that we have to notice here is that there may exist some correlatedness among these

variables.  And  now  like  in  the  case  of  univariate  distributions,  we  stabilised  normal

distribution  as  one  of  the  important  distribution,  or  you  can  say  more  frequently  used

distributions.



The reason was the application of the centre limit  theorem, that means whenever we are

considering averages or the summations then the data can be approximated at the distribution

of the sums or the means can be approximated by the normal distribution. In a similar way,

we also have a multivariate centre limit theorem, which I may mention briefly and therefore

that brings into the focus a multivariate normal distribution.

Now a multivariate  normal  distribution  can  be  considered  as  an extension of  a  bivariate

normal distribution. And we will introduce the concept. So we will first study multivariate

normal distribution and then in particular certain distributions which are used for inference.

So for example, in the univariate case you had Chi square distribution, T distribution, etc.,

which were related to the normal distribution.

Similarly,  in  the  multivariate  case  there  will  be  certain  distribution  such  as  Wishart

distribution or Hotelling's T-squared distribution distribution, etc., which will be used for the

inference purposes.  So in this  particular  section of this  course,  we will  introduce various

multivariate distribution which are related to multivariate normal distribution. So let me start

with the theory of multivariate distributions.

So the first theorem or the first result which is actually attributed to Cramer-Wold. Let X be a

random vector of order p. So that means we are assuming X is a mapping from the sample

space into Rp. Then the distribution of X is known if and only if the distribution of every

linear combination say T prime X is known. So basically characterisation of a multivariate

distribution can be done in terms of its linear combinations.

But  of  course  we  have  to  consider  every  linear  combination.  The  proof  is  based  on  a

characteristic function approach. Let us consider the characteristic function of say X = X1,

X2, Xp at the point say T = T1, T2, Tp. So let us use some notation phi X T, then it is equal to

expectation of e to the power i summation Tj Xj, j=1 to p, which also can be written as

expectation of e to the power i T prime X.

Now if I give this name as V, then this is = expectation of e to the power iV. So this can be

then considered as, let us call this expression as say 1.
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The expression 1 can then be called characteristic function of random variable V that is = T

prime X at point, say t = 1. So if the distribution of V is known for all T belonging to p

dimensional equally to any space then the characteristics function of V is known at T = 1 for

all T belonging to Rp. This implies characteristics function of x is known using 1. Now this

implies that distribution of X is known.

Conversely assume that the distribution of X is known. Then phi X at the point say t of T

where T is a real number. Then this is becoming the expectation of e to the power i sigma t Tj

Xj that is = expectation of e to the power itV. That is the characteristic function of V at the

point t that is characteristic function of V is known at t. So the distribution of V is known for

all. So this theorem actually it is a characterisation theorem.

That means it says that the distribution of a random vector can be described in terms of the

linear combination provided all the linear combination distributions are known. Conversely if

the distribution of random vector is known then all its linear combination will have a known

distribution. Now in fact we use this definition in the first case for introducing a multivariate

normal distribution.

Later on we will see equivalent versions but we will find this quite convenient to introduce a

multivariate normal distribution through this. If you remember a property for the bivariate

normal distribution in the course of probability and statistics that we proved that if xy is a

bivariate  normal  distribution,  then  every  linear  combination  ax+by  is  univariate  normal

distribution.



Conversely if for every a and b, ax + by has a univariate normal distribution, then xy has a

bivariate  normal  distribution.  So  basically  you  can  see  that  this  theorem  Cramer-Wold

theorem is a most general version of this result. So basically we use the same definition for a

multivariate normal distribution.
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So we define the definition of a multivariate normal random, so a random vector X is said to

have a  p variate  normal  distribution if  every linear  combination of its  components  has a

univariate normal distribution, and we write X follows Np. As a remark, let me mention here

that to take the case of T = 0 vector, that means basically we are saying T prime X is 0, then

we may consider degenerate distribution at 0 also to be a normal distribution.

Now let me introduce some multivariate notations, suppose I consider, let us consider the p

dimensional vector X1, X2, Xp, say this is p by 1 vector another vector is say y which is may

be of a q dimension say Y1, Y2, Yq. Suppose X and Y they are random vectors, then the mean

vectors are defined by, so here you will have all the components coming here, expectation of

X1 and so on, expectation of Xp, which we may call say mu1, mu2, mu p that is = to mu

vector.

