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Lecture - 30
Boundedness Theorem, Max-Min Theorem and Bolzano’s Theorem

This is in continuation of our previous lecture. We wanted to discuss the various
properties of the continuous functions. And in any consequence of that we see that, if
function is continuous over the closed bounded intervals, then we have some results,
which is known as the boundedness theorem, maximum-minimum theorem and the
Bolzano’s theorem. And this gives you also a criterion to find out and approximate
solution for the root of the function; that is the root location with the help of them.
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Let us see, first what is the bounded... Before going for the boundedness theorem, | will
revise; recall the definition of a bounded function. We define like this, a function f from
a set A to R; where A is a non-subset of R is said to be bounded on A. If there exist a
constant M greater than 0 such that the mod of f x is less than or equal to M for all x
belongs to A. It means a function is said to be bounded if the corresponding set is a
bounded set. So, when we say the f is not bounded, it means, that is, so a function f from
A to R is not bounded. It means we are unable get such an M for which this holds; or we
can say that if given any M, the function f is said to be unbounded; then if given any M



greater than 0, there exist a point X, which depends on this bound M x M; but M belongs
to A such that the value of the functions at these points will be greater than the given
number M. So, whatever the number you choose, you can always find a corresponding a
point in A for which the function value will exceed that number M. Then we say f is
unbounded or not bounded on the set M. So, this we have already discussed.

We wanted now the result, the theorem which is known as the boundedness theorem.
The theorem says, let | be a closed bounded interval and let f be a function from this
closed bounded interval to R be continuous on I. Then this theorem says f is bounded on
I. So, every continuous function on a closed bounded interval will be a bounded function.
That is what he says. Proof — we will prove by contradiction. Suppose f is not bounded
on |. So, by definition, we cannot find an M such that the mod of f x is less than or equal
to M. So, we can get then for any n belongs to natural number, there is a number x n in
the set A such that the absolute value of this functional value f of x n will exceed by n.
So, corresponding to 1, we get 1 point x 1 in A, so that f x 1 is greater than 1. So, 2 — we
get f x 2. So, we get a sequence of the points in A. This will satisfy this condition f of x n
IS greater than n.
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Since 1, which is given to be the closed bounded interval is a bounded set. And all the
sequence is x n, which you are getting satisfying the condition say 1 satisfying 1 lies in I,
because these are all the sequences belonging to I. And | is a bounded set. So, the



sequence X n is a bounded sequence, because x n lies between a and b, so that all the
terms of the sequence have a lower bound say a, upper bound say b; it is a bounded
sequence. And we know by Bolzano’s theorem, every bounded sequence has a
convergence sequence. So, use the Bolzano-Weierstass theorem. The Bolzano-
Weierstass theorem, which gives a convergent subsequence say X n k of this x n that
converges to a number say X, because by definition, X n is a bounded sequence. So,
Bolzano-Weierstass theorem says by Bolzano-Weierstass theorem, we can get a

subsequence, which is convergent and converges to a number X.

Now, this x officially belongs to I. Why? Since x is x n k. All these terms of the
sequence X n k lies between a and b. This is a close interval. 1 is close interval. All the
terms of the sequence lies between this. So, the limit of this sequence x n k cannot
exceed between these; will always lies between to these two bonds. So, since this is
there, where | is a closed bounded interval, the limit point of this sequence x n k over k —
this limit point obviously belongs to I. But this limit point is X. So, this shows that, this x
belongs to I. So, what we get is that, a sequence x n k has a subsequence, which is
convergent and the limit point belongs to I.

Now, f is given to be continuous. Since f is given a continuous function over the interval
I and x is one of the point inside the I. So, this implies f is continuous at x. So, by
theorem, therefore, this implies limit of x n k, when k tends to infinity is x, will give f of
x n k — limit of this — k tends to infinity is nothing but what? f of x, because by the
converges part. So, what he shows? This implies the sequence f x n k. This sequence is a
convergent sequence and the convergent sequence is always bounded. So, it is bounded.
But that gives a contradiction to the result, because this sequence f of x n is greater than
1 from here from 1. But from 1, what we get? We get mod of f x n k is greater than n of
k, which is greater than k. And this for all k belongs to N. So, this continuous function is
not bounded on the closed bounded interval. So, this shows that, function f over this

sequence...

