
A Basic Course in Real Analysis 
Prof. P. D. Srivastava 

Department of Mathematics 
Indian Institute of Technology, Kharagpur 

 
Lecture - 8 

Finite, Infinite, Countable and Uncountable Sets of Real Numbers 
 

Today, we will discuss the basic topology on the set of Real Numbers. 
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And first we will discuss what is 1 1 correspondence then, we will go for the countable 

and uncountable concept of the countable and uncountable sets. The 2 sets A and B are 



said to have 1 to 1 are said to be in 1 to 1 correspondence in 1 to 1 correspondence, if 

there exists if there exists a 1 1 mapping 1 one mapping from A onto B onto B. 

And then, if A and B are finite then, we say the cardinality of A and cardinality B is the 

same, if A and B are finite sets then the cardinality or cardinal number of A is the same 

as the cardinal number of B number of b. But, if A is infinite then, there is no sense of 

talking the number of elements in the set both. So, in that case when A is and B are 

infinite set, then instead of saying the cardinality is the same, we said they have a 1 to 1 

correspondence that is more meaning full than saying the numbers are same. 

So, this is one and the relation, which we get if we put the relation, suppose A is related 

to B a is related to B, if A is a 1 to 1 correspondence a is 1 to 1 corresponds to B, then 

this relation the relation this relation is this relation is obviously, is reflexive symmetric 

and transitive and transitive. So, it is a reflex, it is a equivalence relation, so it is an 

equal, so it is an equivalence relation. 

So, we also say, so, we can say we can say that A is equivalent to B a is equivalent to B 

when they have, when A is 1 to 1 correspondence to B, so that is the way we define. 

Now, using the concept of the 1 to 1 correspondence, we can now define the finite set 

infinite set countable and uncountable set the definitions. For any positive integer for any 

positive integer positive integer say n, let Jn represent the sets having the element 1 to 3 

say up to n, the first n in natural number of positive integers and let J is the set of all 

positive integers 1 2 3 and so on, this is the set of all positive integer positive integers. 
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Then for any set A for any set a for any set a, we define, we say A is finite a is a finite set 

a is finite set, if A is equivalent to J n for some n for some n. Obviously, once it is 

equivalent to some n then n is fixed, so J n is finite, the number of the terms n only, so a 

will also be finite, 1 to 1 correspondence and set will be a finite. Empty set in particular 

consider to way to finite set, so in particular empty set phi is considered to be is 

considered to be finite finite. 

Then A set B set A is said to be infinite, if A is not finite, in fact, this definition we can 

further modified and we get a better way of defining the infinite set s, in the next top next 

part when we discuss about count ability. 



So, A a is finite means, if it is not infinite, A is infinite means, if it is not finite and A is 

countable, if if A is equivalent to J, that is there is A 1 to 1 correspondence between the 

elements of A and that J, all we can define A mapping from set of positive integer to A, 

which is 1 1 then such a set A is said to be A countable set. So, this J, we have though 

started from 1 to n 1 to infinity, we can also take from 0 1 to n, we starting the point x 0 

0, corresponding the point x 0 x 1 corresponding to point x 1 and so on. So, we can also 

consider then positive a non negative integers, positive integers been including 0. 

D A is uncountable, A is said to be uncountable, if A is neither, neither finite, nor 

countable nor countable and E is say A is at most countable, A is at most countable, if A 

is a is finite or countable. Finite set is also countable set,, but if the set is finite as well is 

and also count means finite, that is it will be considered countable countable set itself a 

countable. 

So, we say a is almost countable means either A is finite or may be a countable set that is 

about countable. The countable set also known as countable sets are also known as as 

denum denumerable set denumerable or ennumerable sets or ennumerable sets. Let us 

see the some examples, we are we say, let A be the set of set of all integers a be the set of 

all integers, then set of all integers, we claim that this set of integer is countable, we 

claim A is countable is countable, it means we are able to define a 1 to 1 correspondence 

between the sets of positive integer and the set of the elements A. 
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So, let us define a mapping f from the set of positive integer J to A, A as follows, if I 

take the image of any n under f is say n by 2, if n is even integer, even positive integer 

and otherwise when we say n minus 1 by 2, if n is odd positive integer. So, what we see 

here is, that if we take A, which is the set like 0 1 minus 1 2 minus 2 3 minus 3 and so on 

and J, this is the set of positive integer 1 2 3 4 5 6 7 and so on. 

