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So, last time we were discussing about some example showing that a square root of a rational 

number positive rational number which is not a perfective square is a irrational number; similarly 

square root of a integer positive integer, it is also not a perfective square, it will be a irrational 

number. And in fact we have seen the first part is ok, second part we were just checking, and we 

come to that. 
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Suppose m is a positive integer which is not a perfective square, is it not? That is square root of 

m then we will show a square root of m is an irrational number, is it not, that we were discussing. 

So, we have proved this by contradiction. Suppose it is an irrational number suppose a square 

root of m is an irrational number is a rational number, sorry, is a rational number which is of the 

form, say p by q, where p and q where p by q is in its lowest form and q is not equal to 0. Then 

no common factor between p and q, and it is in the form, okay. So, what we get it and this 

number p by q is a rational number. So, we can identify the two integer in between this number 



will lie. So, let lambda, lambda plus 1 be the two integers such that lambda less than say p by q 

less than lambda plus 1. That is what we get is lambda q is less than p less than lambda plus 1 

into q. 

Now from here we can say that p minus lambda q is strictly less than q let it be 1, because this 

will be required; that is what we want, this will be required, okay. Again it is given that root m 

we are assuming it is a rational number which is the form p by q. So, p square by q square is 

equal to m; that is p square minus q square equal to mq square, p square equal to mq square or p 

square minus mq square will be see. So, this is also second. Now let us consider the expression 

mq minus lambda p whole square, consider this, minus m times p minus lambda q, oaky; let us 

consider this. So, basically what we are doing that this expression if I open it then it can be put it 

in the form of lambda square minus m into p square minus mq square; one can easily just verify 

it. 

Now p square is equal to mq square because of the two so basically this will come out to the 0 

because of two, okay. Therefore from here m can be written h, m will be written h; oh this is 

square of this sorry this is square of; otherwise this problem will be, mq minus lambda this is 

square will come. So, m will come out to be what? mq minus lambda p divided by p minus 

lambda q whole square or this square this square. So, root of m will be this; so, root of m will be 

of the form mq minus lambda p over p minus lambda q, just taking positive well roots okay. 

Now p minus lambda q is less than q from one. So, from one what it shows that this shows but 

from one shows that m square root of m that is m can be written h in the form of the, yes in 

another form is square root of m is another rest form where the numerator is this and 

denominator is this with denominator is lower than the denominator which we have assumed q. 

But what we assume p by q is in its lowest form, so a contradiction exists, because m under root 

m is written in the form of p by q which in lowest form, but what we are getting under root m 

can also be expressed into this form where the denominator is lower than the q less than it. It 

means again the denominator is lower. So, it cannot be lowest form; that p by q cannot be lowest 

form. So, it is contradiction. So, it shows that p minus lambda q is less than q that is denominator 

is strictly less than q. So, a contradiction that p by q is in lowest form, and this contradiction is 



because our wrong assumption it is a rational one; therefore, root m is an irrational number, 

okay. So, that is what we get it, clear. So, this much we get.  
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Now let us come to what is the continuum. The aggregate of the all real numbers that is rational 

and irrational is called a continuum. So, basically the set of all real numbers aggregate of the all 

real numbers rational irrational we call it a continuum. Now this continuum is complete; this is a 

complete set. This continuum is closed that is completeness is there; what do you mean by this? 

We have got this real discontinuum by applying the Dedekind cuts. So, when we apply the 

Dedekind cuts over the set of rational numbers rationales apply the Dedekind cuts or sections 

then this collection of the rational numbers in fact it is equivalent to the rational numbers when 

you apply the Dedekind cuts we are basically bringing this thing into form of the sections. So, 

each section will correspond to some number alpha. 

Now this alpha may a rational number or may be an irrational number. When we apply the 

Dedekind cut or Dedekind theory over the set of rational number then it basically gives you the 

sections and collection of all these sections gives the real number. That is the continuum, 

because the sections which you are getting correspond to a number which may be real which 

may be rational or may be irrational. So, over the rational number we are applying the dedkinds 

cut but we are getting a class which is bigger than the rational numbers, because the sections 



which you are getting is larger than this elements itself that is the number of rational points, 

because the rational point will also be edit there. So, this gives you the total aggregate as a 

continuum. 