Suppose if the function is not bounded, is a contradiction. So, this gives a contradiction
of over second part. But from we get this, which contradicts 2, because here this shows
this is unbounded. But here we have already shown it is bounded. It gives a contraction.
And contraction is because our assumption that the function f is not bounded on I. So,
this shows that, function f is bounded. This implies f is bounded on I, that is, closed



interval. So, this proves the result, which is known as the boundedness theorem. Now, in
the boundedness theorem, we have assumed these conditions? What are the conditions in
the boundedness theorem is, first condition is, the interval on which the function is
defined must be closed and bounded. So, this is one of the conditions, which we have

taken.

Second condition, which have the function must be a continuous function on this. So,
interval is closed bounded and function is continuous. Then only, we can say, f is a
bounded function. If any one of the condition is relaxed, that is, if we take | to be a
simply bounded interval, not closed or simply closed, not bounded or function is not
continuous, then our conclusion that, f is bounded on | will cannot be drawn. In fact, we
get a contradiction; we will get the example, where we get this function is unbounded

when we relax any one of the condition.
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So, let us see the examples, the condition. Note: The conditions of the boundedness
theorem — the hypothesis of boundedness theorem is, each condition is needed to justify
or to get the function f to get a continuous function to be bounded on I. If we relax any
one the conditions, then we get the conclusion of the theorem fails if any one of the

hypothesis or if any one of the conditions of boundedness theorem is relaxed.

For example, suppose | take say the function f x is suppose X; the interval | — | am

choosing I as the interval 0 to infinity. Now, this function is continuous function. It is



continuous function on this interval I. But I is not... that is, the function is closed, but is
not bounded. It is unbounded one though it is closed, because all the limit points are
between 0, 1 are inside it. So, | is a closed interval, but it is not bounded. Then what
happens? The function is continuous throughout, but the bound for this function,
function f x equal to x is an unbounded function, because as x increases, the value of the
f x keeps on increasing and interval is up to infinity. So, it is without bond. So, it is

unbounded. Therefore, the conclusion fails.

Second — if suppose | take the same function g x say is 1 by x. This function and the
interval | to be the interval say 0, 1. Now, this interval is not closed, but bounded.
Function f x is continuous over the interval 0, 1, because 0 is not included. But we have
seen, this function is unbounded, because as x tends to 0, the function g x will go to

infinity — unbounded.
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So, again, relaxing the condition is again not going to help; that conclusion fails. Then if
| take the interval | as a closed interval, which is a closed and bounded; but now, | am
taking the function h x as 1 by x if x belongs to the interval say 0, 1 and 1 if x is 0. |
define this function. The function is continuous over the 0, 1 interval. But it is
discontinuous at the point 0. Clearly, h is discontinuous at x equal to 0. So, again, the
condition is not satisfied and obviously, clearly, h is unbounded when x approaches to 0.
This is not a bounded function; 1 by x for this 0, 1; and, 0 when it is continuous and



unbounded on (( )). So, this will be there. So, we can see that, in boundedness theorem

will only be applicable when all the three conditions are taken in consideration.
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Next result, which we (( )) is maximum-minimum theorem. The maximum-minimum
theorem — the theorem says let | be a closed, bounded interval and let f, which is
mapping from | to R be continuous on I. Then f has an absolute maximum and an

absolute minimum on I. This results...

Now, we have already discussed — the absolute maxima and absolute minima in the last
lecture. So, proof we go; what is the absolute maxima we mean that, if suppose a
function is from A to R, then f has absolute maxima at a point... There exist some point
x star such that f x star is greater than f x for all x; and, minima when f x lower star is
less than equal to f x. So, that is the way we have introduced the maxima-minima of this
function. We will discuss after this proof. What we want is, suppose a be a closed,
bounded interval and function is given to be continuous; then it will attains its maximum
value as well as minimum value over the interval I; that is, there exists some point,
where the absolute maxima will be attained, absolute minima will attained. So, let us see

the proof.

Consider the set f of I. The set of those value is f x, where x belongs to I; means consider
the range set of function f, which is defined over I. Now, this range set the values of f for
I is clearly is bounded subset of R. And it follows from the previous boundedness



theorem, because boundedness theorem we have seen — if | is a closed, bounded interval,
f is a continuous function; then f is bounded on I; that is, the range set will be a bounded
set on I. So, it is a bounded subset of R, this much. So, once it is bounded subset, we can
talk about the upper bound and lower bound and supremum of least upper bound and
greatest lower bound.

