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So, today we will discuss the integration of the real valued functions on a interval. 

Basically, we will do the integration integration of real valued functions on an interval 

say a, b. So, we will discuss today this part. Now, in this integral of the real valued 

function we have the two types of integral, we will discuss. One is the Reimann Integral 

another one is the Reimann Integral, and then Reimann Stieltjes Integral. In fact, the 

Reimann Stieltjes Integral is the generalisation of the Reimann Integral and as a 

particular case we can say this.  

Now, this is all, is a definite integral you know. So, it is an extension part of the definite 

integral when we go for the Reimann Integration. So, let us see before going the 

Reimann Integral, let us see first the definition, how to define the Reimann Integral. 

Suppose, a, b be an interval, let a, b be a given interval interval. By a partition of a, b by 

a partition P of a, b we mean we mean a finite set of point, set of points say x naught, x 

1, x 2, x n where a is say x naught which is less than or equal to x 1, less than equal to x 

2, less than equal to x n and less than equal to x n which is say b. So, basically this is our 



interval a, b. What we are doing? We are partitioning this interval into a sub interval by 

choosing the point x naught, x 1, x 2, and x n in between a, b; where the x naught is the 

initial point coinciding with a, x n is the terminal point, last point coinciding with b. This 

x 1, x 2, x n are the distinct point and may be sometimes it may be overlapping, that is 

we can start with x naught x 1 then go for this x 2, start with x 1 like that way which also 

possible for that one. 

So, let this set of collection, which final set of these points over the interval a b which 

satisfy this condition is called the partition of the interval a b. So, let delta x stands for 

delta x i stands for x i minus x i minus 1 where i vary 1 to n. Suppose, we have this point 

say here we have x i minus 1 and this is say x i. So, this interval we are denoting as delta 

x i. x i minus x i minus 1 is delta. Now, let us suppose f be a bounded function, let f be a 

bounded real function real function bounded real function defined over the interval a b 

over the interval a b. Now, since function f we are choosing to be a bounded function and 

we have divided the interval into a sub intervals like delta x 1 delta x 2 delta x n, it is the 

length of this subintervals and each subintervals x i minus each (( )). So, we can choose 

for each partition.  
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So, corresponding to each partition P of a b we take or we take or we assume or we put 

M i as the supremum value of the function f x when x varies from x i minus 1 to x i. If 

this is our interval x i minus 1, this is x i, function f is a bounded function, need not be 



continuous, but it is a bounded function. So, once it is a bounded function over the 

interval, closed interval x i minus 1 to x i then obviously, it will attains its supremum and 

minimum value and infimum value over this interval because it is bounded function. So, 

supremum will exist, infimum will also exist. So, let the infimum is denoted by small m 

m i, this is the infimum value of the function f x over this interval x i minus 1 to x i.  

Now, let us take the sum, consider the sum M i delta x i and i is 1 to n, means over this 

interval, this is our interval a b. We have partitioned this thing as x naught x 1 x 2 x i 

minus 1 x i and so on, this is x n and here is something like this function f x. So, over this 

interval, over this interval function have attains a supremum value say at this point and 

infimum value is suppose this point. So, we multiply the supremum value of the function 

that is, this is our capital M i by the length of this interval. So, when you multiply this by 

the length of the interval you are taking basically this rectangle, area of this rectangle, is 

it not. So, this we are doing for each sub intervals, over each sub intervals we are 

calculating this and taking the sum. 

This sum we denoted by as you know by U P f because this sum depends on P as well as 

the function f because supremum is taken of, for the, of the function f over this 

subinterval. So, over each interval M i may change depending on the function as well as 

the partition, delta x i depends on the length of the partition. So, if they change the 

partition delta x i will also change. So, this sum we call it as a upper sum, upper sum of 

the function f over this partition, corresponding to the partition P. 