And similarly say for the Y which let us give some notation say nu1, nu2, nu q, that is a nu

vector. Now in the case of one variable we have the variants. So for a multivariate, that means

for a random vector, we will have a variance-covariance matrix.
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The variance-covariance matrix or say dispersion matrix, it is defined as D X say, that is =

variance  of  X1,  variance  of  X2,  so  in  the  diagonal  we  will  have  the  variance  of  the

components, and in the off diagonal terms we will have covariance between X1, X2 and so

on, covariance between X1, Xp. Now these terms will be same, this is a symmetric matrix,

Dx is a symmetric matrix. And if we consider, so this is also another interpretation.

So this is equal to expectation of X - mu, X - mu prime. This is a column vector and this is a

row vector. So if we multiply we get this matrix here. Now covariance matrix between 2

vectors say X and Y, this is called say CXY, that is consist of all the covariances, that is

covariance between X1, Y1, covariance between X1, Y2 and so on, covariance between X1,

Yq and so on.

Here you will have covariance between X2, Y1 and so on and here you will have covariance

between Xp, Yq. This is a p/q matrix, this is actually if you consider CYX, then it is transpose

of this.
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If we consider linear transformation of a vector, suppose A is a v/p matrix and say B is a s/q

matrix,  then AX if  I  consider  this,  then  this  will  have A * expectation  of  X and that  is

dispersion matrix of AX that will become A times this dispersion matrix into A transpose.

This can be proved easily, let us consider say, let us take A to be A11, and so on A1p and so

on Av1, Avp. So Ax then will become = we can consider these as the vectors here.

See this  is  actually  a1 prime and so on av prime vector  multiplied  by X here.  So I  can

consider it as a1 prime X and so on av prime X, see if I consider expectation of AX, so that

will become component wise expectation. That will become a1 prime expectation of X and so

on, av prime expectation of X. So that is = a1 prime and so on av prime expectation of X, so

that is = A times expectation of X.

In a similar way, we can consider the dispersion matrix of AX, the dispersion matrix of AX it

is = expectation of AX - A mu * AX - A mu transpose. So that is = A * expectation of X - mu

*X -mu transpose *A transpose. So that is = A times dispersion matrix of X into A transpose.

If I use the notation DX = sigma, then we can say that D (AX) = A * sigma A transpose.
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If we are considering say X1, X2 and so on Xk, these are some, they are p dimensional

random vectors, and A1, A2, Ap, Ak, these are say r/p matrices. Then let us consider Aj, Xj

sigma j = 1 to k, then expectation of this will become, sigma Aj expectation of Xj and also if I

consider dispersion matrix of sigma Aj Xj, then that is = sum of Aj, dispersion matrices of Xj

Aj transpose + twice, double summation.

So we may put not = I think that will be better, we put Ai C of Xi, Xj Aj transpose. That is the

covariance matrix between Xi and Xj. So these are the certain you can say linearity properties

of  the  random  vectors.  Now  we  go  back  to  our  definition  of  the  multivariate  normal

distribution. So if you remember we define that if every linear combination has a univariate

normal distribution, then we say that X as a p dimensional of p variate, multivariate normal

distribution.

So now let us look at properties of the multivariate normal distribution. Let us assume that X

follows Np. Then the first thing is that this will imply that, if I consider the components X1,

X2, Xp, then Xi will follow N1 for i = 1 to p, by definition of multivariate normal, because

every linear combination of Xi, since each Xi is a linear combination by choosing eiX, where

ei = 0, 0 and so on, 1 at the i-th place and 0, 0, 0.
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Now if Xi has a univariate normal distribution it will have some mean and variance. Hence

expectation of Xi = mu i and variance of Xi that is = sigma i square exist. This will exist for i

= 1 to p and also if I consider covariance between Xi and Xj then it is </= square root of

variance of Xi and variance of Xj. So that is = sigma 1, sigma 2. So this will imply that if I

consider absolute value, this will imply that covariance between Xi, Xj also exists, sigma ij.

So let me write mu1, mu2, mu p and sigma that is = sigma1 square, sigma2 square, sigma p

square, sigma12 and so on sigma 1p and so on sigma2p, etc., this exist. That is mean of X and

mean vector of X and dispersion matrix of X exist. That means I started with the assumption

that if X has a multivariate normal distribution, then certainly it is mean vector and that is

dispersion matrix are well defined. So we will use the notation X follows Np, mu sigma.