So, what is says is as soon as n is even, it will be n by 2 this is related to here, then 4 will 

go to here, 6 will go like this and when n is odd when n is odd then your getting this 

thing, this thing, this thing and of course,, 1 will go to 0. So, there is 1 to 1 

correspondence between the elements of the set A and set J, so obviously, this n this 

mapping is 1 1 mapping, 1 1 mapping we can just check it, because f is 1 1 means f of x 

1 equal to f of x 2 should implies x 1 equal to x 2. 

So, here if we say n is even then obviously, when you can take f n 1 equal to f n 2, 

obviously, n 1 comes out to n 2, similarly here, when n is odd, we are getting same, so 

obviously, f is 1 1 here, so that is why this type set of positive in that is of positive 

integers is a countable set [FL]. One more thing which we can see here is a remark, what 

we have seen is that, this A is set of integer, but J is a set of positive integer, J is a proper 

subset of A. 

So, but they are having 1 to 1 correspondence, so what we can say is what we conclude 

or we observe here is in the case of the infinite, said we can say A is infinite, then A is 

equivalent to 1 of it is proper subset, in case of the infinite set a proper sub set may be 



equivalent to the set itself. So, incase of infinite set a proper subset A may be is 

equivalent to in case of finite set say A a is equivalent equivalent to 1 of its proper 

subset. 

And this is also a way to define a infinite set, we say a set is infinite, if A is equivalent to 

1 of its proper subset. So, we say in that is that is A is infinite a is infinite set if infinite 

set, if A is equivalent to equivalent to 1 of its proper subsets, that is rule. Now, another 

remark we can put it here, that every elements of any countable set can be arrange in the 

form of sequence, elements of a countable set of a countable set elements of a countable 

set may be arranged can be arranged arranged in a sequence. 

Because basically, what we we have a 1 to 1 correspondence with set of positive 

integers, so corresponding to 1, we have getting x 1, corresponding to 2, we are getting x 

2, corresponding to 3, we are getting. So, this form basically sequence, because is like 

this, if A is any set having the elements see here, these are the elements for this set a then 

J is what j is 1 2 3 and so on, it has 1 to 1 correspondence. So, corresponding to 1 your 

getting x 1, corresponding to 2 your getting x 2, corresponding to 3 your getting x 3 and 

so on, so this has 1 to 1 correspondence with this is a not like this. 

So, we get the 1 to 1 correspondence between the set of positive integer and the elements 

of the set, so element of a countable set can be arranged in the form of sequence. So, this 

is also remark, we will use it. 
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Now, this is interesting result and result says, every infinite subset subset of a countable 

set of a countable set A is countable,  so proof is let E be an infinites, let E be a subset of 

A and E is infinite is infinite. Now, since A is since a is countable, so we can arrange the 

element a in the form of sequence, so A will have the sequence like x 1 x 2 and so on all 

the elements of set can be arranged in the form of the sequence. 

Now, let us construct a sequence construct a sequence n k of positive integers as for as 

follows, suppose n 1 be the smallest positive integer be the smallest positive integer, 

such that x n k x n 1 is an element of E is from this 1 2 3 and so on, suppose I am taking 

n 1, n 1 is the smallest integer. So, that first x n 1 corresponding to this x 1 is an means 

out of this the first element, which your getting is x n 1 belongs to E, then assume that n 

1 chosen n 1 n 2 say n k minus 1, where k is 2 3 4 and so on. These are the after choosing 

in such a way, when n 2 is greater than n 1 and such that x n 2 belongs to E and so on. 

Let us take n k now be the smallest integer be the smallest integer with the smallest 

integer, such that be the smallest integer such that n k is greater than n k minus 1 and the 

corresponding terms of the sequence x n k belongs to E. So, now, let us introduce the 

function f from J to E, so if we take f of n as x of n k f of k let us take f of k as x of n k, 

where k is 1 2 3 and so on, then what we see here, there is 1 to 1 correspondence 

between J and E, because for k is 1 x 1 x n 1 is E k is 2 x n 2 in E x n k in E and like this. 

So, this is a 1 to 1 correspondence between between E and J, hence E is countable hence 

e is countable, so this shows that every infinite subset of countable set is countable clear 

is it, so this one. Now, here, as we have seen that if A is countable, we can put in the 

form of a sequence x 1 x 2 and all the elements, we can arrange in the form of sequence 

x 1 x 2 x n, if I generalized it, say why because 1 to n is basically set of positive integer. 

So, instead of this we can take the collection family of set also. 
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So, we define like this let A and omega be sets and suppose with each element alpha of 

A, the associated set of omega, which is known as suppose for each for each element 

element alpha belongs to A alpha A, there is there is associated a subset E alpha of 

omega subset say n, subset denoted E alpha of omega. Then the collection of these E 

alpha, then this collection E alpha here, alpha belongs to A this collection alpha is the 

collection of the sets is the family of the sets family of sets or subset of q subsets of 

omega, family of subsets of omega. 