Similarly, then we write m i delta x i i is equal to 1 to n this sum we denote by L P f and 

is called the lower sum of the function f over the partition P over partition P. So, upper 

sum of f over P and lower sum of f over P. Now, if we change the partition the upper 

sum and lower sum will keep on changing. So, but what is this, but this upper sum and 

lower sum will always be a bounded function, bounded thing. Why? Since, function f is 

bounded over the interval a b. So, it means. 
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So, there exist the two numbers small m and capital M such that the value of the function 

f x will always fall between these two range, because f is bounded. So, bounded means it 

will have the least number and the largest number. So, m and capital M will lies for all x 

lying between x and b a and b. So, this is true, is it not? 
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So, if we take any partition P. So, for any partition P or for every partition P we have m 

times b minus a will always be less than equal to lower sum of this which is less than 

equal to upper sum of function f over the partition P which is less than equal to m into b 



minus a. Why? Because this lower sum and upper sum over this interval x i minus 1 

lower sum will always be less than equal to upper sum over each subinterval because m i 

is the infimum value capital M i is the supremum value. 

So, because of this it will be less than equal to upper sum. Then take the summation over 

all the, such sub intervals. So, obviously, the lower sum will total lower sum will always 

be less than the upper sum. This is one thing. Second one is when we take the function f, 

f is bounded by M interval. So, this is the length of the interval. So, if we multiply this by 

the b minus a the total length of the interval then this will be the minimum area bounded 

by a curve whose lower value is m and the length over the length b minus a and this is 

the upper bound for the function f. So m into, so m into b minus a will lie between this 

two bound. Therefore, our lower sum and upper sum it is a bounded function. So, is a 

bounded say.  

So, lower sum and upper sum are bounded are bounded or they form the bounded set are 

bounded. So, for the partition, for various partition, various for any various partition it 

forms it forms a bounded set. You keep on changing the partition, the lower and upper 

sum will change, but it will remain bounded between these two limits. So, it is bounded. 

So, once it is bounded it means we can take the infimum value and supremum value of 

this. So, this is upper bounded by this. So, the infimum value of this will also exist, 

supremum value of this will also exist because this is lower bounded by this infimum 

value will be at the most equal to this term and supremum value at the most equal to this.  

So, what you see here that if we take from this, from this one. So, we define. So, so we 

define the if a to b bar upper f d x as the infimum value of the upper sum P f where 

infimum is taken over all the partition, infimum is taken over all such partition P. 

Similarly, a to b lower ward f d x is the supremum value of the lower sum P f where the 

supremum is taken over (( )). So, where infimum and supremum are taken over over all 

partitions all partitions P of a b, is it okay? And since these are bounded. So, supremeum 

infimum will exist. Hence our this integral will exist, this is called the upper Reimann 

Integral, this is known as the upper Reimann Integral and this one is called the lower 

Reimann Integral, this is called the lower Reimann Integral.  

So, we get this lower Reimann Integral of f over the interval a b. So, lower Reimann 

Integral of f over a b. This upper Reimann Integral and lower Reimann Integral, thus 



what we say here f is Reimann. Now, if lower Reimann Integral and upper Reimann 

Integral coincides that is they have a same value and independent of course, it is a 

partition then we say the f is Reimann Intergable. 
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So, we say if the upper and lower, upper and lower Reimann Integral are integrals, 

Reimann Integrals are equal are equal then we say that f is Reimann Integrable, f is 

Reimann Integrable on the closed interval a b on the closed interval a b and we denote 

this and we write it as f belongs to R. 
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Where R denotes the class of, where R denotes the class of all or class of all Reimann 

Reimann Reimann Integrable functions Integrable functions Reimann Integrable 

functions. The common value we denote by, the common value is denoted by Integral a 

to b f d x or integral a to b f x d x or sometimes to differentiate between, to differentiate 

it from other integrals like Reimann Stieltjes Integrals we use this, say, we use the 

Reimann Integrable over R. So, here we will take the Reimann Integral a to b f d x as 

usual. Otherwise some author write like R a b also to show the Reimann Integral, but 

here this notation we will use to the Reimann Stieltjes Integral. 

So, some author use, but here we would not write, we will take up only for the Reimann 

Stieltjes Integral Reimann Stieltjes Integral. This we will take up later on, what is this 

Reimann Stieltjes Integral, we denote this by R. So, that we will differentiate between 

these two. So, this is what. So, what they show that if f is a bounded function, f is a 

bounded function then upper sum and lower sum will definitely exist and upper integral 

and lower integral will exist. Now, the question of whether they are equal or not, if they 

are equal then we say the existence of the Reimann Integral is there, if they are not equal 

then we say the Reimann Integral does not exist. So, existence part we will take later on. 

