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We have discussed in detail the tests for the parameters of normal population. I considered one

sample problem, in which we considered the testing for the mean and variance of one normal

population.  We also  considered  2  normal  populations  and  we  considered  various  tests  for

comparing the means and also the variances. However, when we have qualitative data, we may

also be interested in testing for the proportions.
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So here basically the model is that we have x following binomial, say n, p distribution where is

known. Now when n is small, then we can consider test based on x. For example, I can call, say

let us define say P = x/n. Suppose my hypothesis testing problem is p is </= p0, against p is > p0.

Then we can consider the test as reject H0, if x is > some c where probability of x > c when p =

p0 = alpha.

Now in this case, what will happen is that it is not necessary that we will get exactly = alpha. So

we may  need  to  randomize  here.  We may  need  to  consider  a  randomized  test  as  binomial



distribution is discrete and there may not exist an integer c, for which one will be satisfied. Now

when n is large, we can consider normal approximation.
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We can consider x- np0/square root np0 q not. Let us call it say B1. Then p = p0 and n tends to

infinity, then B1 converges to z following normal 0, 1 distribution. Therefore, we can for testing

about H1 versus K1, for example this hypothesis, we may consider test based on z alpha values,

that is reject H0 when B1 is > z alpha. Similarly, we may consider H2 that p is >/= p0 versus k2,

p < p0. Then test is reject H2 if B1 < –z alpha.

If I consider the hypothesis p = p0 against p is not = p0, then test is reject H3 if modulus of B1 is

>/= z alpha/2.
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Let me give a simple example. Suppose in a random sample of 100 patients, 70 patients got

successfully cured using a certain drug. Let p denote the overall proportion of cured patients

using this drug. We want to test say H1, p <= 1/2 against say K1 p>1/2 or we may say p=1/2

against p >1/2. Suppose we want to test that the overall effectiveness is more than 50%. In that

case, the test statistic will become, you will have 70 – 50/root 100 1/2 *1/2, so that becomes 20/5

= 4.

So if I consider say L5 = 0.05 or L5 = 0.01 etc. Then we see that z alpha/2, for example here it is

1.96 and so on. So certainly here 4>1.96. Similarly, at this 1, suppose I say 0.005 then that is still

higher value, it is approximately 3, that is > this. We reject H1 that is we may conclude that

overall effectiveness of drug is more than 50%.
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Sometimes we may be interested in comparing 2 proportions. That means we have x following

binomial m, p1 and y following binomial n, p2 and n and m are large. We may need to compare

p1 and p2, so we can consider hypothesis of the nature this, or say H3. H2 say p1>/=P2 against

k2, p1<p2, H3 p1=p2 against k3 is p1 is != p2. So let us refine say p1 hat = say x/m, p2 hat = say

y/n, p hat let us define to be x+y/m+n.

And let us define the statistic p1 hat – p2 hat/square root of p hat into 1-p hat 1/m+1/n that is

actually = root mn/m+n p1 hat – p2 hat/root p hat * 1-p hat. So when p1 = p2, then B2 has

asymptotically normal 0, 1 distribution. So we can construct tests for H1, H2, H3, etc. based on

B2. For example, for H1 versus K1 the rejection region will be for z > z alpha. For H2 versus

K2, the rejection region will be for z<-z alpha and for H3 versus K3, the rejection region will be

for modulus z >/= z alpha/2, if I am considering Leville alpha tests.

Let me also consider another related topic. For example, here we are considering in the binomial

2 categories. So for example, if I am considering one binomial, then it is p and then 1-p as the

proportions of the 2 types. Here we are considering p1 and p2. Now in general we can consider

more categories, so this gives actually rise to a test called goodness of fit tests.
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Since asymptotical distributions are Chi square, so the tests are based on that. So we call them

Chi square tests  for goodness of fit.  Let  me introduce the problem first.  So we want to test

whether the sample comes from a known distribution, say F0 x. in the previous problems, in the

usual parametric  methods,  what we are considering is that we are assuming the form of the

distribution, like normal distribution, binomial distribution or I have also given the examples of

say, exponential distribution or Poisson distribution.

But  there  can  be  situations  where  we would  like  to  test  whether  we will  have  a  particular

distribution, say binomial distribution or uniform distribution or a Poisson distribution, etc. In

that case, we will say that the sample comes from a known distribution, say F0 x. So you want to

test that, that means if the unknown distribution function is denoted by Fx and F0 x is the desired

CDF, then we want to test H0 Fx = F0 x for all x against H1 Fx is not = F0 x at least for some x.

So that means we are saying that alternative hypothesis is that Fx is not F0 x. It could be some

other distribution or it may not be distribution. In the Chi square test for goodness of fit, we

divide the range of the variable or distribution into k mutually exclusive regions, usually it will

be intervals. I mentioned regions, because suppose I am considering binomial distribution, etc.,

then you have values 0, 1 to n or you are considering Poisson, then it is 0, 1, 2, 3, and so on.