Now further let us consider say T belonging to Rp, and let us say V = T prime X. Now by

definition  V  follows  univariate  normal  also  expectation  of  V  will  become  =  T  prime

expectation of X that is = T prime mu and the dispersion matrix or you can say variance of T

prime X, that will be = T prime sigma T. So what we are proving here is that V follows

normal distribution with mean T prime mu and variance T prime sigma T.

So if X as a multivariate normal distribution we are able to identify its mean and variance and

at the same time we are able to identify completely the distribution of any linear combination

here. Now in terms of the linear combination one can write down the characteristic function

that can be used here.
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So next we find the characteristic function of X. So phi XT that is = expectation of e to the

power o T prime X. So this can be considered as the characteristic function of V that is = T

prime X at T = 1. Now since, V has normal distribution we can write down the expression as

e to the power i mu T. So T prime mu – 1/2 T prime sigma T, 1/2 sigma square, so this is

sigma square, T square T is 1. So this is the characteristic function of X at a general point T.

So if we go by the definition, the definition of a multivariate was characterized in terms of its

linear combination. Now assuming a multivariate normal distribution, we are able to identify

its  mean,  vector,  its  dispersion  matrix,  at  the  same  time  we  are  also  able  to  identify

completely the distribution of its linear combination and also we have found the characteristic

function.

Now we will do the converse, if we assume the distribution of the linear combination, let us

look at  the distribution of the random vector  itself.  Conversely let  us assume T prime X

follows normal with T prime mu, T prime sigma T for every T in the p dimensional Euclidean

space. Then this will imply that the characteristic function of this T prime X at the point 1

that is = e to the power i T prime mu – 1/2 T prime sigma T.

But according to the definition it is = expectation of e to the power i T prime X. So this is

nothing but the characteristic function of X at T, this will imply that X follows Np mu sigma.

So the converse result is also now established, that if I know that every linear combination

has  a  univariate  normal  distribution  then  it  implies  the  exact  form of  the  distribution  of

multivariate normal with the mean mu and variance, covariance matrix as sigma.
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Now what we do we consider the independence criteria, if the variance, covariance matrix is

only diagonal, then let us write down phi XT that is = e to the power i T prime mu – 1/2 T

prime sigma T. So that is = this will become sigma Tj mu j, so this is e to the power i sigma

Tj mu j j = 1 to k – 1/2 sigma Tj square sigma j square. So this I can write as product of i = 1

to k e to the power, let us put j here, i Tj mu j - half Tj square sigma j square.

But this I can consider as the product of the characteristic functions of Xj at the point Tj. So

this implies that X1, X2, Xp, this will go up to p actually not k here, they are independently

distributed. So as in the case of bivariate normal distribution we have seen that independence

condition is equivalent to the covariance between the 2 variables being 0. In the multivariate

case also like wise you have a generalisation.

The independence condition is equivalent to all the covariances term being = 0, consequently

all the co-relation between the components will be 0. This is equivalent condition, that means

it is if and only if. If the random variables are the components are independent all the co-

relation between the components will be 0, conversely if all the co-relations are 0 then the

random variables X1, X2, Xp they will be independent normal random variables.
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Now this result  can be generalised  to consider decomposed vector. For example,  if  I  am

considering say X = X1, X2, that means I am putting some r terms here and p - r terms here.

So we are considering decomposition, so the corresponding decomposition of sigma, let us

consider it as sigma11, sigma 12, sigma21, sigma22. So this is r, this is p - r, this is r, this is p

- r, so similarly you will have decomposition of mu as mu1, mu2.

Then let us consider characteristic function of X e to the power i T prime mu – 1/2 T prime

sigma T. What I consider, I split T also as T1, T2, where this is r components, this is p - r

components. If I have this, then I can write it as e to the power i T1 prime T2 prime mu1 mu2

– 1/2 T1 prime T2 prime T1T2. Now if I take sigma12 = 0, this implies sigma21 is also 0,

because this is transpose of this.

Then this is = e to the power i T1 prime mu1 + i T2 prime mu2 – 1/2 T1 prime sigma11 T1 –

1/2 T2 prime sigma22 T2, which I can consider as the characteristic function of X1 at T1 into

characteristic  function  of  X2  at  T2,  that  is  X1  and  X2,  they  are  independent.  So  the

correlations being 0 implying independence, this is true for multivariate situation also, that

means I consider multivariate components of the p-dimensional vector.