First, let us see the other integral which is known as the Reimann Stieltjes Integral, a 

generalisation of our Reimann Integral and then we will study the Reimann Stieltjes 

Integral in detail.  

So, as a particular case we can get all the results for Reimann Integral also. So, let us see 

the next definition for Reimann Stieltjes Integral. Now, what we do here in this is before 

going. So, we will take let alpha be a monotonic, be a monotonically monotonically 

increasing function on the interval a b on the interval a b. Now, alpha is monotonically 

increasing function. So, alpha a and alpha b are finite assuming that since alpha a and 

alpha b, these are real number. alpha a and alpha b are finite. So, we can say alpha is a 

bounded function. So, alpha is bounded on the interval a b because it is monotonically 

increasing.  

So, alpha a and alpha b these are real numbers, if they are finite hence it has a finite all 

the values of alpha lying between alpha a and alpha b, because it is monotonically 

increasing function. Hence x will be a bounded function on a b. So, once it is bounded 

then let us consider the same partition, consider the partition P of a b as a is x naught less 



than x 1 less than equal to x 2 less than equal to x n which is say b. Then consider instead 

of this delta x i. 
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Now I consider the delta alpha i, we consider delta alpha i as the value of alpha at a point 

x i minus the value of the alpha at a point x i minus 1 because this is the interval x i 

minus 1, this is x i. So, earlier what we were doing we were taking the x i minus x i 

minus 1 as the delta x i. Now, alpha is taken as a monotonic function. So, I am 

considering the value of the alpha x i minus alpha x i and denoted by delta alpha i. So, 

obviously, this delta alpha i will be greater than or equal to 0 because alpha is a 

monotonic function, increasing function. 

So, alpha x i will be greater than or equal to alpha x i minus 1. Therefore, this will be a 

non negative quantity. Now, for any real function for any real function which f which is 

bounded which is bounded on the close interval a b, on the close interval we write we 

write the sigma M i delta alpha i i is 1 to n as U of P f and alpha, where the M i means 

the supremum of f x over x lying between x i minus 1 to x i, same thing. And L P f alpha 

we are writing as i is 1 to n small m i delta alpha i.  

Now, this is again we call it the upper sum and the lower sum of the function f with 

respect to the alpha, alpha it depends on alpha is it not. So, now, this upper sum and 

lower sum will be defined in terms of the function f that is M i any small m i and the 

alpha i, where alpha is this one, delta alpha i is this one. Now, in a similar way choose 



now. So, define the upper integral a to b f d alpha as infimum of U P f alpha where 

infimumis taken over all such partition p and lower sum is denoted by this supremum of 

L P f alpha where again supremum is taken over all partition where infimum and 

supremum is taken over all such partition all such partition all such partition P of a b or 

partition of a b supremum. 

Now, if this, further because again this is bounded function. So, supremum infimum will 

exist. So, this will this two integral will exist, this is called the upper Reimann Stieltjes 

Integral of the function f of the function f with respect to alpha with respect to alpha over 

the interval a b and this we will called it as a lower and this we call it as a lower Reimann 

Integral, in a similar way we write lower Reimann Stieltjes Integral of f with respect to 

alpha over a b. Now, if both these values coincide then we say f is Reimann Stieltjes 

Integral. So, if let it be 1 on 2, is better we write it, let it be 1 2. 
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So, if 1 and 2 coincide, if 1 and 2 coincides have the same value that is are equal are 

equal then we denote we denote their common values their common values common 

value by integral a to b f d alpha and is known as is known as the Reimann Stieltjes 

Integral of f with respect to alpha over close interval a b, that is what is, so the class of 

all the class. Let R alpha denotes the class of all Reimann Stieltjes Integrals of f with 

respect to alpha over a b. So, in this case we say so we say that f belongs to R alpha.  



There we are denoting simply by R, here we are denoting by R alpha Reimann Stieltjes 

Integral of the function f over. In both the case I am considering f to be a bounded 

function need not be a continuous. Here also note alpha need not be a continuous 

function remarks alpha may not be continuous function. It is simply an monotonic 

increasing function, still this clear. Second one is if we take alpha x equal to x then the 

Reimann Stieltjes Integrals converts then we say f is Integrable, then Reimann Integral is 

then Reimann Integral is the, is seen to be a special case of Reimann of Reimann Stieltjes 

Integrals. Thus simply alpha x equal to x will reduced the Reimann Stieltjes Integral will 

give the Reimann Stieltjes Integral and from there we can get the Reimann Integration. 