So you will have in finite number of values, but when you can take a practical consideration by

considering values by clubbing some of the values together and make it a finite number, so this k

is finite. So we divide the range of this, that means we are actually getting some k regions, such

as we can give some name here, say Ri i=1 to k and if we denote an observed random variable by

x then assume that probability of x belonging to the region Ri is some pi, i=1 to k.
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Now what we consider when the sample is observed, then each xi, each observation belongs to

one of regions Ri, i=1 to k. Let us denote the observed frequencies of region Ri/Oi for i=1 to k.

So now we consider suppose n observations are there, we denote the expected frequency of i-th

region by Ei=n*pi. So what we do, we construct sigma Oi – Ei square/Ei, i=1 to k. This let us

call it W, then this has approximately Chi square distribution on k-1 degrees of freedom.

So we can use test for H0 versus H1 as reject H0 if W is > Chi square k-1 alpha. Let us consider

an example here.
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It  is  assumed  that  student’s preferences,  it  is  assumed  that  student’s differences  for  various

disciplines are uniformly distributed. So let there be 5 options say CS, EC, EE, ME and CH and

let the preference probabilities of these options be say p1, p2, p3, p4, and p5 respectively. Then

we want to test, that is pi = 1/5 for i=1-5 against not so. That means we are assuming the discrete

uniform distribution for the preferences.

Then a random sample of say 300 students was taken and their preferences recorded as below. So

here we have the branches and the observed frequency Oi is given by 88, 65, 52, 55, and 40. So

we want to test whether the preferences are uniformly distributed or not. So we consider here

Ei’s. Ei’s are the probabilities of each group. So you notice that, the expected frequency of each

group, so if total number is 300, we are assigning probability 1/5 to each group. So the expected

frequency will be 60.
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So we consider here W that = sigma Oi – Ei square/Ei, i=1 to k. this is also having an alternative

representation. If I expand this numerator, I get Oi square + Ei square – 2Oi, Ei/Ei that is = sigma

Oi square/Ei + sigma Ei-twice sigma Oi = sigma Oi square/Ei + -N, because sigma Ei and sigma

Oi both equal to the total sample size. So this is an alternative formula for this, so we calculate

here by 60-300. So you can do the calculations, it turns out it is = 21.6.

Now there are here 5 groups, so we need to look at Chi square value on 4 degrees of freedom.

For example, we may consider say at 0.01 level, then it is 13.28, suppose we consider Chi square

value at say 0.5, then it is equal to 9.49. So you can easily see that H0 is rejected. That student’s

preferences are biased towards different disciplines.
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In this particular case, I assume that F0 completely known. If F0 is not completely known, for

example  it  may contain,  for  example  I  say it  is  binomial  distribution,  then there will  be an

unknown parameter p, which has to be estimated. Suppose, we say it is a Poisson distribution,

then the parameter lambda has to be estimated. Suppose we say it is normal mu sigma square

distribution, then mu sigma square have to be estimated first and then they have to be used in the

calculation of the expected frequencies.

In that case, the degrees of freedom of the Chi square will be reduced by the number of unknown

parameters that have to be estimated from the sample. So it may contain unknown parameters,

say  theta  =  theta  1,  theta  2,  theta  n.  In  such  cases,  we  have  to  estimate  from the  sample.

Consequently,  the  asymptotic  distribution  of  W will  be  Chi  square  k-n-1.  Let  us  take  one

example here.

30 randomly selected documents of = size are taken and the number of typographical errors in

them are recorded. The data is summarized below. So if I make a frequency table, number of

errors, it is recorded like this 0, 1, then 2 or 3 errors, 4 or 5 errors and more than 5 errors. Then,

number of documents who had no errors, it was found to be 6, number of documents which had 1

error were 5, number of documents which had 2 or 3 errors was 8.



Number of documents which had 4 or 5 errors were 6 and the number of documents which had

more than 5 errors were 5. We want to test whether a Poisson distribution appropriately fits the

data. Because here it is a number of counts, errors or counts. So the data on number of errors,

now naturally if we assume, so we have to assume a Poisson lambda distribution. Assume x that

is  the  number  of  errors  follows  Poisson  lambda  distribution.  Then  this  lambda  has  to  be

estimated first from the given data.
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So we consider this, we will first estimate lambda. So we may consider say maximum likely you

would estimate Ru Mu or the method of moments estimator. In the case of Poisson distribution,

all  of them are the same. It is simply x bar. So here you can see it  will  be equal to simply

95/30=3.1667. Now based on this, we have distribution written as E to the power – let us call it x

bar to the power k/k factorial. That is the probability of x = k.

