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In the last lecture, I introduced the concept of testing of hypothesis. We saw that Neyman

Pearson approach in which they considered the probabilities of type 1 error and type 2 error

and based on that the test procedures are devised in which we put a restriction on 1 type of

error usually the type 1 error and we call it the size of the test and subject to the tests function

satisfying the size of the test condition.

We find out those test which have the maximum power so they are called most powerful test

as some solution was proposed for simple versus simple hypothesis cases and later on these

procedures were extended to the case of certain type of composite hypothesis and then for

certain  type  of  composite  hypothesis  uniformly  most  powerful  unbiased  tests  were  also

devised.

In place of giving the full details of the derivation of the test, I will be basically explaining to

you the procedures that the test that have been obtained using this and how to use them.
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So let us consider testing for the parameters of normal populations. So let us consider X1,

X2, Xn following normal mu sigma square distribution. We consider testing for mu. Now let



us consider  say  case  1 when sigma square  is  known.  Now we consider  various  kind  of

hypothesis. We consider say first problem. I will call the hypothesis testing problem says H1

K1 so H1 mu=say mu is <= mu 0 against say K1 mu>mu 0.

In this particular case, we consider X bar that is following normal mu sigma square/n so we

consider root n X bar-mu/sigma that follows normal 0, 1. So we consider the test statistic

Z=root n X bar-mu 0/sigma.

(Refer Slide Time: 03:33)

So if I consider this as z alpha then this probability is alpha, so if we consider probability of

Z>z alpha=alpha and here we are considering mu=mu 0.
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So the uniformly most powerful test of size alpha for testing H1 against K1 is a reject H1

when Z>z alpha where Z is given by root n X bar-mu 0/sigma. Actually, it can be shown that

if I consider probability Z>z alpha then the supremum of mu <= mu 0 is attained at mu=mu 0.

Therefore, this is the most powerful test of size alpha, so of course since this is composite

hypothesis situation we will say it is the uniformly most powerful test here.

Now we have the variations, in place of H1 that is mu <= mu 0 if we take H1 star that is say

mu=mu 0 versus K1 mu>mu 0 then also the same test procedure will be applicable. Now the

main reason is that actually since here the maximization is occurring that mu=mu 0 therefore

when the null hypothesis 2 mu=mu 0 will be coming here and in this case the maximum is

occurring at that point and the power is decided by the alternative.

Therefore, the test function will not change and the test procedure will also not change. So

you will say accept H1 if Z <= z alpha. Here equal to z alpha has no significance because the

probability  that  Z=z  alpha  will  be  0  because  Z  is  a  continuous  random  variable.  Now

naturally one may think what happens if we change the null and alternative hypothesis?

For  example,  here  alpha  is  the  maximum probability  of  type  1  error  that  means  we are

rejecting and the null hypothesis is true. Now if that is considered to be more serious for the

beta, in that case you may like to interchange the hypothesis and we may consider so let me

call it say H2 mu is >= mu 0 against K2 say mu<mu 0. I have interchanged the role of null

and alternative hypothesis.

But the equality I have included in the null hypothesis. So in this case, we will be considering

the rejection on the left side because you will be considering here. So you will consider reject

H2 if Z is <= –z alpha and of course accept H2 otherwise. See in this case, this hypothesis is

also equivalently we may test H2 star mu=mu 0 against K2 mu<mu 0.

Basically, once again if we are considering this one then the probability of say Z <= –z alpha.

When mu=mu 0 that will be alpha and when we are considering for a general mu in this

region then the maximum value will be attained when mu=mu 0 and therefore the size will be

alpha so this is the uniformly most powerful test of size alpha. Now there may be situations

where we may not like to test greater than or less than rather whether a value is equal or not.
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In  that  case,  we  formulate  the  hypothesis  testing  problem in  the  following  fashion.  We

consider say H3 mu=mu 0 against K3 mu is not equal to mu. Now naturally in this case the

rejection region will be on both the sides. So we consider say z alpha/2 and –z alpha/2. So

you will consider actually this is uniformly most powerful unbiased test of size alpha. So that

is reject H3 if modulus of Z>z alpha/2 where Z is the same quantity.

That is Z=your root n X bar-mu 0/sigma. So you are rejecting in this region and in this region

and in the intermediate region you are in favor of the hypothesis accept H3 otherwise. Now in

case sigma square is unknown, then naturally this Z cannot be used. If you remember the

development of the confidence interval, there in place of sigma we had used S there where S

square was 1/n-1 sigma Xi-X bar square.