Now, if we take s, s the union of E alpha when alpha belongs to A, then this for at least 1 

we used, then any element belongs to this means it will be in 1 of the alpha E alpha like 



this for 1 A, at least we used it. And in particular in particular, when A is an positive 

integer, A is the set of positive integer, then s becomes union E m, m is 1 to infinity and 

this we say it is countable union of E ms like this. Similarly, for the inter section also, we 

can enter this will be needed, we can justify. 

Now, let n of the results in the sequence of the countable sets, let us suppose E n e n and 

n is 1 to no and so on, be a sequence of sequence of countable sets countable sets and put 

and let s is the countable union of ens s is a countable union of ens n is 1 to infinity, then 

what we claim is then s is countable, then s is countable. 

So, countable union of a countable set is countable, that is what this result says, now 

what is En, Ens are giving to be countable, so, it can be arranged in the form of 

sequence. So, proof is since En for each and since E n for each n is a countable set 

countable set. So, its elements can be arranged in a form of the sequence in the form of 

sequence in the form of the sequence say x n k where, k is 1 2 3 and so on, k is 1 2 3. 
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It means, that is E 1 set E 1, we can arrange the form for the set E 1, we can arrange the 

elements like this x 1 1 x 1 2 x 1 3 x 1 4 x 1 5 x 1 6 and so on. For E 2 the elements 

suppose, we are arranging x 2 1 x 2 2 x 2 3 x 2 4 x 2 5 and so on like this and Ens 

suppose, we arranging x n 1 x n 2 x n 3 x n 4 x n 5 and so on like this, so continue this. 



Now, let us consider the foring array consider consider the array array as mention above 

infinite array as shown above by arrow, what is this, suppose I take this arrow first, let us 

take this another pen then, suppose I take this as first element this way, then I take 

choose this 1 then I take this arrow, then I take this one, x n 1 x n 2 x 3 1 oh sorry, this is 

like this x 3 1 x 3 2. So, basically this will be the x 4 1, this is x 4 is wrong, so this will 

be x 4 1 x 4 2. So, this way will go this way will go not this like this. So, if we continue 

this way that is, what we are doing is, we are taking up this way like this. 

The first element, we are choosing x 1 1, the first array then second 1, I am taking as x 2 

1 x 2 2 x 1 2 then, third array, we are taking as x 3 1 x 2 2 x 2 2 x 1 3 x 1 3 and 4th 1 is 

say x 4 1 x 3 2 and then x 2 3 and then x 1 4 like this continue this. So, if we arrange this 

in the form of the sequence, then what we get is, we are getting first element second 

element third element and so on like this. So, in this way, we are getting 1 to 1 

correspondence between the elements of the set and set of positive integer. 

It may so, happen the some of the elements of this sequence may be repeated, then what 

we can do is, we can get the subset of this set, since it is infinite subset. So, subset of this 

we can find out a integers, a subset of T integer J, which is also countable, so with that it 

will be a 1 to 1 correspondence, we drop this common element and make the 

correspondence with the set of positive integer.  

So, if if any 2 of them, if any 2 of the any 2 of the sets, E n have elements in common 

common, then these will appear these will appear more than once, in this arrangement in 

this arrangement say is star in this arrangement is star. 

Then what we share, hence they are exist, hence they are is a subset of subset T of the set 

of all positive integers T of the set of set of all positive integers all positive integers, such 

that such that s and T, which s is equivalent to T, which shows that, s is at most 

countable, that s is at most countable. Let us see what is the meaning of this, once we 

have arranged this union of this sn even E to n, this each E n, we are arranging in the 

form of sequence. 

So, now, take the arrow like this, so choose the element first element 1 1, then second 

element x 2 1, third element x x 1 2, fourth element may be the x 3 1, then x here, x 3 1, 

this will be the x 3 1, then this array, here the sum is 4, here the sum is 4. So, this one 

and continue, so this has a 1 to 1 correspondence with a set of positive integer, in case if 



suppose some elements are repeated, then what we do, be just drop that element take 

only once. 

So, that will be have a 1 to 1 correspondence with the set subset of J, that is there will 

exist a set T of a set of positive integer, which has 1 to 1 correspondence with this set of 

elements s, so s becomes countable. Now, s may be finite or may be infinite, so but, s 

cannot be finite, so we can take to be the let us by because since E 1 since e 1 e 1, which 

is contain in s, because s is the countable union of these Ens. 