So now for example what is probability of x = 0. See these are the groups here, like I mentioned

here in the very first one that this one that we divide into k mutually exclusive regions here. So k

mutually exclusive regions here will correspond to, this is region 1, this is region 2, this is region

3, this  is  region 4,  and this  is  region 5 here.  So what  is  the probability  of region 1,  that  is

probability of region 1. What is the probability that x belongs to region 1.



This is my P1, so that is = E to the power – x bar, which of course can be calculated to be 0.04 to

14. Similarly, we can calculate P2 that is probability of x = 1, that is the probability of region 2 =

x bar * E to the power –x bar. One can evaluate it; it turns out to be 0.13346. Now P3 will be the

probability of x = 2 + probability of x = 3, that is the probability of third region, that is = x bar

square E to the power –x bar/2 factorial + x bar cube E to the power –x bar y/3 factorial that is =

0.4343 etc.

Similarly, probability x = P4 that is = x = 4+probability x = 5, that is the probability of 4th

region,  so that  will  be turning out  to  be point  28841. That  is  probability  x = 5,  that  is  the

probability of 5th region that is = 0.10164. Now based on this, we can calculate Ei’s are nothing

but npi that is = 30 * pi, i=1 to 5 and we calculate then. So this I can call P1 hat, P2 hat, P3 hat,

P4  hat  because  these  are  the  estimates  of  the  probabilities  of  these  regions.  These  are  the

estimates here.

So we calculate W that will be = sigma Oi square/Ei–n = 21.99. Now Chi square value, you can

see, so how many degrees of freedom will be there. We have 5 classes and 1 parameter has been

estimated,  so  it  will  be  3,  so  one  can  easily  check  the  values  at  some  particular  level  of

significance. For example, even at 0.005, it is 12.838, so H0 is rejected that is the error count do

not fit a Poisson distribution. Let me give one more example where Poisson distribution will

actually fit the given data.
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The following data represents the frequency count of violent crimes reported in a month for 200

randomly selected districts across a country. So number of violent crimes and we are clubbing 0,

1,  2,  3,  4,  and  more  than  or  =  5.  So  again  we would  like  to  test  whether  it  is  a  Poisson

distribution or not. Number of towns, that the frequency, so 22, 53, 58, 39, 20 and 8. So we want

to test whether the crime count data fits a Poisson distribution.

So once again, you can check here that x bar is approximately 2, it will be 2. something, so I am

just  writing 2 here,  because that  is  sufficient  for our purpose and we calculate  the expected

frequencies,  expected  frequencies  will  become  27,  54.2,  54.2,  36,  18  and  10.6.  So  if  you

calculate W that is sigma Oi square/Ei – n, then that is turning out to be 2.33. So if we look at

Chi square value, now since there are 1, 2, 3, 4, 5, 6 groups are there.

The degrees of freedom will be 6-1-1 and let us take 5% level then it is turning out to be 9.49, so

certainly  we  have  reasons  to  believe  that  Poisson  distribution  adequately  represents  this

frequency distribution. Now if we see this thing, the fitting of a distribution problem is basically

reducing to a sort of multinomial problem because you are dividing the entire categorized data

into k categories.

Now if we are dividing into several categories, then it is immaterial whether we divide it into 1

dimension or we can go for higher dimension also.
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So let us consider in general testing for independence in r/c contingency tables. So if we are

considering  contingency  tables,  then  we  are  considering  the  classification  according  to  2

categories A and B and for A, we have categories A1, A2, Ar …. Ac and for B we have B1,

B2, ...Bc. Now we can actually divide the entire frequency into several cases. Let us put r here.

The observed frequencies, I am writing as O11, O12, O1c, O21, O22, O2c and Or1, Or2, Orc.

We consider the row and column sums. So if we sum the first row, we call the sum as O1 dot, O2

dot and so on or dot. Similarly, if we sum the columns, we call that O dot 1, O dot 2, and so on,

O dot c. The total sum is n. So we have the following notations observed frequency of ij-th cell is

denoted Oij and then we define Oi dot that is = sigma Oij for j=1 to c, so simply the summations

and similarly O dot j that = sigma Oij, i=1 to r. These are the row and column totals.

Then if we are assuming that the 2 things are independent, there will be theoretical probability of

assume theoretical probabilities of ij-th cell to be pi ij, then the marginal probabilities of i-th row

is pi I dot that = sigma pi ij sum over j and of j-th column, it is pi dot j that = sigma pi ij sum

over i.
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If the row and columns are independent, then we must have pi ij = pi dot * pi dot j. So we

calculate the expected frequency of ij-th cell using this assumption. So that is ij = Oi dot*O dot

j/N. Here N is actually the sum of all the frequencies. So if I use this, then we get, let us call it

W*=double  summation  Oij  –  Eij  square/Eij.  This  has  asymptotically  Chi  square  r-1  c-1

distribution. So we will reject the hypothesis of independence, if W* is > Chi square r-1 c-1

alpha.
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Let me give one application here. The following data represents the number of accidents taking

place in 3 shifts of 4 factories producing an item. The data is recorded for a year. So we want to

test whether the incidence of accidents is independent, that means whether in a particular factory



at particular shift has more accidents are less, so independent of type of factories and shifts. So

the data is recorded in this particular fashion.