That is the sample variance. So we consider the situation sigma square is unknown. Then

consider S square=1/n-1 sigma Xi-X bar square. So we consider say T=root n X bar-mu 0/S.

So if we consider say root n X bar-mu/S then that follows T distribution on n-1 degrees of

freedom as  we have seen in the confidence interval  problem.  So if  we consider  this  mu

replaced by mu 0 then the test statistic will be following a T distribution.

And we can consider the problems so for H1 mu <=mu 0 against say K1 mu>mu 0 then we

will have the test as reject H1 if T>tn-1, alpha.
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If we consider mu>mu 0 against K2 mu is <=mu 0 then the test will be reject H2 if T<tn-1, 1-

alpha that is –tn-1, alpha because of the symmetry.

(Refer Slide Time: 12:33)

Then the third situation comes for the 2 sided tests that is for mu=mu 0 against mu is not

equal to mu 0. Then we will consider reject H3 if modulus of T is >= tn-1, alpha/2. So you

will have 2 sided rejection region here. This is alpha/2 and this is alpha/2. So these are the

most powerful unbiased tests for the size alpha for these problems here. Now one may like to

test for the variance also.

So if we consider the test for the variance, testing for sigma square and again you will have 2

cases, 1 case will be when mu is known. If mu is known, then we can consider sigma Xi-mu

square/sigma  0  square.  So  if  we  consider  this  as  W then  this  is  following  chi  square



distribution on n-1 degrees of freedom when sigma square=sigma 0 square. So if we consider

the hypothesis testing problems based on this.

So  for  example  let  us  consider  say  sigma  square  <=sigma  0  square  against  say  sigma

square>sigma 0 square then we will  consider  the rejection  region as  reject  H1 if  W>chi

square n-1, alpha because chi square is Q distribution and we will have this situation here, chi

square n-1, alpha so this probability is simply alpha. As I mentioned earlier, we can also

consider sigma square=sigma 0 square.

And here sigma square>sigma 0 square, still the test function and the test region will be same

and we may consider reverse situation sigma square >= sigma 0 square against K2 sigma

square<sigma 0 square then the test procedure will be reject H2 if W<chi square n-1, 1-alpha.

This probability is alpha, so this is not a symmetric distribution therefore we cannot write

minus here.

(Refer Slide Time: 15:43)

And we will have a 2 sided region if we consider sigma square=sigma 0 square against sigma

square is not equal to sigma 0 square. So the test procedure will be reject H3 if W<chi square

n-1, 1-alpha/2 or W>chi square n-1, alpha/2. So this will be uniformly most powerful test of

size alpha here in the case 1 and 2 and in the case 3 it will be uniformly most powerful

unbiased test of size alpha here.

Now in the case when mu is unknown then we base our decisions on let us call it W star that

is n-1 S square/sigma 0 square so that follows chi square distribution.



(Refer Slide Time: 16:50)

Actually, I made a mistake here this should be n here because this is following n, this will be

n, this will be n. These are all will be n degrees of freedom. When mu is unknown then you

will have n-1 degrees of freedom and then the test procedures will be for first case reject H1,

in the second case it will  be a reject H2 if W star< and in the third case reject H3 if W

star<chi square n-1, 1-alpha/2 or W star>chi square n-1, alpha/2.

This  is  about  the  testing  for  the parameters  of  a  1  normal  population.  Now this  type of

methods can be applied actually to other distribution also in which certain nice properties for

example  if  the  distributions  are  in  the  exponential  family, if  the distributions  are  having

monotone likelihood ratio even though they may not been in the exponential family, in all

those situations this type of testing procedures are applicable.
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Now I will briefly touch upon the 2 population model for the normal populations. So we

consider  2  sample  problems like  in  the  case of  confidence  intervals  we have  2 samples

available to us, 1 is from say a normal distribution with mean mu1 and variance sigma 1

square and another independent random sample that is available from normal with mean mu2

and variance sigma 2 square.

