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In the previous lecture, I have introduced the concept of point estimation, what is the problem

and  we  are  considering  the  parametric  methods.  That  means  we  are  assuming  that  the

unknown  populations  distribution  is  known.  However,  it  may  depend  upon  unknown

parameter. We have considered certain criteria for judging the goodness of estimators. For

example, we have considered the criteria of unbiasedness then consistency. 

I also introduced the concept of mean squared error criterion, that means an estimator which

has a smaller mean squared error over the parameter space will be considered better than the

one which is having slightly larger mean squared error. If the estimator is unbiased, then the

mean squared error reduces to the variance of an estimator. So, therefore we have the concept

of uniformly minimum variance and biased estimator, which we call shortly UMVUE. 

I mentioned that in order to obtain the UMVUE, we have broadly speaking 2 methods. One is

the method of lower bounds. So under certain conditions or sometimes without conditions,

one  can  obtain  a  lower  bound  for  the  variance  of  an  unbiased  estimator.  Therefore,  an

estimator which will achieve that lower bound will be called the minimum variance or it will

be the minimum variance unbiased estimator. 

In this particular course, we will not be discussing those methods. However, let me briefly

introduce another method which is based on the concept of completeness and sufficiency. So,

I introduced a sufficient statistics and I gave a consequence of that, which is called Rao-

Blackwell theorem that if there is an unbiased estimator, which may not depend upon the

sufficient statistics, then we can construct another unbiased estimator.

Which will be simply a function of the complete sufficient statistics and whose variance will

be less than or equal to the variance of the original estimator and this also be unbiased, now

coupled with another concept of completeness.
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Let  me  introduce  that,  and  firstly  let  me  consider  the  applications  of  the  factorization

theorem, which basically produces the sufficient statistics in given problem. Of course, one

may  see  that  from  the  definition,  if  conditional  distribution  of  X1,  X2,  Xn  given  T  is

independent of the parameter, if T itself is a function of say U, then U will also be sufficient.

However,  we  can  consider  something  called  minimal  sufficiency  that  means  maximum

reduction of the data. 

I will not get to much into technical details here, rather we will look at the direct application.

So, let us consider say X1, X2, Xn follow say uniform distribution on the interval 0 to theta.

Now, how do you write down the join density? The joint probability density function of X1,

X2, Xn is so I will just write Fx that = product of Fxi theta that = 1/theta to the power n, for 0

< xi < theta,  for I = 1 to n. now in order to apply the factorization theorem, we need to

represent in a slightly compact form, because here this range is coming separately. 

So, we write it as 1/theta to the power n indicator function of xn over the interval 0 to theta *

the product of xi, i = 1 to n-1 and all of them will be from 0 to xn. If we look at this, this can

be considered as g theta and xn and this is a function of observations alone. So, here xn is

sufficient, that is the maximum of the observations. If we remember one exercise, which I did

for the consistency. In this one I proved that xn is consistent for theta. 

Now, here I am observing that xn is also sufficient. Now, here in the uniform distribution

theta/2  is  the  mean,  that  means  x  bar  will  be  unbiased.  But  x  bar  is  not  based  on  xn.

Therefore, I can construct another estimator which will be based on xn and whose variance



will be smaller than x bar than 2 x bar. For theta, it will be 2 x bar. So, we will show it later.

Now, let us consider some more examples. 

Say consider  X1,  X2,  Xn follow say  beta  distribution  with  parameters  alpha,  beta.  That

means I am considering the joint pdf. So, that is product of Fxi alpha, beta that = product of i

= 1 to n, 1/beta function alpha, beta x to the power alpha-1 1-xi to the power beta-1. So, this

you can see it will be.
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This can be written as 1/beta alpha, beta to the power n product of xi to the power alpha-1

product of 1-xi to the power beta-1. Here, this entire thing can be considered as a function of

parameters alpha, beta product xi and product 1-xi and then hx, you can consider to be 1

itself. So, here product xi and product of 1-xi that is sufficient. Another way of looking at this

concept  of  sufficiency is  in  the form of we can consider  the  distributions  in  exponential

family. 

Let me define one parameter exponential family and multi parameter exponential family. So,

we consider c theta hx e to the power Q theta Tx, this is called one parameter exponential

family. To give an example, say you consider X following Poisson lambda. How do you write

down the distribution? E to the power -lambda, lambda to the power x/x factorial, for x = 0,

1, 2. This we can write as e to the power -lambda 1/x factorial e to the power x log lambda. 