Suppose we have 4 factories A, B, C, D and the data is recorded over shift 1, shift 2 and shift 3.

That is 10, 10, 13, 12, 24, 20, 6, 9, 7, 7, 10, 10. If we consider the totals, this is 33, this is 56, 22,

and 27 and on this side, if we consider the row totals, it is 35, 53, 50, the total N = 138. So we

calculate for example, what will be E11. E11 will be 33*35/138. Similarly suppose, I consider

say E23, so E23 will be 22*53/138 etc.

So we calculate the W* that is turning out to be here 1.81 approximately. Now if I consider Chi

square on 2*3 that is 6 degrees of freedom at a particular level, say 0.05, then it is 12.59. So we

can say that shifts and factories are independent with respect to occurrence of accidents. You can

say that the incidence of accidents is homogenous across the factories. Let us take 1 or 2 more

applications of the testing and these problems.
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Over 2 seasons, a professional player of some game, we may consider for example a basketball

player exactly 5 minutes in about 200 games. So xi is the number of hits he makes in game i, i=1

to 200. Each xi can take value 0, 1, 2, 3, 4. So we have the following data, value of xi is 0, 1, 2,

3, 4 and number of xi is 73, 82, 38, 7, 0. We want to test whether a binomial distribution will fit

the data. Now in a binomial distribution, we have a parameter p here.



So let  us  consider  say  p  hat.  Based  on  this  data,  we  can  calculate  actually.  So  P1  that  is

probability x = 0 that is = 1-p to the power 4, P2 that is probability x = 1 that = 4p*1-p cube, P3

that = probability x = 2 that = 6p square*1-p square, P4 that is probability x = 3 that is = 4p

cube*1-p and P5 = probability x = 4 that = p to the power 4.

So we have the likelihood function that is 200 factorial/73 factorial, 82 factorial, 38 factorial, 7

factorial, 0 factorial *1-p to the power 4 to the power 73 4p * 1-p cube to the power 82 p to the

power 4 to the power 0 *6 p square *1-p square to the power 38 * 4 p cube * 1-p to the power 7.

So this can be simplified L hat p is Lp is maximized when p=0.224. So based on this, we can

calculate P1 hat that is 0.363, P2 hat = 0.419, P3 hat = 0.181, P4 hat = 0.035, P5 hat = 0.003 etc.

So if you calculate this, calculate the Chi square value here that = 0.178 approximately. So if you

compare  with  Chi  square  value  on  here  we  have  5  categories  and  1  parameter  has  been

estimated, so you will have it on 4 degrees of freedom and one can see this. I will give one

application of the general testing problem, which we discussed for the normal populations.

(Refer Slide Time: 54:11)

Testing example for normal populations. The summary data is given by, we have 2 samples for 2

types of elements present in the bones of children and then the following data is collected, n1 is

121, x1 bar = 2.6, s1 square = 1.44, n2 = 16, x2 bar = 0.4, s2 square = 0.0121. We want to test



whether the 2 normal populations have similar means or variances. See if you calculate this,

firstly we test to test equality of means. We need to firstly test the equality of variances.

So that means, we test say H0 sigma 1 square = sigma 2 square against H1, sigma 1 square not =

sigma 2 square. Let us calculate the statistic s1 square by s2 square and it turns out to be 119.00

approximately. So if I consider say F on 120, 60 degrees of freedom, then the values, say at 0.1

that will 1.34 etc. This is certainly larger. So H0 is rejected. So now I consider say mu 1=mu 2

against say mu 1 is > mu 2.

Then  we formulate  the  test  statistic  x1  bar  –  x2  bar/s1  square/N1  +  s2  square/N2.  That  is

approximately 20.0. If I consider the degrees of freedom of this T here that is turning out to be

approximately 123, so certainly H0 * is rejected. So here for testing the equality of the means,

which procedure is to be used, because I discussed 4 different procedures, firstly we need to

check about variance.

Now for the variance here it turns out that it is rejected here and therefore we have followed this

procedure.  If it  was accepted,  then we have to follow another one,  which was based on the

pooling procedure. So depending upon what actual method will be used, then only you apply the

testing methodology. We have discussed some of the important parametric methods. There are

many more, but in this particular course, I will restrict attention to this.

In the following lectures, I will move over to multivariate analysis. So we will have elementary

discussion of the multivariate normal distribution and then the related distributions and how they

are used for certain calculations or computations or inferences when you have multivariate data.

So in that following lectures, we will take up that.