And these 2 samples are taken independently. Now we consider say parameters mu1, mu2,

sigma  1  square,  sigma 2  square,  this  could  be  our  testing  problems.  Now you  can  say

commonly used problems could be to test whether the mean of the first population is less than

the mean of the second population or equal or greater than etc. that means we are interested in

the difference here.
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Now naturally  this  is a problem which can be handled easily  using the Neyman Pearson

theory. So we consider  testing  for  means.  If  we consider  the  testing  for  means  we may

consider hypothesis problems of the nature say mu1 <=mu2, mu1=mu2, mu1 >= mu2 and so

on. These are the types of hypothesis problems that we may have.

So again as before we consider case 1 when sigma 1 square and sigma 2 square are known. If

sigma 1 square and sigma 2 square are known, then we consider the statistic of the form let

me call it Z star=X bar-Y bar/square root sigma 1 square/m+sigma 2 square/n. Now when

mu1=mu2 then Z star follows normal 0, 1. So we utilize this actually. In fact, it can be shown

that the maximum of the probability of type 1 error will be achieved when mu1=mu2.

Let  us  consider  various  hypothesis  testing  problems  here  say  mu1  <=mu2  against  say

mu1>mu2. Naturally, if in the alternative case we are saying mu1>mu2 that means we will be

considering the rejection region on the larger side. So we will consider here that is z alpha so

we will consider reject H1 if Z star>z alpha. In the second case, here we will be rejecting for

the small values of Z star.

Now if you consider the small values and then on the left hand side we can consider z1-

alpha=-z alpha so the rejection region will be reject H2 if Z star<–z alpha.
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And once again for the 2 sided problem, we may consider this as H2 here so this will be H3

mu1=mu2 against K3 mu1 is not equal to mu2. So you will consider reject H3 if modulus of

Z star>z alpha/2 that means we will be rejecting on both the sides of the normal curve that



means if the value is in this zone or in this zone that is –z alpha/2. Now we can see that the

second case when sigma square=sigma 2 square=say sigma square but this is unknown.

If this is unknown, then we formulate the test statistic. Now let me briefly mention about the

large sample cases also. See if we look at the case that I discussed in the beginning here we

are considering the approximation by the normal 0, 1. Now suppose the original distribution

need not be normal.

But if we are considering the testing for the mean and we have large sample in that case we

can consider by applying central limit theorem that this will be approximately normal 0, 1. So

the test procedure that I have mentioned here will still  be applicable for the large sample

cases.  However,  when sigma square  is  unknown in  that  case  this  procedure  will  not  be

applicable.

Similarly, in this problem when I considered comparison of mu1 mu2 when sigma 1 square

and sigma 2 square are known, in that  case even if the original populations  need not be

normal then by central limit theorem this result will be applicable. However, when sigma 1

square,  sigma  2  square  are  unknown,  then  this  result  central  limit  theorem  will  not  be

applicable and we are about to go for the exact procedures.

So let us consider here if we remember our notations that we developed for the confidence

intervals that is we considered S1 square=1/m-1 sigma Xi-X bar square and we considered S2

square=1/n-1 sigma Yj-Y bar square and SP square was taken as m-1 S1 square+n-1 S2

square/m+n-2. Then based on this we had considered that when mu1=mu2 then you have X

bar-Y bar*mn/m+n/Sp.

This has T distribution on m+n-2 degrees of freedom. Therefore, we can write down the tests

for all the 3 situations and let me just repeat it again.
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We are  having  the  testing  problems  that  is  H1  versus  K1  that  is  mu1  <=mu2  versus

mu1>mu2, in this case your rejection region will be on the right hand side that is tm+n-2

alpha. So your region will be reject H1 so let us call this quantity say T1 so this is equal to

T1>tm+n-2, alpha.

(Refer Slide Time: 26:25)

In the second case, you will be on the left hand side so you will say reject H2 if T1<-tm+n-2,

alpha and for the 2 sided case, it will be reject H3 if modulus of T1>tm+n-2, alpha/2. Now

the third case is when sigma 1 square and sigma 2 square are completely unknown. If they are

completely unknown in this particular case, we consider say T2=X bar-Y bar/square root S1

square/m+S2 square/n.



When mu1=mu2 then T2 has approximate t distribution on some p degrees of freedom where

p is given by S1 square/m+S2 square/n whole square/S1 to the power 4/m square*m-1+S2 to

the power 4/n square*n-1. We usually take p to be integer part of the right hand expression.
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So the test procedures can be formulated. The test procedures for H1 versus K1, H2 versus

K2 and H3 versus K3 can be based on T2. So I am not describing here for example in the first

case it will be rejecting H1 if T2>tp alpha. Similarly, in the second case, it will be reject H2 if

T2<-tp alpha and in the third case it will be reject H3 if modulus of T2>tp alpha/2.