I am considering here 1 as a r dimensional vector and another as a p - r dimensional vector,

and then if I put that all the covariances between the components of X1 with the components

of X2, they are here in sigma12 and sigma 21. If they are vanishing, then X1 and X2 will be

independent, so this result is also true in general.
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Now I can consider any subsets in place of 2 subsets, if I consider in general any number of

subsets, let us consider say, this X as X1, X2 and so on say Xm, where this as r1 component,

this  as  r2 component,  this  as  rm component  such that  sigma ri,  i  = 1 to  n,  = p.  So the

corresponding decompositions of mu, so that will be mu1, mu2 and so on mu m and for

sigma  it  will  be  =  sigma11,  sigma12,  sigma1m,  sigma21,  sigma22,  sigma2m,  sigmam1,

sigmam2, sigma mm.

Here sigma ij matrix, this will be of the order ri * rj, this is r1, r2, rm, etc., so here also you

will have the result that if sigma ij for i not = j vanishes, then X1, X2, this is for all i not = j.

then X1, X2, Xn they are independently distributed multivariate normal distributions. So I am

not  explaining  the  proof  here.  It  is  again following on the  same line,  that  if  I  write  the

characteristic function of X.

I decompose in place of this i decompose into n terms here T1, T2, Tn and the corresponding

decomposition I consider here, then if I apply the independent condition, then it will become

the product of the characteristics functions of the X1, X2 and Xm at the corresponding terms.
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So now we can say that, now we prove the existence of a multivariate normal distribution, let

me call it in a form of a theorem. There exists a random vector say X such that phi XT = e to

the power i T prime mu – 1/2 T prime sigma T. Now this sigma is a real symmetric matrix, so

we decompose it. So sigma = some gamma D gamma prime, where D is actually the diagonal

matrix consisting of the Eigen values.

This contains Eigen values of sigma and gamma is an orthogonal matrix which will consist of

Eigen vectors corresponding to lambda1, lambda2, lambda p. Now sigma is actually positive

definite,  the proof is quite simple actually, because sigma how I define sigma was let  us

consider say X prime or some a prime sigma a, then that will be = to a prime expectation of X

- mu X - mu prime a.

So this I can write as expectation of a prime X - mu and this I can write as because X - mu

prime, I can write as square here, so this is >/= 0, so this is a positive definite matrix. So

lambda i is that is the Eigen values will be >/= 0. So D and square root D, let us define D 1/2,

that is = square root of lambda1 and so on, square root of lambda p, this is well defined.
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Actually this D to the power 1/2 into D to the power 1/2, this is satisfying that it is = D, that

is why we can call it square root matrix. So we can consider sigma that is = gamma D to the

power 1/2, D to the power 1/2 gamma transpose that we can write as B0 B0 transpose. Let us

consider say rank of sigma to be = m, then m Eigen values will be positive, say lambda1,

lambda2, lambda m are positive and lambda m+1 to lambda p they are 0.

So I am assuming here actually the first term are positive and the remaining are 0. So in

general for sigma this may not be true, because some in between it may be 0 and so on. But

we can always arrange them in a sequence in such a way, because I can interchange the order

of the vector. You are saying X has a sigma thing here, so I can interchange the components

of sigma and arrange in such a way that lambda1 and lambda2, lambda m will be positive and

the remaining will be 0.

Let us consider this gamma to be gamma1, gamma2, gamma p, so B0 is actually gamma D to

the power 1/2, that is becoming something like B1, B2, Bm and the zeros, this is actually

your p/p matrix. So we can say that B1, B2, Bm they are linearly independent vectors, and

they are actually column vectors. So if I consider now T prime sigma T, then that will be = T

prime B1, B2, Bm and then null vectors here * B1 transpose and so on, Bm transpose zeros

and then T, this is also.

(Refer Slide Time: 48:17)



So we can consider it as simply sigma T prime Bj square, j = 1 to m. Now let us consider the

characteristic function e to the power i T prime mu – 1/2 T prime sigma T. So that is = e to

the power i T prime mu – 1/2 sigma T prime Bj square. So let us consider then Zi to be

normal 0, 1 i = 1 to m and let Z1, Z2, Zm be independent. So we are considering a sequence

of independent and identically distributed standard normal variables.