Now the question is if suppose I apply again dedkind cut or dedkind sake method theory over the 

set of real numbers; that is we again find the sections occurs by using the dedkinds method over 

the set of real number, whether will you get a set of a numbers bigger than this set of real 

numbers. The question is, the answer is no. By this method we cannot enhance further the set of 

real number to a bigger class. We will get basically the set of real number itself. So that is why 

we call it this continuumis closed, but then somebody says why we are having the set of complex 

numbers also which is an extension of the real number. But when you talk about the complex 

number this basically is generated or obtained by some other trick, but the trick is that we are 

choosing the square root of negative quantity, because if you look the complex number, how this 

was introduced number. 

The complex number is introduced basically when we look the solution of the equation x square 

plus 1 is 0; is it not. There is no real number which satisfies this equation, say, one which 

satisfies this equation, but this is also an equation. This may be some physical phenomenon may 

be governed by this equation. So, the question is whether can we further extend the system of 

real numbers not because of the cut because cut is not helping us; Dedekind cut is not helping us 

to extend it, but from other method and that method comes out to be searching the square root of 

minus one as an imaginary quantity i. We choose square root of minus one as an imaginary 

number, and then once it is imaginary number then we develop the set of points where it is of the 

form x plus iy where x and y both are real, and basically this will be represented in the form of 

the ordered pair x, y here x and y. 

If x takes the position of real x axis that we call it as real and this is we called as an imaginary 

axis. So, the position of this point x, y basically is the same as x plus i y in a complex c in 

complexity. Now this leads to a extensive complex number system of the set of all complex 

numbers which is an extension of real, because once you but 0 then basically it gives you entire 

real line. So, it is an extension no doubt, but the way you have extended the real number is 

entirely different the Dedekind’s method, clear. So, this is separate, and by this method when 



you are extending the real to complex this collection of the complex number does not behave as 

a smooth as a work set of real numbers, because between two real numbers one can easily 

ordered one can say this two given number either they are equal or one is greater than the other. 

But in case of the complex no ordering can be defined; in fact if suppose the complex numbers 

are not ordered set. It means that is there no order can be derived. If z 1 z 2 are two complex 

numbers you cannot say z 1 is greater than z 2 or z 1 is less than z 2 except when equal to of 

course when you say z 1 is equal to z 2 we assume the real part is equal to real imaginary part is 

equal to imaginary. But otherwise greater than less than not be in fact we did a contradiction, 

because suppose there is an ordering defined. Suppose i is greater than 1 so i is complex number, 

one is also complex number, because one can written as one plus i 0, then what happens? One is 

positive so i is greater than one means you are assuming to be a positive quantity. So, let us 

multiply by i again. So, what you get? i square is greater than one again but i square is minus one 

is greater than one, so a contradiction. 

Similarly if we assume less than we also lead to a contradiction, okay. So, this shows that 

ordering ration cannot defined over a set of complex numbers. So it is a different system 

differently steam where we discuss the complex number, but this is a very important area where 

all entire functions and all these things Cauchy various integrals real integrals can be completed 

with the help of complex integration. So, it is very important field where the people can use it in 

the application part. So, that is what? 
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Now let us see a few exercises which I wanted to give you. Show that by using Dedekind cuts 

that if alpha and beta are two irrational numbers then alpha minus beta is positive or negative 

according age alpha is greater than beta or alpha is less than beta. So, using the Dedekind cuts we 

wanted to prove this part, okay. So, let us see suppose we have solution. Now alpha and beta are 

given as two irrational numbers; so obviously it can be represented by means of cuts. So, let 

alpha is represented by a cut L 1, R 1 while the beta is represented by a cut L 2, R 2, okay; now 

alpha is less than beta, so here we are having, so this is alpha is greater than beta. So, alpha is 

here; beta is somewhere here.  

This is L 1, this is R 1, here this is L 2, here is R 2. Now when alpha is greater than beta it means 

every elements alpha is greater than every number or every element every number of R 1 or 

belongs to R 1 is in R 2. All the elements of the R 1 will be in R 2 but every member of L 1 does 

not belong to L 2, is it not; that is what is seen. So, every member of R 1 is in R 2, but every 

member of L 2 L 1 is not there. So, there may be some member which is in R 2. So, let a 1 be 

such a member of L 1 which does not belong to L 2. So, if it does not belongs to L 2 that is it 

belongs to R 2. So, here is some, say, a 1 this is number a 1 which is in L 1 but not in L 2, so it 

must be in R 2. Let us choose a number b 2. 