Let us suppose s star be the upper bound supremum value of the function f I; and, s lower
star be the infimum value of the function f I; that is, the least upper bound of the function
f over the interval is suppose s star and... Now, what we want to do is, this s star and this
small s star exist. It means there exist some functions; what we require to prove is that,
there exist points x upper star and x lower star in | such that the s star will coincide with
the f of x star and s lower star will coincide with f of x lower star. This we wanted show.
So, first, we will prove for this side and other will follow in a similar way. So, let us

assume.
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First, to show that, there exist an x star in | such that s star, which is the supremum value
of f I exist and equal to the value at this point. This we wanted to show. Now, since s star
is the least upper bound of the function f x for x belongs to I. When x belongs to I, least
upper bound of this function is s star. So, if | choose a number slightly lower than this, it
cannot behave as a least upper bound.
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So, the number s star minus 1 by n, this number is slightly lower than... So, it is not an
upper bound of the set f I. Therefore, there are exist... So, we can say, consequently,
there exist a number x n in | such that s star upper minus 1 by n is less than f of x n,
which is less than or equal to s upper star for all n belongs to capital N, because this is
the upper bound. So, when you take a number slightly lower than this, then we can find
some number x n in 1, so that the functional value of x n will exceed by this number and
obviously it will remain less than or equal to this, because this is a least upper bound for
this.

Now, this sequence number x n, but this sequence is x n satisfying 1 are lying in the
interval | say a, b, which is a closed and bounded interval. So, by Bolzano-Weierstass
theorem, there is a subsequence say X dash; elements are x n r belonging to of X; X is a
sequence x n of x that converges to some number X upper star say. In fact, this number
which we have got it, must be a point of a, b. This we wanted show first. So, how to
show is, since all the elements of this are again the elements of I. So, since the elements
of X dash, that is, x n r, they belong to I, which is closed and bounded interval. So, just
like previous theorem, we have seen that, if the sequence of the point belongs to closed
and bounded interval, then limit point will also belongs to it. And since it is close to limit
point, it follows from this that, the limit point x star is also a point in I. Therefore, f is

continuous at I.
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Therefore, f is continuous at this point also, because it is continuous throughout over the
I. So, once it is continuous, apply the definition Heine definition. Heine theorem says, if
a sequence converges to x star, then f of x n r will also converges to f x star. So, by
theorem, limit of f x n r, when r tends to infinity coincide with f of x star, because it is
continuity. But by the first one... Use the first one.
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From first, what we get is s star minus 1 by n r is less than f of x n r. This is less than or
equal to s star. So, this is true for all r belongs to N. Now, let r tends to infinity. So, this



limit is s star; this is s star. So, by Squeeze theorem, the limit of this functionfx nrasr
tends to infinity will be equal to s star. But this limit is nothing but what? f x star. So, this
implies there exist an x star belonging to I such that the supremum — because this is the
supremum value of the function f I; such that this f x star is the supremum of f of I. And
that proves existence of it. Similarly, we can show for that, there exist an x lower star in |
such that f x lower star is the infimum of f of I. And that completes the proof of this. So,

this is another result, which (()).

Now, next result is also interesting. That shows, the location of the roots. In fact, this is
also known as the bisection method. It will use in the bisection method for this known as
the... (()) is known as the bisection method. So, we are not touching the location...
What this result says is, let | be a closed and bounded interval of R. And let f is a

mapping from | to R be a continuous on 1.

Now, if at the point a is suppose negative; at the point b, it is negative; or, if at the point
of a, it is positive; and, at the point of b, it is negative; that is, at the corner point, if the
function attains the different sign, then there exist a number c belongs to the interval a, b
such that the value of the function at the point ¢ will be 0. So, this shows that, we can
identify the root of the function if a function is defined over a closed interval a, b, which
has a alternate sign; that is, at the point a is negative, at the point b is negative. So, there
will be some point ¢. And the function is continuous. So, obviously when the function is
continuous, there is a continuous graph. So, when the function is negative, it means the
part of the graph is below the x-axis and part of the graph is above the x-axis. So,
obviously because of the continuity of the curve, the curve definitely crosses the x-axis.
So, that point where it crosses will be the point c; where f of ¢ will be 0. And that is the

the location.
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Now, proof of this... In fact, we will generate the sequence of successive by section just
like (()). So, let us suppose I 1 is an interval say a 1, b 1. And assume... Let us first
assume that, f of a — negative and f of b is positive. Now, I 1 is the interval, where a 1 is
suppose a and b 1 is suppose b and let p 1 is the middle point of a 1 plus b 1 by 2. Now,
if f of p 1is O, then result follows. Suppose f of p 1 is not equal to 0. Then either fofp 1
will be negative or f of p 1 will be positive. If f of p 1 is negative, then in that case, we
takethea2asp 1; b 2as b 1. And in case, if this is positive, then take a 2 as a 1, while
the b 2 is p 1. And consider the interval a 2, b 2 like this. And then one of the case will

be open, so one of the interval a 2, b 2.