(Refer Slide Time: 29:24)

We had also  considered  a  case  of  paired  observations.  In  the  confidence  interval,  I  had

described  the  situation  that  is  where  mu1  and  mu2  are  resulting  from  the  same  set  of

individuals or items for example it could be the certain learning procedure and we look at the



ability of the candidates before conducting the learning procedure and after conducting the

learning procedure after a certain time.

For example, you could say Xis are the scores on tests of n students okay before the coaching

you can say and Yis are the scores on tests of n students after the coaching. In this case, we

can consider say Xi, Yi this is following a bivariate normal distribution with some mean say

mu1, mu2 and variances sigma 1 square, sigma 2 square and co-variances rho sigma 1, sigma

2.

So if we want to compare mu1 and mu2 we may as well consider say di=Yi-Xi or Xi-Yi say

so then this will follow normal mu1-mu2 so I call it sigma D square where sigma D square is

nothing but sigma 1 square+sigma 2 square-2 rho sigma 1 sigma 2. Now it is immaterial, we

can actually consider our observations to be dis and we can calculate d bar that is 1/n sigma

di.

And we can consider sd square as 1/n-1 sigma di-d bar whole square and we can formulate

the test statistic let us call it T3=root n d bar/sd.

(Refer Slide Time: 31:53)

So the test procedure then for H1 that is mu1 <=mu2 versus K1 mu1>mu2. Once again you

can see here it will be reject H1 if T3>tn-1, alpha. Similarly, if I consider H1 mu1 >= mu2

versus K2 mu1<mu2 then it will be reject H2 if T3<-tn-1 alpha. Similarly, if I consider the 2

sided testing problem, mu1=mu2 against mu1 != mu2, then the test procedure will reject H3

if modulus of T3 > tn-1 alpha/2.



So  we  have  considered  various  cases  for  the  comparison  of  the  means  of  2  normal

populations.  Let  us  also  consider  a  case  for  comparison  of  the  variances  of  2  normal

populations.

(Refer Slide Time: 33:08)

Comparing variances, so that means we may have a testing problem of the nature so let us

write say tau=sigma 2 square/sigma 1 square. So we may consider say tau is <=say tau 0

against say tau>tau 0, tau<tau 0, tau=tau 0 against tau is not equal to tau 0. In all these cases,

we  may  consider  say  S2  square/S1  square.  Let  us  call  it  say  V. Now  hence  sigma  1

square=sigma 2 square tau=1.

So then V will have F distribution on n-1, m-1 degrees of freedom if tau=1. Therefore, we

can use this for the testing here. In the first case it will be reject H1 if now you can see here

you have to reject for the large values of tau so large values of tau will correspond to the large

values of V so if V>fn-1, m-1, alpha. In the second case, reject H2 if V<fn-1, m-1, 1-alpha

which is of course equal to 1/fm-1, n-1, alpha.

In the third case,  it  will  be 2 sided regions,  if  V<f n-1,  m-1, 1-alpha/2  or  V>fn-1,  m-1,

alpha/2. Of course, we may also consider the case when mu1 and mu2 are known. In that

case, the only thing is that in place of S2 square/S1 square you can consider sigma Yj-mu2

square/sigma Xi-mu1 square and this F statistic will be replaced by fnm in rather than n-1, m-

1.



So without spending too much time on that I will just skip that portion, so this is the case for

the comparison of the variances.  Now equivalently we may have testing problem for the

proportions also.
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Testing for proportions, for example if I am considering say X following binomial n, p and

we may like to test about say p=p0 or p <=p0 as before so we may consider the tests based on

X-p0, let us write it as P hat=X/n and Q hat=1-P hat. So we may consider basing our tests on

this. We can consider P hat-P0/root P0 Q0/n and we can consider the normal T for this thing.

That is when p=p0 then this is approximately normal 0, 1 okay. This is approximation for n

large so let us write it say some Z1 so we can base our tests on Z1 for hypothesis H1 versus

K1 or similarly we can consider p>p0 against p <=p0 etc. all those kinds of cases can be

considered.  We can  also  consider  this  situation  X following  say  binomial  m,  p1  and  Y

following binomial n, p2.