Now let B 2 be a member of R 2 such that a 1 is greater than B 2. Suppose B 2 is I am choosing 

this number, okay. So, a 1 minus b 2 is positive b 2 be a number of R 2 such that a 1 is greater 

than B 2 no, a 1 oh sorry then yes. We should write like this b 2 here, is it not. So, let it a 1; this 

is b 2, okay. So, a 1 minus b 2 is greater than 0, is this clear. Now a 1 this alpha minus beta we 

wanted to prove this, what is to prove alpha minus beta is positive. So, when it is a positive 

number, what do you mean by that? A cut if I apply the definition of Dedekind cuts then a 

number is set to be a positive when its lower class contain some positive numbers, is it not. Then 

only it is considered to be positive, okay. So, lower class will be some L 3 alpha minus beta 

represented by a class L 3, R 3. 

So, let alpha minus beta is represented by a section, say, L 3 R 3; if I prove L 3 contains some 

positive quantity positive number also then the alpha minus beta becomes greater than 0, okay. 

Now this L 3 what is this alpha minus L 3 is the sum of so it is alpha minus is given by the L 3. 

Now L 3 is the sum of what alpha minus beta; alpha is in where? Alpha this is alpha, is it not, 

and beta is here. Now, this a 1 minus b 2 is positive. So, L 3 we can say like this that L 3 is the 

sum of any member of L 1 and any member of minus L 2, and any member of let it not be such, 

let us write this thing be such that L 3 is the sum of any member of L 1.  
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And any member of minus R 2 and any member of R 3 is the sum of any member of R 1 and any 

member of minus L 2. Let us see what is the meaning of this? We wanted to show the alpha 

minus beta to be positive. So, let us suppose alpha minus beta represents a cut by L 3 R 3, okay, 

and we are assuming that this cut is such that L 3 any member of L 3 is the sum of any member 

of L 1 and any member of minus R 2. So, if you take any element of L 3 it can be written as the 

sum of the elements of L 1 and minus R 2 member of minus R 2. Similarly if you take a R 3 then 

any member of R 3 we are assuming as a sum of the member of R 1 and any member of minus L 

2, is it okay or not. 

So therefore a 1 minus b 2, what is this; is it not the same as a 1 plus minus b 2. Now a 1 belongs 

to what? a 1 belongs to L 1; b 1 b 2 is in R 2. So, minus b 2, b 2 is in R 2. So, minus B 2 will be 

in minus R 2, is it not. Therefore this is the sum of L 1, this belongs to L 1 plus minus R 2, and 

that is nothing but L 3, and this a 1 minus b 2 is greater than 0 positive. So, a section L 3 R 3 

which is assumed to represent the number alpha minus beta is such that it contains the positive 

numbers. So, alpha minus beta therefore this alpha minus beta is a positive cut is positive, clear. 

So, that is what is written, is it okay or not. 

Now let us take another exercise, okay. Specify the sections corresponding to the irrational 

number e and prove that the sections so specified satisfies all the requirements satisfies 

Dedekind’s though or satisfy all the postulates of Dedekind’s theorem, because there are three 

postulates in Dedekind’s theorem that we can divide the whole system into real number into two 

classes lower and upper class, and each class is nonempty. Second one is that at least lower class 

every element in the lower class is the less than the elements of the upper class, and third is any 

irrational number will belong to any number either this class rational number or that class like 

this, is it not. So, three postulates are there, so we can show. So, what it says is that 

corresponding to e you first defines the sections, and then show that these sections satisfy the 

condition, okay. 

Let us see this, what is e? If you remember e is the limiting value of one plus one by n to the 

power n. This is the e, is it not, but here we cannot take the limit because we wanted in terms of 

the sections. So, let us say let a n is 1 plus 1 by n to the power n here n is a positive integer. Now 

let us consider and define the class is as follows, define the lower class L as the set of those 



rational number x such that a n is greater than x from and after sometime from and after some 

fixed value of n; that is those rational number belongs to L for which a n is greater than x for 

after some number n naught for some value of n fixed value, say, after n equal to n naught, n is 

greater than x then we say x will be in L, and row upper class R, I am defining the this with 

upper class R, okay, the rational number by is an upper class R if y is or such that write if a n is 

greater than, okay, if y is greater than a n is strictly greater than a n for all values of n. 