So, if I define Q lambda = lambda, Tx = x, c lambda = e to the power -lambda and hx = 1/x

factorial. Then this an example of one parameter exponential family. That means the Poisson



distribution belongs to one parameter exponential family. Note that this exponential family is

different from exponential density that we discussed earlier. This is exponential family.
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Let us take say exponential distribution itself, say fx mu that = e to the power mu-x, for x >

mu 0 for x<=mu. Then, this is not in exponential family. Let us consider say fx lambda =

lambda e to the power -lambda x, then here this can be considered as c lambda hx is 1, Q

lambda = -lambda, Tx = x. So this is again one parameter exponential family. Let us consider

this beta distribution that I wrote beta alpha, beta. 

This is 1/beta alpha, beta x to the power alpha-1 1-x to the power beta-1. Now, this we can

write as 1/beta alpha, beta. This is e to the power alpha-1 log x+beta-1 log 1-x. now, that

gives rise to multi parameter exponential family. So, let me introduce that here. Because here

we are having 2 terms coming here.
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So in general we can define multi parameter exponential family. So, let us consider fx as c

theta hx e to the power sigma theta i Ti x, for i = 1 to k. So, here theta is a vector parameter,

theta  1,  theta  2,  theta  k.  this  is  k  parameter  exponential  family.  So,  if  you  look  at  the

distribution that I introduced here the beta this one then we can write as c of alpha beta and

this is then theta  1,  this  is theta 2, this  is  T1x, this  is T2x. So, this is an example of 2-

parameter exponential family. 

Now, if we look at distributions in the k parameter exponential family and let us apply the

factorization theorem and see what is the effect. Let X1, X2, Xn be a random sample from

say this distribution star. Then the joint pdf of X1, X2, Xn is c to the power n theta product

hxi, i = 1 to n e to the power sigma let me put here j because i is being used here so j = 1 to n,

i = 1 to k theta I Ti xj. So, this we can write as c to the power n theta product hxj, j = 1 to n

theta i sigma Ti xj j = 1 to n, i = 1 to k. 

So, if I consider factorization theorem, then by factorization theorem, I am able to express

this as a function of so this is a function of theta and sigma T1xj, sigma T2xj, sigma Tkxj j =

1  to  n.  therefore,  we  can  say  that  sigma  T1xj  and  so  on,  sigma  Tkxj  is  sufficient  by

factorization theorem. To give an example here, if we consider this beta distribution, in this

case sigma log xi and sigma log 1-xi that will be sufficient. 
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Let us take the more popular normal distribution say X1, X2, Xn follow normal mu sigma

square. So, if I write down the joint pdf of X1, X2, Xn, then that = product i = 1 to n 1/sigma

root 2 pi e to the power-1/2 sigma square xi-mu square. So, that = 1/sigma to the power n root

2 pi to the power n e to the power -sigma xi-mu square/2 sigma square. Now, this term we

can expand and you can write it as e to the power -sigma xi square/2 sigma square+ n mu x

bar/sigma square-n mu square/2 sigma square. 

So, this is becoming e to the power -n mu square by 2 sigma square divided by sigma to the

power n root 2 pi to the power n e to the power n mu/sigma square x bar-1/2 sigma square x

bar-1/2 sigma xi square. Now, we can put it in the form of 2 parameters exponential family by

defining so this term is simply the function of parameters. So, this is some function of mu and

sigma square. Now, this we can call theta 1, that is n mu/sigma square and T1x is x bar, then

we can call theta 2 = -1/2 sigma square T2x = sigma xi square. 

So naturally you can see that this is a 2 parameter exponential family. This is a 2 parameter

exponential family at the same time, we conclude that x bar and sigma xi square is sufficient.

We can also write sigma xi and sigma xi square is sufficient, because this is a one to one

function. We can also write x bar and sigma xi-x bar whole square is sufficient. Because these

are all one to one functions of each other. So we can write down in this any of these forms. 