So, this is an extension Reimann Stieltjes Integral is an extension of our Reimann 

Integral. 

Hence, whatever the property we will write for the Reimann Stieltjes Integral as a 

particular case when you choose a alpha x equal to x then you get the corresponding 

property of the Reimann Integral and remember we will always denote R by a Reimann 

Integral and Reimann Stieltjes Integral by R alpha. Second part is that earlier we have 

used the a to b f x d x, is it not. Where, x is the variable of integration. Now, here also 

one can write it f x d alpha x, but this is not a very common notation. So, normally the 

common notation is a to b f d alpha, but it means that a to b f x d alpha x. So, that is the 

meaning of this. Now, we come to now some properties of the, our partition P which we 

are choosing, partition P. 
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So, for over any partition P because this is our, taken as the P as the partition of this. 

Then what is this properties of the partition. Let us see, some properties which will be 

needed in establishing the existence of this integral because we have not so far defined or 

so far obtained any results or justify whether this integral will exist even if f is a bounded 

function. So, in fact, we will show the justification whether f is a bounded function both 

the Reimann integral and Reimann Stieltjes Integral will exist, f is continuous it will 

exist, f is monotonic we can also get the Reimann Stieltjes Integral provided under 

certain condition. So, existence result we will take up afterward. First, let us see what are 

the properties enjoyed by this partition. 

So, let us see properties of partition P. So, we say the refinement of the partition, 

refinement of P, P is the partition. So, by the partition P star, the partition P star is a 

refinement, is a refinement of P of the partition P of partition P. If P stars covers P totally 

that is every point, if every point every point of P P is a point of P star then we say, 

because what is the partition? Because the partition P, this is our P partition means is a 

collection of the points x naught x 1, x 2, x n; such that satisfying this condition this 

condition that is all. So, if we take any other partition that will also contain the points of 

this. 

Now, if this partition, if every point of P also a point of P star it means when you take the 

P star then these points will definitely there, apart from there may be some more point 

included here say x star x double star and so on. These points may also be included apart 

from this. So, that is why then every point of the P becomes the P star plus some extra 

points are available in this. 

So, instead of partitioning these into the n sub intervals we are partitioning into n plus 1 

sub intervals n plus 2 interval by introducing more point in between, but earlier partition 

you can as it is, then it is called partition or refinement of the partition because the 

partition may be different P 1 and P 2 are two different partition. Suppose this our P 1 

say one of the partition x naught x 1 x 2 and say x n is equal to b, this is one partition. I 

take another partition a b say P 2 which is entirely differentiated y naught less than y 1 

less than y 2 less than y n which is b. Now, this x naught x 1 x n and y naught y 1 and y n 

may not be the same point, but if we take the partition p 1 union p 2 this partition is P 

star, then what happen is a and b are there, then all points x naught then may be the y 

naught then x 1 and continues these like this x n equal to v n y n is this. 



So, all the points are taken together which are partitioning the interval in a b into two n 

sub intervals basically. So, this becomes the refinement of the partition P 1 as well as 

you can say refinement P 2. So, in particular even if the partition P is there if I just 

include one more point in it then obviously, the number of sub intervals increases and in 

that way we are getting a refinement of the previous partition P. So, this is the concept of 

refinement, so obviously here. 
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So, clearly if P 1 and P 2 are two different partition different partition of the interval a b 

then there union P 1 union P 2 is the say equal to P star is the common common 

refinement is the common refinement of these P 1 and P 2 provided of course, P star is 

this, union of this, if P star this then is the then P star is the common refinement, if P star 

is this, then a common refinement. So, this is what. Now, result which we are talking is. 
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So, let the first result is if P star is a refinement refinement of the partition P, if P star is 

the refinement of the partition P then the lower sum increases, then lower sum L P f 

alpha will be less than equal to L P star f alpha while the upper sum P f alpha, this upper 

sum decreases that is upper sum of P f star P star f alpha. So, lower sum increases and 

upper sum decreases.  

So, when you divide the interval a b into a partition P, into a partition P and if I include 

few more point, introduce few more point and getting the partition P star which is the 

refinement of P, then in that case the lower sum will be a will form an increasing 

function, will be a increase lower sum value increase while the upper sum will decrease. 