And  we  may  like  to  compare  p1  <=p2,  p1>p2  etc.  So  we  can  consider  based  on  the

differences X-Y and then we can consider the p1 q1 etc. So all those things can be done. I am

not spending too much time on this problem here. Now the test that I have discussed here

they are based on the Neyman Pearson theory. However, there was another approach which

was considered by R.A. Fisher and others.



That is based on the likelihood ratio. In fact, Neyman Pearson came to the f1/f0 form based

on the likelihood ratios only; however, the approach in a more general form can be described

like this.
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So let me mention this thing, likelihood ratio tests. Let us consider say X1, X2, Xn be a

random sample from a population with some distribution. So it could be say fx theta we just

write in general. Here theta belongs to some parameter space theta. We want to test H0 theta

belongs to say omega 0. Let me just change the notation here this omega let me write here. So

this omega 0 is the subset of omega.

As you have seen in all these problems like in the binomial problem p was lying between 0 to

1 so the parameter space was 0 to 1 but in the null hypothesis we are restricting attention to 0

to p0. If you consider the previous problems of normal populations etc for example here, you

are writing sigma square=sigma 0 square but here your mu range is from – infinity to infinity

and sigma square can be > 0.

So full parameter space is there but in the null hypothesis you are saying mu=mu is from –

infinity to infinity but sigma square=sigma 0 square. So you are specifying a region. In the

Neyman Pearson theory, it was essential to specify an alternative hypothesis but in the case of

likelihood ratio test it is not required. That procedure is based on a simple argument that we

consider maximization of the likelihood function under the full  region and under the null

hypothesis space.



And then we compare them so the logic is as follows. Consider the likelihood function L

theta x=product of fxi theta.
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We  maximize  L  over  omega  with  respect  to  theta  say  maximization  is  L  hat

omega=supremum  of  L  theta  x  for  theta  belonging  to  omega.  Further  we  consider

maximization of L over omega 0 with respect to theta and say maximization is L hat, I call it

L hat omega 0 that is equal to supremum of L for theta belonging to omega 0.

Now you see if the hypothesis omega 0 is true that means theta belonging to omega 0 is true

then the maximization of the likelihood function over this will be almost the same as the

maximization over the whole space. You can of course notice from a simple mathematical

argument that L hat omega 0 is always <=L hat omega because this is maximization over a

subset and this is maximization over the whole space.

So we always have L hat omega 0 always <=L hat omega. So naturally if L hat omega 0 is

closer to L hat omega that means we have more confidence in the hypothesis omega 0 that

means the likelihood that H0 is true is more likely. However, if L hat omega 0 is much less

than L hat omega then we have doubts over the correctness or being over H0 being true.

So therefore if we formulate the ratio L hat omega 0/L hat omega then for the smaller values

of that we would tend to believe that H0 is not true. So this is the basic idea for formulating

the likelihood ratio test.
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So consider the likelihood ratio so that is let us call it say some lambda that is equal to L hat

omega 0. In the likelihood ratio test, we reject H0 if lambda is <= some K. Now once again

the question about the choice of K comes and therefore we can choose K to fix the size. We

may actually look at what is the probability of rejection? So that is known as the significance

testing.

We consider the probability  of this  and we look at  the (())  (44:57) by which we will  be

actually accepting.  For example,  if I consider say alpha=0.1 or alpha=0.5 and we look at

whether  we  will  be  actually  rejecting.  So  the  minimum  value  of  2  which  we  will  be

considering that will be called p value of the test. Let us consider an example here. Say X1,

X2, Xn follow exponential distribution with parameters say mu.

This is fx mu okay. Now let us consider say we want likelihood ratio test for say mu <= 1

against say H1 mu>1.
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So we consider here the likelihood function that is equal to e to the power n mu-sigma xi and

here it will be xi>mu for i=1 to n. So naturally this is maximized, here we can consider say

mu>0 you may consider this as a typical situation where the life times of components are

following exponential  distribution  with parameter  mu but  here mu denotes  the  minimum

guarantee time.

The rate is 1 here so this is maximized with respect to mu when mu=actually the minimum of

X1, X2, Xn. So you get L hat omega that is equal to e to the power n X1-sigma xi the

maximum value of the likelihood function over the parameter space.
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Now let us consider to find maximum over omega 0, omega 0 here is mu is <= 1. Then it is

maximized when mu=minimum of x1 and 1. Because we are putting 2 restrictions mu is <=



x1 and mu is <= 1 so the maximum value that mu can take is minimum of x1 and 1. So L hat

omega 0 that will become e to the power n minimum of x1 and 1-sigma xi.