So, lower class I am defining the element x rational number belongs to the lower class if a n this 

number a n is greater than x after a certain stage, say, a n is n naught and R is the those rational 

number if y is greater than a n for each. We claim that this will be this section the way in which 

we have defined will satisfy all the conditions of Dedekind theorem. So, what this first condition 

is both the class L and R must be nonempty. So, there must be at least one element should be 

available in R from a n as well as some element of a an must be in R, okay. Now if we look what 

is n? n is a positive integer. Now if I take n any positive integer this sum will always be greater 

than 1; when n is greater than 1 this number will always be greater than 1, is it not.  
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So, this one belongs to the lower class clearly number one belongs to lower class because a n 

which is 1 plus 1 by n power n will be greater than 1 for n greater than 1 or it may be equal to 1; 

n is equal to 1 also. You just check greater than sorry greater than 1; this is a n is greater than x 



no, so this is greater than 1, sorry. So, x is basically 1. This number will always be greater than 1 

when n is greater than equal to 1. So, this therefore L is nonempty, okay. Similarly, x equal to 3 

if I take then all the elements of a ns are less than 3 for all n 1 plus 1 by n to the power n 

whatever the n you choose it will remain less than 3. So, 3 is an element belongs to; therefore, 3 

belongs to R. So, L and R both are nonempty. This is the first postulate results that be shown in 

the Dedekind. Second one condition which is in the Dedekind shows that every rational number 

p will be belongs to either L or R. 

So, second one every rational number belongs to L and R. Second is to show every rational 

number p belongs to L or R; this we want to show, okay, which is obviously two which is 

obvious, why? Suppose a n is greater than p for all n, p is a number, p is a number I am choosing. 

So, there are two possibility either n will be greater than for all p or may be a n is less than p for 

some after certain stage, okay. So, an greater than p for all n then this p belongs to the upper 

class, is it not, upper class, and if a n is less than if a n is greater than, no, no, this is if a n is less 

than, sorry, what was the upper case. Yes, a n is less than y, y is greater than a n for all a n. So, if 

a n is less than p for all n then it is in upper class, and if a n a is greater than p for some n then 

this p belongs to the lower class. 

So take any p. Suppose I take p any number say 2 then you can say 1 plus 1 by n to the power n 

then you can choose n such a way that this class after a certain stage will satisfy this condition a 

n is greater than because limiting value of this is 3, e is greater lying between this, is it not. 

Limiting value of this will be this; what is this? If I expand it 1 plus 1 by 2, this is the number 

actually, 1 plus n plus n minus 1 and so on. So, when you take the 2 plus something. So, if you 

take a number if all the numbers are less than 3, say, then this number, say, 4 then all the 

numbers are less than 4. If I take a number 2 then there are some number where it is greater than. 

So, we can identify all the numbers which is either in lower class or in the upper class. So, this is 

also true. 

And third part is what? Every number a in the lower class is less than than the lower class. So, if 

x belongs to the lower class it means that x is less than a n for some n greater than equal to, say, 

m onward, is it not, for all n greater than it. After certain stage it is less than this, but if x will be 

in y but any element in the upper class R satisfy this condition; condition is that a n is less than y 



for each n. So, from here x is less than a n for some n but this is less than y if this is an element 

in R. This is true for every n; this is true for some n after some m after some n onward, okay. 

Then this will always be less than y. So, any element in lower class will always be less than the 

elements in the upper class, okay. So, this shows the property. So, all the conditions are satisfied 

Dedekind’s, okay; all requirements of the Dedekind’s theorem is satisfied, so this… Let us see 

the next problem. 
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Suppose we have show that if a, b, x, y are rational numbers such that ay minus bx whole square 

plus 4 a minus x b minus y is 0, then such that either x equal to a, y is equal to b or then either 

this part or 1 minus ab and 1 minus xy are squares of rational numbers, okay. It is basically 

mathematics things, not much that Dedekind’s cuts is required but somewhere is required the 

concepts, okay. So, let p is a minus x, q is b minus y, then if I solve this ay minus bx then we get. 

If I just substitute these values we will get the value to bp minus aq which is also the same as yp 

minus xq; this is what, okay. Just I take this p and q then. So, our given relation one so from 

given relation we can write ay minus a means bp minus aq whole square plus 4; pq is 0, or we 

can also write this thing as, because this is also equivalent to this. So, we can write yp minus xq 

whole square plus 4 pq is 0, okay. 