Now  after  this  concept  of  sufficiency  is  introduced,  let  me  introduce  the  concept  of

completeness and that will help in obtaining a form for the or a methodology to obtain the

UMVUE.
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Let us use a notation of P, so if we are considering the distributions P theta. So a family of

distributions so X. so we are actually using the notation that x has cdf fx theta. So, in general

we can  use  some abstract  notation  P theta  just  to  not  to  mention  x  there.  So  family  of

distributions  of  x  is  said  to  be  complete  if  expectation  of  gx  =  0  for  all  theta  implies

probability of gx = 0 = 1 for all theta belonging to theta, where g is any function. 

Now to look at some simple application, first of all what is the meaning of this thing. Let us

consider say X following Poisson lambda distribution, let us consider expectation of gx = 0.

Now, this is equivalent to sigma gx e to the power - lambda, lambda to the power x/x factorial

= 0. Now, we can multiply by e to the power +lambda on both the sides, then that is giving us

gx/x factorial lambda to the power x. 

Now, if you look at the left hand side is a power series in x and we are saying it is vanishing

identically over the entire positive real line. The only possibility is that the coefficients must

be all 0. That means we are having that gx = 0 for all x, which implies that the probability

that gx is o is 1 for all lambda. So, the family of Poisson distributions that is P lambda,

lambda > 0 is complete. 

Now, we extend this concept of completeness of a family of distributions to a statistic. 
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So, we say that a statistic T is complete if the family let me say P T of distributions of T is

complete. For example, in the Poisson case X is complete, similarly if we take T = sigma Xi

based on a random sample from Poisson lambda then T will follow Poisson n lambda and so

T is also complete and of course a consequence that function of complete statistics is also

complete. Now, this completeness concept is extremely useful in the sense basically it says

that if I am having an unbiased estimator of 0, then that estimator must be 0. 

Now that yields to some interesting thing for example, if I say T is complete and I say 2

estimators say h1 T and h2 T are unbiased for say g theta, then expectation of h1 T = g theta

and also you have expectation of h2 T = g theta.  If I take the difference,  then I will get

expectation of h1 T- h2 T that = 0 for all theta. Now, h1 T-h2 T is a function of T and if T is

complete, then this will imply that probability that h1 T-h2 T = 0, that will be = 1 for all theta.

Basically this means that h1 T = h2 T almost everywhere. That is unbiased estimator based on

complete  statistic  is  unique  almost  everywhere.  Therefore,  you  can  say  that  uniformly

minimum variance unbiased estimator can be obtained. 
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So, there is a result called Leymann-Scheffe Theorem. In fact, you have a slightly relaxed

version of this completeness. That is called bounded completeness. That means if I consider

here g to be any bounded function then I can change this to boundedly complete. So, that

means, in place of any function if I put only bounded function if for only bounded function

this is true then we call boundedly complete. However, this is not required here. 

So, if T is complete and sufficient then, hT is UMVUE of g theta that = expectation of hT.

Now, once again one can prove actually  a completeness for various families for example

normal  distribution,  binomial  distribution,  Poisson  distribution  etc.  but,  in  exponential

distribution,  we have a  result  which can  straight  away give the  completeness  property. I

introduce the multi parameter exponential family that is of this form Fx = c theta hx e to the

power -sigma theta i Ti x. 

So, if we have distribution of this nature and we have the parameter space say theta, if it is a k

parameter exponential family and if the space theta contains a k dimensional rectangle, then

T1, T2, Tk will be complete and this result is very useful in proving completeness in various

distributions. In k-parameter exponential family star (*) if the parameter space theta contains

a k dimensional rectangle then, T1, T2, Tk is complete. 

Moreover, if X1, X2, Xn is a random sample from star (*) then, sigma T1 Xj and so on sigma

Tk Xj that will be complete and of course sufficient. That means the problem of obtaining the

UMVUE reduces  to  actually  determination  of  complete  sufficient  statistics  and  then  by



making use of  that  we can simply  consider  functions  of  that  which are unbiased for  the

required parametric functions and then you will have UMVUE. 

So, let me give you example here so X1, X2, Xn follow Poisson lambda then, T = sigma Xi

this is complete and sufficient. So, if I consider X bar, which is simply T/n so, expectation of

X bar = lambda so, X bar is UMVUE of lambda. Now, this resolves the problem that for

example based on this sample, I could have considered any number of unbiased estimators

for lambda. 