So, E 1 is contain in s an E 1 is giving to be infinite and E 1 is infinite, because this is 

already given that sequence of countable sets, Ens is the sequence of the countable sets, 

which are infinite of each element, then E 1 is infinite then s will be infinite. So, this 

shows s is countable this implies s is countable s is countable and that is proved the 

result, so this is one. 
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Same result, we can generalize it, so s is coronary, we can say suppose A is at most 

countable at most countable and let for every alpha belongs to A, B alpha B alpha is at 

most countable with a subset omega of course, at most countable. Then then T, which is 

the count union of B alpha, when alpha belongs to A is count is at most countable at 

most countable means, either it may be finite or infinite any countable all infinitely 

countable. 

So, that is with another results, which we in this you since, we have let a be the countable 

set be a countable set and let B and let B alpha B n be the set of all n tuples set of all n 

tuples of the say a 1 a 2 a n, we are Aks, this element, they are the elements of A k is 1 2 

say up to n. And the elements a 1 a 2 will not be, in the elements elements a 1 a 2 a n 

need not be distinct distinct, then B n is countable is countable.  

So, what this theorem says is that, if we construct a set B or B n, that is B n is the set of 

all n tuples a 1 a 2 a n where, a k is all in A, if this quadrants of this n tupeles belongs to 

a countable set then this collection of all n tuples will also be a countable set, that is what 

he said. 

So, in particular, when you take n equal to 2, the order set of order appear where a 1 a 2 

belongs to a set, which is countable then this set of for n is 2, becomes countable an this 

will be give leads the proof for the rational number to be countable. So, let us see the 

proof of this first this be proved by induction, sup what is our B 1, for n is equal to 1, B 1 

is basically is only single element E 1, it means B 1 coincide with A, but A is giving 



countable A is giving countable. So, once it is countable, so this implies the B 1 

countable B 1 is countable, so let us assume that up to B minus 1 is countable. 
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So, let us assume let let B 1 B 2 B n minus 1 is countable set, now we will proof for n B 

n, so consider the B n, B n we can put it B n in the form of order pear b a where, what b 

where b belongs to B n minus 1 a tuples here, B is B 1 B 2 B n and n minus 1 and then 

comma any terms is a, so B 1 in a belongs to A clear. Now, if I fix b then once you fix up 

b, it means each element of a, we are combining with b that is all. 

So, basically your getting a itself is a not, so that is nothing but, so not for every fix b, 

the set pairs the set of pairs b a is equivalent to equivalent to equivalent to set of B a 

equivalent to A, but A is given to countable, hence hence countable. 

So, thus B n is countable, thus B n is countable countable union of B n is the is union of 

union of a countable set union of countable set of countable set is a union of countable 

set, because a is countable and this your fixing B and minis 1, which is also countable. 

So, basically B n is the union of countable sets B n minus 1 in A, so it is con hence it is 

hence it is countable by the previous result therefore, B n is countable, so this proved the 

theorem. 

Now, as a particular case I told then when you fix up the n is 2 then, we get the very 

important result the all set of rational numbers is countable, the set of set of all rational 



numbers rational numbers is countable why, what is our rational number. The set of 

rational number q is basically of the form say b by a B by a where a and b are integer 

integer a is not equal to 0 and the deviser of this one is the do not have a common factors 

in it this is one. Even if it is not 1, even we do not put it say 2 by 4 1 by 2, we can take 

also that one, so this is all general in this form. 

Now, what is this, this is basically an ordered pair say b a where, the order is b by a, so a 

is an integer, b is also an integer and both are countable set, so basically it is union of the 

countable sets. So, the in the previous theorem in the previous theorem, if we take n is 

equal to 2 then this shows that q is countable, because b is in I which is countable a is in 

I which is also countable therefore, it is countable, so set of all. 
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Now, this we will just given example,, but we show it later exercise, which is we will 

prove it, now set of all algebraic number algebraic numbers set of all algebraic numbers 

is a countable set. Second we can show and we will prove that, I am giving example, but 

otherwise next, we will show it also when it is set of all, that is all this infinites, real 

numbers set of real number, set A set a of all sequences, set a of all sequences all 

sequences whose elements whose elements or all digits 0 and 1 0 and 1 all this 0 1 is not 

uncountable set. 

So, In fact, this result shows the second example shows, so this this example shows that 

all these infinite set need not be countable, that all infinite set sets need not be countable. 

