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Bayes and Minimax Estimation – I

In the last lecture I introduced the concept of loss function and the risk function of an

estimator. When we consider the risk function of an estimator, the criteria of choosing an

estimator is based on risk optimulty, that is, the estimator, which is having smaller risk, is

considered to be better.
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For example, if I consider on the x-axis the parameter theta and on this side, I denote the

risk functions of any given estimator delta, then R theta delta denotes the risk function, it

may have certain shape.

Suppose, this is corresponding to the estimator delta, suppose corresponding to estimator,

say delta 1, the risk function is like this. Suppose, this is the point, say theta naught, then

we can say here, that for theta less than or equal to theta naught, risk of delta 1 is less

than or equal to the risk of delta, that is, delta 1 is better estimator than delta for theta less



than or equal to theta naught. Also, for theta greater than or equal to theta naught, we

have R theta delta less than or equal to R theta delta 1. So, we will say, that delta is better

estimator than delta 1 for theta greater than or equal to theta naught.

Now,  the  question  arises,  is  there  an  estimator,  which  will  have  the  risk  function

uniformly lowest? The answer to this question is no. As I explained in the last lecture

through the example of a squared error loss function, that means, the class of all the

estimators cannot be completely ordered in general situations. Of course, if we consider

the situation where only one estimator is there, or if only the parameter space contains

one point, then this is a trivial situation.

So, in the previous lecture I introduced, that one method of overcoming this problem is

to  restrict  the  class  of  available  decision  rules,  like  we  have  used  the  criteria  of

unbiasedness.  So,  we  consider  unbiased  estimators  and  in  the  class  of  unbiased

estimators, find out the best choice, which we call minimum variance unbiased estimator.

Another  criteria  was,  that  we can  introduce  invariance  concept  in  the  problem,  that

means, consider equivariant estimators.

And in  the  class  of  equivariant  estimators,  if  possible,  find  out  the  best  equivariant

estimator. This is one method of optimizing or finding out the optimal estimators. There

is another method or another approach to look at this problem. We can introduce another

ordering,  we should  find  out  a  way how to  order  the  class  of  decision  rules  or  the

estimators. So, we can say, that we introduce ordering of estimators through a principle.

The main problem for the ordering is that R theta delta is a function and therefore, we are

not able to find out the minimum. Somehow, if we can reduce this R theta delta for any

given estimator to a single quantity, to a single number, then we can consider because the

set of real numbers is ordered, we can find out the best choice.

So in that case there are two important principles. Two such principles are, one is called

the Bayes principle and the 2nd one is called minimax principle.  Let us consider the

Bayes  principle.  In  the  Bayes  principle  we  assume,  that  in  the  Bayes  principle  we

assume, that the parameter theta is itself a random variable with certain distribution call,

say pi theta. So, this distribution, that I am calling, it is called prior distribution. We can

interpret it in this way, for example, we are considering estimation of the mean mu of a

normal distribution.



Now  from  the  past  knowledge  we  have  information,  that  the  mean  of  a  normal

distribution  itself  has  been  following  a  normal  distribution,  say,  with  mean  1  and

variance 2. In that case the prior distribution for mu is normal 1, 2. Similarly, suppose we

are considering Poisson distribution with the parameter lambda and we may have a prior

information on the lambda. By looking at the behavior over the past data, that lambda

itself follows, say, exponential distribution with certain parameter, say a or 1 or omega,

etcetera. Where that is a known quantity this is called a prior distribution.
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Then, what we consider here? Then, we define r pi delta as Expectation of R theta delta,

where… Now, what do you mean by this expectation? This expectation is over because

theta  is  considered  as  a  random variable,  now so  suppose  you are  dealing  with  the

continuous distribution, then it could be d pi theta. So, here, I have just used a general

notation here as theta varies over theta d pi; theta means (( )) integral, so this could be

integral or summation depending upon whether we are assuming a discrete or continuous

distribution.  This  is  called  Bayes  risk  of  estimator  delta  with  respect  to  the  prior

distribution pi. So, the class of all prior distributions over theta is denoted by, say, theta

star. So, we can talk about the Bayes risk provided this exists.