For example, in Poisson distribution, 1/n-1 sigma Xi-X bar whole square, let me call it U, this

is also unbiased for lambda but, since this is not dependent upon X bar alone, because it is

using other observations also. So, you will have variance of X bar <= variance of U.
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Let us consider say X1, X2, Xn from normal distribution, the popular one so, we have already

seen that it  is 2-parameter  exponential  distribution.  I showed here in the form X bar and

sigma Xi square or X bar and sigma Xi-X bar whole square. So, here X bar and sigma Xi-X

bar whole square, this is complete and sufficient. So let us look at expectation X bar that is

mu, if I look at let me call this S square is 1/n-1 sigma Xi- X bar whole square. 

So,  expectation  of  S square is  sigma square.  So,  X bar  is  UMVUE for mu,  S square is

UMVUE for sigma square. Not only that, we can also consider unbiased estimator for other

parametric functions for example, in this problem a popular thing could be considered say



quantile of the form mu+say b sigma, where b is an arial number. Basically in the normal

distribution as I have explained, this is mu, you may have mu-sigma, mu+sigma and so on. 

So, in general mu+b sigma is any position on the curve here. So, if we consider this as a

function, let me call it Q then, for mu we have X bar, now let us consider estimation of sigma

also so, we can make use of n-1 S square/sigma square this follows X square distribution on

n-1, these are as I mentioned yesterday in the discussion of the sampling distribution. Now if

I make use of this, I can consider expectation of say W to the power half. 

So, that = integral 0 to infinity W to the power half 1/2 to the power n-1/2 gamma n-1/2 e to

the power -W/2 W to the power n-1/2-1dw. This is the density of the Chi-squared distribution

on n-1 degrees of freedom. 
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So, let us simplify this terms, this we can write as integral 0 to infinity and these constants

will remain as it is and here I can adjust the power n/2-1 dw so, this is nothing but gamma n/2

and 2 to the power n/2 divided by 2 to the power n-1/2 gamma n-1/2. So, that is giving us

square root to gamma n/2/gamma n-1/2. So, what we have proved expectation of w to the

power half that is n-1 to the power half S/sigma that = root 2 gamma n/2 divided by gamma

n-1/2. 

That means we can write expectation of gamma n-1/2*n-1 square root divided by square root

2 gamma n/2 S = sigma. So, we are able to obtain. So first of all, since X bar and S square is

complete and sufficient this gives this is the UMVUE for standard deviation. Another thing is



that if I plug in Q so I get X bar + this root n-1/2 gamma n-1/2/ gamma n/2 S, this is UMVUE

for quantile. 

So, you can see this concept of complete sufficient statistics is extremely helpful in deriving

the uniformly minimum variance unbiased estimators and not only that see if we had not

considered the complete  sufficient  statistics,  then for the estimation of sigma perhaps we

would have simply used 1/square root 1/n sigma X i-X bar whole square as for sigma square

we were using 1/n sigma Xi-X bar square or 1/n-1 sigma Xi-X bar square. 

But if you see this one, we are not using that this is slightly different. If we use the concept of

minimum mean squared error, then some other estimator is also possible but that I will delay

here  I  will  not  be  considering  right  now. Now let  us  consider  the  method  of  obtaining

estimators. Right now we have discussed the criteria for obtaining estimator and we have

shown that, there are estimators which will fulfill those criteria. But, for any population, we

can also give some general methods for obtaining estimators. 
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So, first of such methods is method of moments. This was introduced by Karl Pearson, one of

the founders of the subject of statistics. So, if we are considering that X1, X2, Xn is a random

sample from a population with distribution say Fx theta, I am putting it in the vector form. In

general I am assuming it is a k parameter distribution for k >= 1. 

Suppose we want to estimate theta 1, theta 2, theta k so, let us define sample moments that is

alpha k that = 1/n sigma Xi to the power ki = 1 to n, for k = 1, 2 and so on. Let me change it, I



put alpha m here because k is used here. Consider population moments so, mu prime that =

expectation of say X1 to the power m for m, for m = 1, 2 and so on. Now, naturally this mu m

prime, this will be some function of the parameter. So, let me call it this function as gm theta. 