In fact, we will show that set of real number is not countable set of rational are countable 

set of irrational becomes uncountable set. So, let us see the results the theorem, which is 

fall in the theorem proof of solution for 2 for this you can also say in the form of theorem 

as A. 

Let us suppose A E be the countable subset of these let E, let given A be the set of set of 

all the sequences all sequences whose elements are elements are say whose elements are 

like this all this infinite sequences. The sequences set of all sequences whose elements 

are digits 0 or 1 that is a will be a set of this type of sequence say 1 0 1 comma 1 0 

comma 0 like this or may be 1 1 1 1 1 0 like this means all these sequences. 

In fact, the digits are 0 or 1, this claim that this set will be uncountable set. So, let let us 

suppose E be a proof let let E be a countable subset of A, let us suppose let e be a 



countable countable subset of a let us take this, it means every E can be arranged in the 

form of sequence. So, let E consists of the sequences E consist of sequences say s 1 s 2 s 

n s 3 and so on, because this is countables, we can arrange the element in the form of this 

now is s 1 s 2 and s n where, s I is this may be few 1 0 1 1 0 0 0 and so on, means an 

digits are are either 0 or 1, digits 0 or 1. 
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Now, from this let us constructed new sequences, so construct a sequence construct a 

sequence as as follows, what is the way we are constructed in sequence is that, if the nth 

digit in s n, if the nth digit digit in the nth digit in s n is 1, then we let the nth digit nth 

digit of s be 0 and the vice versa means. What how we are choosing is suppose s 1 s 2 s n 

is giving sequence, so I am taking the constructed sequence s, such that if the nth digit is 

s n is 1 then, we replace 1 by 0. 

It means the first first term first term of this term, we will look that s 1, if the first term in 

s 1 is 1, we will get a 0, if first term in the s n s 1 is 0, we will take it 1. Similarly, for a 

second term of s 2, we look, the s the second term of s, we look the sequence s 2 and see, 

what is that digit, whatever the digit, there we will take that just opposite of means, if it 

is 1, we will take 0, if it is 0, it is 1 it means the sequence s, so tend will differ from all 

the terms of the this set e. 

So, obviously, so what we see here is, that the sequence s sequence s differs from every 

member of E, every member of e in at least at least 1 place, because, we are constructing 



in such a way const, so once it is differing from each element and E is already countable, 

we are arranged the system in formal sequence s 1 s 2 s n. And since s is not co siding 

with in any one of the term, so this implies that, s is not an element of E, it means what, 

but s is what, but s is is in the element of what a because, a is collection of all the sub 

sequences with digits either 0 or 1. 

So, E is a proper subset of this this implies, E is a proper subset of a subset of a is a 

proper subset an once, we have already shown and it is known or it is shown that it is 

shown that every countable subset every countable subset of A is a proper subset of a is a 

proper subset of a every countable set of a is a proper set of a, this we have shown 

already every countable subset of A is A proper subset of A. So, A cannot be countable, 

because s 1 is a countable, then this subset, which we are getting must be proper. 

So, this shows this implies that, A is a cannot be countable, because if a is countable then 

here itself, we are getting is it not because otherwise a would be proper subset of itself 

otherwise a would be a proper subset of a itself, would be a proper subset of A itself 

which is absolute which is absolute. Because, a set cannot be proper a set will be proper 

subset of itself, it cannot be a proper subset and here if you assume A to B, a countable 

then it must be have a proper subset. 

So, this is every proper subset, but here we are getting that this cannot be, so this shows 

that A uncountable, this shows a is uncountable a is uncountable. So, this a thing now 

one more example, which we will deal is set of number countable and other. 
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Lets take the few more that is this example as we have seen the interval 0 1 set of real 

numbers is not countable. Now, this we will prove it by using the decimal expansion 

suppose, I take x any element of R, we can arrange this in the form of the sequence say x 

is in R, then we can write it, we can represent x represent x in the form of in its decimal 

expansion decimal, we can write the decimal expansion for this. 

So, x is something alpha 1 point say a 1 a 2 a n and so on then this a 1 a to n and these 

are numbers different from 0 8 and 9. So, in order to repeat the whole 9 and then, what 

we do is we can construct the another numbers say first place a 1, we can replace it by 

number, which is not available here. 

Just changing just like a previous think, we did it s B n construct a sequence, where we 

are replace the first element of the sequences by looking the s 1, if it is 1, we will take 0, 

if it is 0, it will be 1. So, similarly here also be looked at and then replace it by number, 

which is not out of this. So, that at least each element will differ from the constructed 1, 

so we will say, I will complete this thing next. 

Thank you very much. 