Now clearly if p is equal to 0, q is also 0; that is if x is equal to a, y is equal to b, then p 0 q 0 the 

equations these two are satisfied, is it not. Obviously true, that is nothing. Now if they are not 0 

if p is not 0 q is also not 0 then one can divide by 4 pq and one cam divide the equation two. So, 

from equation two we get the rational, okay; we get from here now we can write like this. This is 

now here, so we wanted to write bp plus aq whole square. If I just made the plus sign then two 

times of this will come in picture. So, here this is when you take the minus b and whole square so 

what you are getting is; you are getting this like equal to plus 4 1 minus ab, pq equal to 0, okay. 

Then only it is balanced. 

Similarly if I take here yp plus xq whole square then you are getting 1 minus x by four times of 

this into pq is 0. This is from two. Now divide by pq. So, from here we get 1 minus ab is equal to 

bp plus aq whole square divide by minus 4 pq, but minus 4 pq from here is nothing but which is 

equivalent to bp plus aq divide by minus 4 p we can write as bp minus aq whole square. 

Similarly 1 minus xy we can also write in a similar way, and this will be equal to if I put it in this 

form we can yp plus xq divided by whole square divided by yp minus xq whole square. So, what 

we conclude that if first is satisfied then also this equation is satisfied; otherwise, second 1 minus 

ab can be literally square of the two rational numbers you see 1 minus ab is square of the rational 

number, 1 minus xy is also square of the rational number and that proves the result, okay. Then 

last exercise let us see.  
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This is also interesting one. If d is a positive integer but not in the square of an, when d is a 

positive integer not the square of an integer, it means square root of d becomes that it is not a 

square of this integer. So, what we can say? It is not a perfect square, okay, square of integer, and 

y is written in the form of suppose y is x into x square plus 3d divide by 3 x square plus d where 

x is given x is a positive rational number, then show that y minus x equal to 2 x d minus x square 

divided by 3 x square plus d, and y square minus d is nothing but x square minus d whole cube 

divided by 3 x square plus d whole square. 

Hence show that the section of the positive rational number determined by assigning to the upper 

class all rational numbers whose square is greater than d and to the lower class all the other 

rational numbers, so that the section of the positive rational number determined by assigning to 

the upper class all rational numbers whose square is greater than d and to the lower class all other 

rational number, is not generated by a rational number, okay. 

Let us see, first let us see the first part of this I am not interested in this, because this is a routine 

thing. You are having the value y is given, x is already given, so y minus x you will find this 

expression, y square minus d you will find the expression just simple calculation. So, we are not 

interested in solving this, but this required by showing that this section is not a rational number, 

okay.  
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So what is the number of this? meaning is that this is our lower class, this is the upper class, we 

are taking those positive rational numbers which are whose rational number says x such that x 

square is greater than d and lower class rest of the rational numbers. So, this will include all 

negative and the remaining positive also some positive, but here exclusively positive is x 2 is 

greater than d. Now, this number say alpha we wanted to show alpha is not rational; this is all, 

okay.  
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So, let see the proof is very simple, just go ahead, okay. Clearly the upper class R has no least 

number because if suppose x belongs to this class, suppose x belongs to the upper class R. So, by 

definition so this implies that x square must be greater than d; when x square is greater than d 

and the function is defined like this so x square is greater than d then y square is greater than d 

and here x square so y minus x is negative, okay. So, we get from here is this one defined so that 

then we find y as defined which is such that y is strictly less than x and y square is greater than d. 

So, if I take any number x in the upper class then what we are getting another number y which is 

lower than the x but still stays in the upper class. This implies that y is in the upper class R. So, 

upper class cannot have a least number. 

Similarly lower class cannot have an upper number largest number we cannot have the lower 

class as greatest number, why? Because the reason is for if suppose x belongs to the class L then 



it x belongs to the class L then x square must be less than d; otherwise x will be in upper class, 

okay. So, x square less than d then the y so define will give what? If x square is less than d then 

this is positive. So, y minus x square is positive, so y is greater than x. So, again the y belongs to 

lower class. So, if x is in the lower class then we are also getting another number y which also in 

lower class but it is greater than L. So, L cannot have a largest number. If x square is less than d 

then this is positive. So, this is positive means y minus x is greater than 0. So, y must be greater 

than x. It means by another class another point in lower class which in this shows a 

contradiction. Therefore section L R represents irrational number; that is all.  

Thank you. Clear? 

Thanks all.  