Now, we should also be able to talk about certain other quantities. For example, we may

be able to talk about the, see if you expand this quantity, this could be R theta delta. Now,

this R theta delta is nothing, but so this quantity for example, R pi delta, that is equal to



expectation with respect to  theta  of R theta  delta.  And this  R theta  delta  itself  is  an

expectation with respect to x of L theta delta x. Now, the distribution of x involves theta,

so we are treating it as a conditional distribution of x given theta now. Now, this is a new

interpretation. Earlier, when we are considering the distribution of x, then the parameter

of x, the parameter theta is considered to be a fixed, but unknown quantity.

But in the Bayesian principle since theta itself is now considered as a random variable,

therefore the distribution of theta, distribution of x. But we usually use a notation f x

theta. Now, we can actually use this notation in this particular fashion f x given theta to

take care of the fact, that theta itself is a random variable. So, this is now considered as a

conditional distribution of x given theta.

Now, as you all  know, this  can be written  in  a  reverse way also,  that  is,  firstly, we

consider the conditional distribution of theta given x and then we take in integral with

respect to our expectation, with respect to marginal distribution of x. So, this is called

posterior. So, we should be able to talk about the posterior distribution of theta given x

and this is called the marginal distribution of x.
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If we can talk about these quantities, then we can define a Bayes estimator as, so what is

a Bayes estimator? An estimator, say delta naught is said to be Bayes estimator with

respect to the prior pi theta belonging to theta star if the Bayes risk of delta naught is the

minimum Bayes risk of all the estimators, where, where infimum on the right side is



taken over the class of all estimators of the estimand; whatever be the parameter, that we

are considering to be estimated.

Now, in this one we are assuming, that the infimum exists. Now, sometimes the infimum

may not exist, in that case we may have to get ourselves happy with being close to the

minimum.  And we introduce  the  concept  of  epsilon  Bayes  estimator. Let  epsilon be

greater than 0, then an estimator delta naught is said to be epsilon Bayes with respect to

prior pi, if r pi delta naught is less than or equal to infimum, r pi delta plus epsilon.

Now, this class of all the estimators, let us use some notation, so let us use the notation,

say capital C. So, we can write here delta belonging to C and here also we can say delta

belonging to C class of all the estimators.

Now, let  us  give  a  historical  introduction  to,  that  is,  what  is  the  history  of  Bayes

estimators or Bayesian procedures.

(Refer Slide Time: 14:30)

Now, certainly, the concept  of  Bayes  estimators  or  Bayesian procedures,  follows the

name of Thomas Bayes, the name of the statistician against whom we know the famous

bayes  theorem.  Now,  in  the  Bayes  theorem  what  did  we  do?  We  had  the  prior

probabilities  of  certain  events,  using  that  we  were  able  to  calculate  the  posterior

probabilities of certain events. Now, in the case of estimation what we are doing? We are

replacing  the  probabilities  by  a  prior  probability  distribution  and  the  posterior



probabilities  by  a  posterior  probability  distribution.  Therefore,  this  name  Bayes

estimators or Bayesian procedures is given.

Now, when the theory of statistics in 1920s to 1940s was being developed, that time the

Bayesian procedures were not very popular. In fact, the founders like Jerzy Neyman and

R A Fisher, etcetera,  they did not agree to the use of Bayesian procedures. The main

reason was that they said how can you be sure of the prior information because the

parameter to be estimated or on which you are finding out the inference is not known and

therefore,  it  is  not  possible  to  pinpoint  a  prior  distribution.  Therefore,  if  the  prior

distribution is wrong, you get a different estimator or different procedure. So, in that case

everybody will have its own estimator.