So, that is. So, proof is this. I assume let P be a partition, P be the partition. Say a is x 

naught less than equal to x 1 less than equal to x 2 x n equal to say b is the partition of a 

and P star is suppose contains just one more point. Say one more point, just one point 

more than, just one point more than the partition P that is suppose, that is suppose there 

exist there exist or there is an extra point extra point x star lying between lying in this 

subinterval x i minus 1 to x i lying this where x i minus 1 and x i are two consecutive 

consecutive points of P. 

So, what we are doing is that this is our interval a b, here we are having the partition x 1 

x 2 x n, here is x i minus 1, this is say x i and then x n is this, like this. Now, what we are 

doing is this is our partition P. Now, P we are just increasing one more point say here x 



star x star. So, this new partition becomes P star and it is the refinement of P. So, clearly 

P star is the refinement of P. Others, I am not changing, only in one subinterval I am 

taking one extra point that is all. So, it becomes a refinement of this. Now, with this point 

x star what we want to claim that lower sum will increase and upper sum decrease. So, 

let us prove first for the lower sum. 
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So, let w 1 is the infimum of the function f x over the interval x i minus 1 to x star while 

the w 2 is the infimum value of the function f x when x lying between x star and to x i 

and m i is the infimum value of the function f x when x is varying over x i minus 1 to x i. 

So, clearly this m w 1 will be greater than equal to m i and w 2 will also be greater than 

equal to m i because this m i is taken over the whole interval x i minus 1 to x i as the 

infimum value is taken and then these are the infimum value over the partition of the 

subinterval. 

 So, obviously, this infimum value may be more. So, if w 1 is greater than or equal to m i 

w 2 is greater than or equal to m 2 i and hence consider the lower sum with respect to the 

partition P star of the function f with respect to alpha minus the lower sum of with 

respect to the partition P and f and alpha. So, what we get is, over this interval P star is 

the sum of the two interval this is our x star. So, first you take over this and then this. So, 

here the lower the infimum value is denoted by w 1. So, it is the w 1 and then value at a 

point alpha x star minus the value of the function alpha at the point x i minus 1.  



So, this is the value of this lower sum over this (( )) minus and then for. So, this will be 

multiplied by alpha, w 1 multiplied by this, then over the second interval w 2 w 2 this is 

alpha x i minus alpha x star. So, this is the lower sum of P over the partition P star. This 

plus this minus the lower sum of the partition function f with respect to the partition P. 

So, that is equal to m i into alpha x i minus alpha x i minus 1 with respect to the alpha. 

Now, let us combine just. So, w 1 minus m i and within bracket you get alpha x star 

minus alpha x i minus 1, is it not? Then plus w 2 minus m i alpha x i minus alpha x star. 

Now, w 1 is greater than equal to m i w 2 is greater than equal to m i. 

So, these two things are positive. alpha is a monotonic increasing function, x star is 

greater than or equal to x i minus 1. So, value of x star at alpha at x star will be more 

than value of this one. Similarly, x i is here greater than equal to x star. So, this will be 

positive. So, it is greater than equal to 0. So, what it shows that when the, we increase the 

partition when we get the refinement of the partition by introducing the points, more 

point then lower sum increases and that proves the first part of this.  

Similarly, so this proves that lower sum of the function f with respect to the partition P is 

less than equal to lower sum of the function f with respect to the partition P star which is 

the refinement of this increases. Similarly, upper sum we can show that P f alpha is 

greater than equal to upper sum of P star f alpha. So, this is what we proved. So, this is 

what. Now, we come to property which is related to using this partitioning interval and 

property of the lower sum integral and upper integral. 
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So, this we put it as a form of theorem. What the theorem says is the lower integral of the 

function f lower Reimann Stieltjes Integral of a function f over the interval a b will 

always be less than equal to the upper Reimann Stieltjes Integral of the function f with 

respect to alpha over a b. So, obviously, this result is also valid for a Reimann Integral 

because when alpha becomes x then lower Reimann Integral is always be less than equal 

to upper Reimann Integral, the proof of this. Let us see the proof, let P star be the 

common refinement refinement of two partition, two partitions P 1 and P 2 and P 2. So, 

let us take the partition P. So, let P star is the union of P 1 and P 2. So, is the, so 

obviously, so P star is equal to P 1 union because it is a common refinement. So, we can 

take P star is a P 1 union P 2. So, it is the refinement for P 1 as well refinement for P 2.  