Let us further define say Yi = Bi Gi, so Yi is a p/1 vector. So characteristic function of Yi, that

is = expectation of e to the power i T prime Yi, that is = expectation of e to the power T prime

Bi, this is Zi, so let us change the notation here, like let us put it j, since Zj is normal 0, 1. So

Bj, if you are putting this thing then this is becoming with the 0 here, and then you will get Bj

Bj transpose there.

So it is becoming simply = expectation e to the power – 1/2 T prime Bi square. So now let us

consider say, let us define X = mu + B1Z1 + B2Z2 + BmZm, we can write it as mu + B, this

notation you can use for Z vector here.  So here your Z is actually  Z1, Z2, Zm and B is

actually B1, B2, Bm.
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Now let us consider the characteristic function of X, so that is = expectation e to the power i

T prime X, that is = expectation of e to the power i T prime mu + i * T prime B1Z1 + so on

BmZm. That is = e to the power i T prime mu expectation of e to the power i T prime B1Z1 +

and so on BmZm, that is = e to the power i T prime mu – 1/2 sigma T prime Bj square. So

what we have proved, we started with, let us summarise what we have done.

Suppose there is  a vector  mu and there is  a  real symmetric  matrix  sigma,  which we are

assuming positive semi-definite at least, we assume it to be positive semi-definite, then based

on the decomposition of that I am defining, because if it is a positive semi-definite matrix I

can decompose using a spectral decomposition where gamma is an orthogonal matrix and D

is a diagonal matrix consisting of the Eigen values.

Then we put it in an order where we are considering actually the non-zeros first and then the

0, 1's and then the corresponding Eigen vectors are there, so I arrange them by multiplying

this here. And this becomes 0 here, because we are multiplying by the 0 terms in the D 1/2

here. Now B1, B2, Bm are linearly independent column vectors, so if we consider T prime

sigma T, then that is becoming T prime B1, B2, Bm then 0’s.

And here we are getting the transposes of this into T here. Now using this, this is simply

becoming the sum of the squares of scalars here, T prime Bj square. Now if I consider e to the

power i T prime mu – 1/2 T prime sigma T we wanted to prove that there is a random variable

for  which  this  is  the  characteristic  function.  Now  this  characteristic  function  has  a

decomposition of this nature, e to the power i T prime mu – 1/2 summation T prime Bj.



Now from here what I consider, I realise that it is of the form 1/2 sigma square T square kind

of thing, so I consider standard normal variable Zi, which are independent and I define Yi

using this Bj, so I consider BiZi so this becomes multivariate here. I am multiplying by a T/1

vector  into  a  standard  normal  variable  here.  So  each  of  the  components  will  become  a

different normal variable here but each of them will have mean 0, but variance will become

Bi Bi transpose.

So if consider that thing, characteristic function of Yi will become e to the power i, because

the mean term is 0 so it is simply becoming T prime Bi square. Now I define a vector X using

these terms, so let us see mu was already given to me, B1, B2, Bm we found out, Z1, Z2, Zm

are the standard normal variables. So using this I define a random vector X here, which is of

course mu + BZ in the compact notation.

So if we use this then let us look at the characteristic function of X, then this is turning out to

be simply, after using this decomposition I write it like this particular fashion and I use the

characteristic function of the Yi here, these are Y1, Y2, Ym, so this is of this nature. So

ultimately I get it as of the for e to the power i T prime mu – 1/2 T prime sigma T. So we are

able to construct it random vector whose characteristic function is exactly the characteristic

function of a multivariate normal distribution.

So basically it  means that given a p dimensional random vector and a p/p positive semi-

definite matrix we can define a random vector which will have a p dimensional multi normal

distribution with that as the mean vector and that variance, covariance matrix. So this is a

characterising property and the existence of the multivariate normal distribution. Here one

thing is there we consider the rank to be = m, now m can be < p, m can be = p.

So if rank of sigma, that is = m is < p we call the multivariate normal distribution to be a

singular distribution. So you can also associate it with the sigma matrix, sigma inversely exist

if it is non singular if it is singular then sigma inverse will not exist. So later on when we

consider the density then this point will be important.



Now in the next lecture I will consider some further properties of the multivariate normal

distribution  and we will  look at  the  estimation  of  the  parameters,  etc.,  for  the  particular

distribution.