Then find the point p 2, which is again the interval half of this; that is, basically, a 2 plus
b 2 by 2. So, basically, this length when you are taking this a 2 by 2, then test the
functional value as f 2. If it is 0, then result follows. If not, then again, either f of p 2 will
be positive or f of p 2 will be negative. So, again, continue the same process as above.

Suppose we are getting after at the n eth stage, what we get?
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Suppose we get the sequence of nested closed intervals a n, b n with length such that for
every n belongs to capital N, we have the value of f of n is negative and the value of the
function at the point b n is positive. So, this is the sequence of nested intervals say a 1, b
1. Then maybe once you divide, here is a 2, b 2. Like this further divide; and, like this.
So, we get this nested sequence of the nested intervals we are getting; or, maybe
sometimes here or there — that also, possibility may be like this also that instead of, we
get this or maybe this and so on like this. So, we get a sequence of the nested intervals,
which is contained totally in the previous one. And length of this — with the length, will
be b n minus a n. And that is equal to b minus a over 2 to the power n minus 1. This will
be the length of the interval a n, b n — length of I n, which is a n, b n interval — this one.

Now, let us see, here we get the sequence a n, which is less than equal to b n — nested
interval. So, what we get it here is... So, here we get a sequence of the nested interval a
n, b nsay I nsuch that I 1 covers | 2 covers | 3 and so on. And the finite intersection of |
n when n is equal to 1 to R is non-empty. So, by the result, which we have nested
interval property — by nested interval property, there exist a point c that belonging to I n
for all n. This is nested interval property for all I n.
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Now, since c lies between a n and b n for all n belongs to N, we have that 0 less than
equal to ¢ minus a n, which is less than equal to b n minus a n, which is equal to b minus
a over 2 n minus 1 and 0 less than equal to b n minus ¢, which is less than equal to b n
minus a n and which is equal to b minus a over 2 n minus 1. This is true. So, when n
tends to infinity, this is tending to 0, this is tending to 0. So, this shows limit of a n is c,

limitof bnisc.
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So, this implies that, as n tends to infinity, limit of a n is ¢, which is the same as the limit
of b n. But f is given to be continuous — f is continuous. So, continuous at this point;
continuous on I. So, continuous at ¢ also, which is in I. Therefore, limit of the sequence f
of a n as n tends to infinity is nothing but the value of the function at the point c, which is
limit of b n. So, this shows...

Now, further, f of a n will always be negative for each n. And f of b n will always be
positive for each n. Therefore, the limit of this sequence f n, which is equal to f ¢ will be
less than or equal to 0. And from here, the limit of f b n when n tends to infinity, which is
also f c, will be greater than or equal to 0. So, when you take these two together, we get f
of ¢ is equal to 0. And that proves the root. This shows, c is the root of f; that is, there
exists a ¢, where the function will be 0. So, if alternate positive, negative, then we get
this thing. So, that is very (()), it is basically used by numerical methods in numerical to

get the approximate root for the function f x equal to 0.
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Next result, which we have, the Bolzano’s intermediate theorem — what this theorem
says, let I be an interval and let f, which is a mapping from I to R be continuous on I; f be
continuous on I. Now, if a, b belongs to I and if k is any real number, satisfies the f a is
less than k, which is less than f of b means in between f and a, b, we are choosing a real
number k. Then there exists a point ¢ in | between a and b such that the value of the

function at the point c is k. This is known as the intermediate theorem; means if f is a



continuous function, then it will attain all its values in between the maximum and
minimum value. So, in fact, here we are not discussing about the maxima-minima. What
we are saying, we are taking two particular values of the function f a and f b; and, they
are distinct. So, if we picked up any number in between f a and f b, and f is continuous,
there will be at some point ¢ available, where this number will be attained by the

function at some point. So, that is known as the intermediate theorem.

Proof of this is like that. Suppose a is less than b; let us take this one first. And let g is
defined as g x is chosen as f x minus k. So, if we look this function, then clearly, at the
point a, g a is f x minus k; f x minus k is negative. And g of b is positive. So, this
function g is a value negative at the point a; positive at the point b. g is continuous

function, because f is continuous; k is constant.

So, addition and subtraction of the continuous function is continuous. So, g is continuous
over the interval a, b. Therefore, by the intermediate theorem, by the location of the root,
which we have proved earlier, there will be some point in between a, b, where the
function g will be 0. So, by previous theorem, that is, location of roots, there exists a
point ¢ such that with ¢ lying between a and b, such that the value of this g ¢ is 0. But
what is g ¢? But g c is nothing but the f ¢ minus k is 0. So, this implies f of c is equal to
k. So, there will be a point ¢ available in I, where the function will be attained. And the k

will be attained by this function at this point.