Now, since we have already proved that when you have a refinement of a partition then 

lower sum increases and upper sum decreases. So, using this one we get, so we get lower 

sum of the function L with respect to the partition P 1 over the partition P 1 L with 

respect to alpha is less than equal to the lower sum of the function f over the refinement 

P star with respect to alpha because P star is the refinement. So, lower sum increases, but 

this is always be less than equal to upper sum because lower sum is always be less than 

equal to upper sum with respect to the same partition.  

However, we will prove it is also true for a general, in general lower sum will always be 

less than equal to lower sum whatever the partition we choose, that we will show it next. 



And f and then alpha and then now upper sum decreases, upper sum decreases means it 

is less than equal to P 2 f alpha because P star is the refinement. So, obviously, the upper 

sum respect to P star is less than or equal to the upper sum. So, from here what we can 

conclude, it implies that the lower sum with respect to the partition P 1 f alpha is always 

be less than equal to the upper sum with respect to the partition P 2 f alpha.  

It means if we take any two arbitrary partition P 1 and P 2 then always the and function f 

is fixed, alpha is fixed then lower sum of that function f with respect to alpha will always 

be less than equal to the upper sum of the function f with respect to alpha, whatever the 

partition we choose. For a same partition this is true, but for in arbitrary partition also we 

have shown that this lower sum is always be less than equal to upper sum. Now, what we 

do is here. Let us fix up the P 2, fix partition P 2 and let take the supremum value, 

supremum is taken over, supremum is taken over all P 2, all let us see first that (( )) or P 

1 or P 1. This I am fixing and here I am taking the supremum over P 1. So, when you 

take the supremum of all P 1 then this will give the what? It will give the lower sum.  

So, we get from here is a bar lower b f d alpha, this is the lower Reimann Integral 

Stieltjes Integral will give and then less than equal to U P 2 f alpha. Now, again you take 

the infimum value then in the right hand side take infimum over supremum is taken over 

all P 2. So, we get from when you take the infimum then it will give the upper sum, we 

get from here is f d alpha is less than equal to upper sum of this P 2 f d alpha, this proves 

the result. So, this proves. So, it is in results.  

Now, the question arises as we have seen in the first way that what is the guarantee if f is 

a bounded function, we have defined the Reimann Integral, we have defined the 

Riemann Stieltjes Integral, but then what is the guarantee whether they are equal or not 

because if they are not equal then no point of as going further. So, the existence of their 

integral is important when the both the integral coincide both will have a same value. So, 

under what condition both these integral, lower integral and upper integral exist and have 

a equal value. 
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So, that we can say f is Riemann Integral Integrable function or f is Riemann Stieltjes 

Integral. So, this theorem gives a little bit about the existing part of this existence of 

Reimann Stieltjes or Reimann Integral because both I am dealing at a time or Reimann 

integral, that is all. The theorem is let f belongs to the Reimann Stieltjes Integral with 

respect to alpha on a b, then we say f is a Reimann Stieltjes Integral or removed it or f is 

Reimann Stieltjes Integral, f is Reimann Stieltjes Integral, Stieltjes Integral function, 

Integrable function over the interval a b with respect to alpha if and only if, if and only if 

for every epsilon for every epsilon greater than 0 there exist there exist a partition there 

exist a partition P such that such that the upper sum P f alpha upper Reimann sum minus 

upper Reimann Stieltjes sum lower sum L P f alpha is less than epsilon. So, this 

condition is necessary as well as sufficient for the existence of a function to be Reimann 

Stieltjes Integral, so in particular when we take alpha x equal to x.  

So, we can say as a particular or as a corollary we can say f belongs to the Reimann 

Integral on a b if and only if if and only if for every epsilon greater than 0, there exist a 

partition P such that the upper sum of the function f with respect to partition P minus 

lower sum of f with respect to partition P is less than epsilon. So, so this is for the 

Reimann, necessary and sufficient condition for Reimann Integral, this is for the 

necessary and sufficient condition for Reimann Stieltjes. Now, we will see the proof next 

time. Thank you very much, that is all. 