However, later on, in 1960s etcetera, by L J Savage and Bruno de Finetti, etcetera, they

said, that if there is a prior information, it should be used. And then, another result was

that complete class results, which were proved in the decision theory, which said, that

essentially, any good rule or any admissible rule must be Bayes or limit of Bayes rule,

etcetera. So, nowadays, the Bayesian procedures are much in use and especially, with the

computational power, that has been developed, with the help of computational power one

can actually derive the Bayesian procedures.

Now, let me also introduce the minimax principle in the Bayesian procedures or in the

Bayesian principle.  We reduced the risk function R theta delta to R pi delta,  a single

number and therefore, it was possible to find out the minimum. In the minimax principle

we consider any or we can, you can say, that we evaluate any estimator by the maximum

risk  that  may  get.  So,  in  this  principle  we  evaluate  any  estimator  according  to  its

maximum risk. So, for each estimator delta, consider supremum of R theta delta for theta

belonging to theta and then, an estimator delta naught is said to be minimax if R theta

delta naught is equal to, infimum, the supremum of R theta delta naught, that is, the

maximum  risk  of  delta  naught  is  actually  the  minimum  among  all  the  available

estimators, where C is the class of all the estimators. This right hand side is called the

minimax value or the upper value of the estimation problem.

Now, this  minimaxity  principle  actually  assumes,  that  the statistician  or the decision

maker is trying to optimize the worst, that can happen. That means, given any situation,

what is the worst possibility and then we choose, that estimator for which that worst is



the smallest or you can say, whatever worst could happen have the minimum of that. So,

in a sense, it is a negative approach. Nevertheless, it is good in the sense, that we cannot

do worse than the minimax value now. So, here we can use min and max for supremum

and infimum etcetera and that is why the name minimax is there.

Once again, like in the case of Bayes estimation, one may not be able to find out the

infimum. So, we can define epsilon minimax estimator delta naught is said to be epsilon

minimax estimator for epsilon greater than 0 if supremum of R theta delta naught is less

than or equal to infimum supremum R theta delta plus epsilon.
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We also introduced least favorable prior, a prior distribution say pi naught is said to be

least favorable if infimum of r pi naught delta is the maximum. This is called the maxmin

value  or  the  lower  value  of  the  estimation  problem.  We have  some  notations  here,

generally we can use V lower bar and for the upper value of the game, generally we use

V upper bar as a notation. When V lower bar is equal to V upper bar, we say, that the

problem has a value in the game theory. This is actually called the point of equilibrium or

the  problem  has  a  saddle  point,  etcetera.  There  are  certain  equivalences  to  these

definitions, I will point out one or two before giving the methods for determining the

Bayes and minimax estimators.

Let  me take up one or two such, let  me call  it  a lemma here.  A decision rule or an

estimator delta naught is minimax, if and only if R theta prime delta naught less than or



equal to supremum of R theta delta for all theta prime, and for all delta, let delta naught

be minimax, then supremum of R theta delta naught is equal to infimum supremum R

theta delta. Now, this implies, that supremum of R theta delta naught is less than or equal

to supremum of R theta delta for all delta belonging to C. Now, this implies, that R theta

prime delta naught is less than or equal to supremum of R theta delta for all theta prime

belonging to theta and for all delta belonging to C.

Now, you can see here, that this implication implies this implication and this implication

implies, that this implication because if I say supremum of R theta delta naught is less

than or equal to supremum of R theta delta for all delta, then certainly it is equal to the

infimum value. So, therefore, this is if and only if condition.
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In a similar way one can consider, say, delta naught is epsilon minimax estimator if and

only if R theta prime delta naught is less than or equal to supremum R theta delta naught

delta plus epsilon for all theta prime and for all delta.