So, for m = 1,2. So, we have k equations that is we write mu 1 prime = g1 theta and so on mu

k prime = g k theta, let me call this system 1. Suppose the solution of the system 1 is theta 1 =

say h1 of mu 1 prime and so on mu k prime and so on theta k = say hk of mu 1 prime and so

on mu k prime. In method of moments, we plug in for mu 1, mu 2, mu k prime alpha 1, alpha

2, alpha k. 
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In method of moments, estimators of theta 1, theta 2, theta k are obtained as theta I head = hi

of alpha 1, alpha 2, alpha k. so you can say that the basic method is that they estimate the

population moment by the corresponding sample moment.  Of course, when we write this

equations, this must exist, that is this must exist, if they do not exist then you cannot write the

equation here. So this is the basic method of moments here. 

In general, method of moments estimators need not be unbiased that means sometimes they

may be biased and sometimes they may be unbiased. Usually, they are consistent. Now, in

fact you can write the conditions, if this functions h1, h2, hk are continuous functions, if they

are continuous, then we have already done the weak law of large numbers. So, from there this

alpha m will be actually consistent for mu m prime. 



If alpha m is consistent for mu m prime and hi are continuous functions, then this theta heads

will be consistent for h i's. so, you can consider here this is following say Poisson lambda,

then X bar is consistent and this is an MMV, method of moments estimator for lambda. If I

consider say X1, X2, Xn following normal mu sigma square then, what are the moments

here? Mu 1 prime = mu, mu 2 prime = mu square + sigma square.  So,  if  we solve the

equation, you get mu = mu 1 prime, and sigma square = mu 2 prime - mu 1 prime square. 

So if I substitute here, so method of moments estimators of mu and sigma square, they will be

mu head = X bar that is alpha 1 prime, alpha 1 and sigma head square, that will be = 1/n

sigma Xi square - X bar square, that is 1/n sigma Xi - X bar square. Note that, this is not

unbiased, note that mu head is unbiased for mu, but, sigma head square is biased for sigma

square. Because we have seen actually that 1/n-1 sigma Xi- X bar whole square is unbiased

for sigma square. 

So, if I consider expectation of sigma head square, then that will be = n-1/n sigma square. So

this is biased for sigma square. So this is a simple and heuristic method for obtaining the

estimators for parameters in any given problem. Now there may be some times some sort of

discrepancies for example, here if I am writing 2 parameters, then I am writing 2 equations

here. If I have 1 parameter I write 1 equations. 

Sometimes, it may happen that due to peculiarity of the distribution, that the required number

of equations may be more. For example, if I consider uniform distribution on the interval say

-theta to +theta, then the mean is 0, then the first moment is not useful. So, you can consider

the second moment that will be theta square/3 and then you can use second sample moment

to estimate theta. Another thing that was observed in the method of moments estimator is

that, we have to actually solve the equations. 

In examples that I constructed here, it is simple, but sometimes you may end up with some

very complicated functions. For example, if I consider gamma distribution, or I consider 2

parameter uniform distribution or if I consider beta distribution, where the mean is somewhat

complicated function of the parameter. In that case, the solution of the equations will give rise

to some complicated functions. 



So,  certainly  unbiasedness  will  be  ruled  out,  not  only  that,  sometimes  continuity  of  the

function may also be in question. A more practical and also you can say theoretically sound

procedure was proposed in 1925 by RA Fisher, which is known as the method of maximum

likelihood.
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So, in the method of moments, we are making use of the moment structure of the distribution

where as in the maximum likelyhood estimation, we make use of the probability structure or

the density structure of the distribution. So roughly speaking, let me give the interpretation

here, suppose X1, X2, Xn is a random sample from a distribution, either pmf or say pdf of

course, you may have somewhat different situation in which you may have a mixture also,

that means partly pmf and partly pdf but, for the time being, let me write in a simpler form. 

So suppose, it is written as Fx theta okay. So, let me consider the pmf representation, in the

pmf representation,  we write probability of X1 = say x1 and so on, Xn = xn that will =

product of f xi theta, i = 1 to n. now, let me put this in a different form. Here what we are

saying? If theta is the 2 parameter value, the probability that capital X1 = x1, Xn = xn is

given by this  expression.  Now, depending upon different  values  of  theta,  this  value  will

change. 

So, if I am considering that means a sample this has been observed, we can actually consider

it  as X1, X2, Xn = x1, x2, xn. That means,  what is the probability of this  sample being

observed? Now, we can call it likelihood of sample x1, x2, xn being observed. So I give a



new name and I call it L theta, x. This is called the likelihood function. That value of theta,

we consider as that means we maximize this with respect to theta. 