So now the likelihood ratio is say lambda=L hat omega 0/L hat omega so that is equal to e to

the power n minimum of x1, 1-sigma xi/e to the power n x1-sigma xi. So this term naturally

cancels out. Now this is equal to 1 if x1 is <= 1 and it is equal to e to the power n-nx1 if x1 is

> 1. So you can easily see that when the likelihood ratio is 1, you always cannot reject H0

because this is the best that can happen.
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So we can say that LRT will always accept H0 if x1 is <= 1.
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Now let us look at the other region. So when x1>1 we consider the rejection region e to the

power n-nx1<K. So if I take log etc then adjust the terms then it is equivalent to something

like saying X1>some c where c is to be chosen suitably. As an example we may consider say

probability of X1>c=say alpha. Suppose we want this for supremum mu <= 1 suppose we

consider this situation.

If we consider this situation, then this is equivalent to e to the power n-nc=alpha that means

n-nc=log of alpha or we can say c=1-1/n log alpha. So you are actually rejecting for a value

slightly higher than 1 okay. So this is a typical application of a likelihood ratio test and also

you can see I can show you through an example for the normal distribution that how does it

compare with the standard test that we obtain using Neyman Pearson theory.
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Let us consider another example say I consider X1, X2, Xn following normal mu1 situation

and we consider the likelihood function=1/root 2 pi to the power n e to the power -1/2 sigma

xi-mu square. Now I consider the hypothesis testing problem say mu is <= 0 against say

mu>0. Now if I consider the maximization of L over omega, here omega is actually –infinity

to infinity gives mu hat=say x bar.
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And therefore you will get L hat omega=1/root 2 pi to the power n e to the power-1/2 sigma

xi-x bar square, but if we consider maximization over omega 0 where omega 0 is actually

-infinity to 0 then we will get mu hat=see if x bar is < 0 then it will be x bar, but it will be 0 if

x bar>0 so that will give us minimum of x bar and 0. If that is happening then L hat omega 0

that will become equal to 1/root 2 pi to the power n e to the power-1/2 sigma xi-x bar square

if x bar<0.

And it is equal to 1/root 2 pi to the power n e to the power -1/2 sigma xi square if x bar>0. so

we can put <= 0 here it does not matter. Now the thing is so the ratio that is L hat omega 0/L

hat omega if you see that is equal to 1 if x bar is <= 0 and it is equal to this ratio e to the

power 1/2 sigma xi-x bar square-sigma xi square if x bar>0. That means always accept H0 if

x bar is <= 0.

(Refer Slide Time: 54:17)



Now in the other case you will formulate the region here when x bar>0 we reject H0 when e

to the power 1/2 sigma xi-x bar square-sigma xi square<K. So if I take log here and adjust

this 1/2 here, it is becoming sigma xi square-x bar square-sigma xi square<some c. Now this

can be further simplified here. We can consider this as sigma xi square-n x bar square-sigma

xi square < c.

So this cancels out so we get actually x bar square>some c. So rejection region is turning out

to be 2 sided something like modulus x bar>some c1. Let us call it c1 this as c2 here so

actually we can again see here, here I am considering x bar > 0 this is equivalent to x bar > c2

okay.

Since x bar is positive this reduces to x bar > some c3 kind of thing. Now if you compare it

with the Neyman Pearson test, there it would have been root n x bar>z alpha. Now here it is

like this only in this particular portion, but when x bar<0 we are always accepting H0 so that

is the difference from the Neyman Pearson test. So notice the difference from NP test for x

bar<0 case.

But  x  bar>  then  it  is  but  for  all  practical  purposes  you  can  see  because  alpha  will  be

sufficiently small, therefore z alpha value will be very close to high and therefore the 2 tests

will be practically the same. In the parametric methods, I have concentrated mostly on the

point estimation, confidence interval and testing of hypothesis problems. So there are other

cases also when we do not have the parameter specified.



That  means  the  distribution  is  not  specified  and  we  consider  distribution  free  methods;

however, that will be slated for a different zone. Now we will be moving over to another

topic in this statistical methods so that I will be starting from the next lecture.