Similarly, if we take suppose a is greater than b; second — if a is greater than b, then what
happens? We consider the function h x; instead of this, we say k minus X, so that h of b
will be negative and h of a will be positive. So, again, there exists a point against c lying
between b and a such that the value of h will be 0 at this point, that is, k minus f c. So,
this implies f c is equal to k. And that proves the... Now, we can extend this result,
because this is for any value lying between the two unequal values of f. If we replace this
fand faand f b by its minimum value or the maximum value, that is, infimum of this
and supremum of this; we choose a k in between infimum and supremum; then also, we

can get some point value.
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As the corollary to this, we can say, let | be a closed, bounded interval and let f is a
mapping from I to R be continuous on I. Now, if K is in R, is any number satisfying the
infimum of f of |, that is, infimum of I is less than equal to k, which is less than equal to
supremum of I. That is the minimum and maximum value. So, k lies between minimum
and maximum value. Then there exists a number c in I such that the value of the function
at the point ¢ will be k; means this k will be attained by the function at some point.

Proof follows just from the maxima-minima theorem and above this previous Bolzano’s
intermediate theorem. So, it follows from use maxima-minima theorem and location of
roots theorem. So, what we see here, there exists a point say c star — ¢ upper star and ¢
lowery star in | such that the infimum of this will be f of c lower star; infimum will
attain, because | is a closed and bound interval, f is continuous function. So, infimum
will be attained. And there exists a point ¢ lower star, where the f ¢ lower star is the
infimum value. And then this is less than equal to k, which is less than equal to f of ¢
star, which is the same as the supremum of f of I. Now, conclusion follows from
Bolzano’s (()). So, from Bolzano’s intermediate theorem, we get a point ¢ belongs to |
such that the value of the function at the point c is k follows. And that proves the result,
which is (()).

Now, we get one more result, which is also true in case of the continuous function. The
transfer of an interval — if f is a continuous function, then it will transform the close



interval to the close interval. But if interval is not closed, then the image of the interval
other than the closed interval, that is open interval or semi-close interval, need not be
remain to open or semi-closed; that is, the nature of the closed interval is only retained
by a continuous function. But if the interval is not open and closed, then its nature may

change depending on the function.
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So, we get this result. First, for this, let | be a closed, bounded interval. And let f is a
mapping from | to R be continuous on I. Then the set f I, which is the set of f x such that
x belongs to 1, is a closed, bounded interval. So, proof is just like, suppose m is the
infimum value of f | and capital M be the supremum value of f I. Suppose then we know
that, from maximum-minimum theorem, this m and capital M belongs to I, because there
exists and there will be a point, where it belongs to I. Therefore, the every value of f I,
moreover moreover the functional value will lie between the interval m and M, because
its maximum value and minimum value only will be there. So, we can get the maximum

value and minimum value. All the values lie in between this.

Conversely, if k is any point belonging to this interval — k is any value in between m and
capital M, then there exists a point ¢ in | such that the value of the function at the c is
equal to coinciding with k. It means k is an element of f of I. So, we conclude that, any
value in between f, m, is also contained in this. Therefore, we can say, m, capital M —
this closed interval is contained in f of I. So, combine these two. We get f of | is nothing



but m, capital M, is a closed, bounded interval; that is, the image of the closed, bounded

interval under the continuous function is closed and bounded.
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Let us see the note. The image of... If f is continuous and I is an open interval, then
image of f | need not be open. For example, if we take say, function f x is 1 over x square
plus 1 and I is minus 1 to 1, then f of | — you can see just half, 1. This is not open; closed
at point, not open. Similarly, if we get... If f is say semi-closed interval, then also,
suppose | 2 is our interval say 0, infinity — a semi-closed interval and f of x is the same as
x square plus 1, we see f of | 2; that f of |1 2 comes out to be a semi-closed interval, but
open at this point. So, what we say, | 2, which is not a closed interval. So, if it is not,

then we can... So, this shows that.

Similarly, third, if we take f x is equal to sin x and if we choose the interval say minus pi,
2 pi, then image of this interval f I will be the closed interval minus 1 to 1. So, this shows
that, only the closed intervals under the continuous function remains closed image;
otherwise, if the interval is not closed, the image of that interval is a continuous function,

need not be the same nature.

Thank you very much.