Then  that  value  of  theta,  theta  head  =  say  theta  head  x  is  called  maximum  likelihood

estimator of theta, if L theta head x >= L theta x for all theta. That means, we are considering

maximization  of  the  probability  of  observing  or  likelihood  of  observing  that  particular

sample. We can consider some typical example, suppose I take say Poisson lambda and I

specify say lambda = either 1 or lambda = 2, that means 2 values are possible. 

2 values in the parameter space okay and we observe say X = 2 for example or let us take X =

1. If I observe x = 1, let us write down this probability of X = 1 that = e to the power -

lambda, lambda to the power x that is 1, so this is simply divided by X factorial. Now, if

lambda = 1, then this is e to the power -1. If I observe lambda = 2 then this = 2 e to the power

-2. So, we look at the comparison of this values, which value is larger, that is 1/e or 2/e

square, so we compare let us just write down so I multiply by e square, so this is e square <

2e. Or if I consider e < 2. 

So that means this is actually larger. We are getting e > 2, which is true. So, this number is

larger, that means likelihood of observing X=1 is more when lambda = 1, so we say lambda

head = 1 is  the maximum likelihood estimate.  Since it  is  observed already, so we call  it

estimate of lambda. So look at this, I am telling here that 2 values lambda = 1 and lambda = 2

are allowed here.  We do not  know which one is  the correct  value.  Now we observe the

sample in this particular case, one observation I take, and it = 1. 

Now, I calculate the probability of this X = 1 under this lambda so I am getting e to the power

- lambda lambda. I look at under both the conditions, for lambda = 1, this = e to the power -1

for lambda = 2 this is 2 e to the power -2. Now, I compare these 2 and I just write a simple

inequality  1/e  >  2/e  square,  which  is  equivalent  to  e  >  2,  which  is  true.  Therefore,  we

conclude that this probability is higher, therefore, lambda = 1 will be called the maximum

likelihood estimate of lambda here. 

So, you can say this is the fundamental principle of the maximum likelihood estimation that

we consider the likelihood function. We look at that value of the parameter, which is actually

maximizing.  That  means  we  are  basically  maximizing  the  likelihood  function  which  is



actually nothing but, I have given the probability mass function interpretation. So, now we

generalize this in place of this one suppose I consider pdf, then we maximize that. 
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So in general, we define the likelihood function as the joint pmf or pdf of X1, X2, Xn. So that

is product of Fxi theta and we call it L theta X and maximize with respect to theta. So, say it

is maximized at theta head x. Then, theta head x is called the maximum likelihood estimator

of theta. So, I will be showing through various example of this, let me consider a simple

application, which we have been considering earlier  for the discussion of consistency and

sufficiency at sector. 

So, now let us consider this for this purpose. Now, you can see that the likelihood function

will be 1/theta to the power n indicator function of, so let me just write this and this we can

actually write as 0 < = x1 <= x2 < = xn. Now, to maximize this we see the maximum value

will be attained when theta is minimum but the minimum value of theta will be xn. So theta

head mL = Xn. 

In fact, we already proved that this is sufficient, we can also show it is complete. This was

already shown to be consistent, it was sufficient. We can also show it to be complete. We can

also show that Xn is complete. Just briefly I will obtain actually the UMVUE based on this to

complete this to complete this discussion.
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See, we had obtained the probability of Xn <= x = product of probabilities Xi <= x, that =

x/theta to the power n. so, the density function of xn is actually = n/theta to the power n x to

the power n-1. If I consider the expectation of this, what I get here? This = n/n+1 theta. So,

that means expectation of n+1/n Xn = theta. Also, let us consider say expectation of g Xn = 0

for all theta. Then this will imply integral gx n x to the power n-1 theta to the power n dx 0 to

theta that = 0 for all theta positive. 

Now, you are saying that integral over intervals of the form 0 to theta for all such intervals.

Then,  you can consider  say (())  (58:30)  result  by differentiation  etc.  You can prove  that

actually that gx = 0 almost everywhere. That means Xn is actually complete. Now, Xn is

complete  sufficient  and this  is  an unbiased estimator  based on Xn. So, T = n+1/n Xn is

UMVUE of theta. 

In tomorrow's class, I will discuss few more examples of maximum likelihood estimation and

the method of moments and what is the comparison between them and then we will move

over to the concept of interval estimation also. So, we stop today's lecture at this point.