Now, let us see how to obtain a Bayes estimator? How to obtain minimax estimators? So,

method for finding Bayes estimators, so according to the definition we must calculate r

pi delta for every estimator delta and then see among all such values, that what is the

one, which is minimizing, that is, we should be able to minimize r pi delta with respect to

delta. So, let us look at this function. We have defined R pi delta as expectation of R



theta delta, which is actually equal to expectation of theta expectation x given theta L

theta delta x or…

So, if  you consider this,  actually  this  is  becoming,  let  me use the general  Lebesgue-

Stieltjes integral notation, so this is becoming L theta delta x d F x x given theta into d pi

theta. Therefore, it looks almost impossible how to minimize this with respect to delta.

However,  we  try  to  write  it  in  a  different  way. So,  consider  again,  let  us  consider

estimation of say parametric function, say g theta with respect to the loss function, say L

theta  d.  So,  for  any  estimator  delta  the  risk  function  is  R  theta  delta  is  equal  to

expectation of L theta delta x.

Now, let us consider here, that let the distribution of x be, so we may write d F x V f x

theta. So, F x theta is the, it could be discrete or continuous, so we will consider the

conditional distribution of x given theta and let the prior distribution of theta be, so we

will give some notations, so pi theta. Once again this could be discrete or continuous or

mixed and similarly, this could be discrete or continuous or mixed. In that case this is

nothing, but L theta delta x d F x given theta, the integral is over x here.
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Now, the Bayes risk of estimator delta with respect to prior pi, that is, r pi delta, that is,

expectation of R theta delta with respect to pi, that is equal to integral of R theta delta d

pi theta over the parameter space, but this is nothing, but L theta delta x d F x given theta



into d pi theta. As such the problem is to find out that value of delta for which this double

integral or double summation is minimum.

What we do, suppose interchange in the order of integration is permitted, then we can

write it as L theta delta x, now the notation will change here, we will consider it as d of

say, G of theta given x into d of H x. Now, this is with respect to theta and this is with

respect to x. What has happened? I have changed the order of integration here, so this is

nothing, but denoting the posterior distribution, that is, conditional distribution of theta

given x and this is denoting the marginal distribution of x.

Now, if I write like this as an iterated integral, then for each fix value of x if we look at

this inside quantity, then this becomes a fix number. Therefore, we can consider it as a

function of a and minimize with respect to a. Now, if for each x you are able to minimize

this, then overall, so naturally this is a function of x, it will, the value, minimizing value

will be dependent upon x, then that minimizing value will be called the Bayes estimator.

So, to find delta x, that minimizes, let me give these numbers here 1 and this is I call 2,

that minimizes. 1 we can find, that delta x, which minimizes the integral 2, only this

integral for each x. So, this will give us the Bayes estimator. Let me explain through an

example here.

(Refer Slide Time: 34:13)

Let us consider, say, let x be a, be an observation from uniform distribution on 0 to theta,

theta is positive. So, our parameter space is zero to infinity and the loss function is, say



theta minus a square, that is the squared error loss function. That means, our criteria is

mean squared error.

Now, we consider the prior distribution, so a prior distribution for theta as, say pi, so we

will give some notation here, let us call it, say g theta is equal to theta e to the power

minus theta; for theta greater than 0 it is 0, for theta less than or equal to 0.

If you observe it carefully, it is actually gamma distribution, gamma distribution with

parameter 2 and 1. So, we call it pi, the distribution is called pi. Now, we, in order to

determine the Bayes estimator we need to calculate the conditional risk function with

respect to the distribution, posterior distribution here. So, what we do now? We need to

find the posterior distribution of theta given x. So, firstly, let us look at the distribution of

x, the distribution of x, x follows uniform 0 theta, so you will write it as f x given theta is

equal to 1 by theta 0 less than x less than theta, it is equal to 0 elsewhere.

Note here, that in the usual theory we have been considering it as a distribution of x

because  theta  was  considered  to  be  fixed,  but  unknown  quantity.  But  now,  it  is

considered as a conditional distribution because theta is also a random variable. So, now,

we  are  treating  it  as  a  conditional  distribution  of  x  given  theta.  Now,  we  have  a

conditional distribution and we have a distribution of theta, which we can consider as a

marginal distribution of theta.

So, using this we can write the joint probability density of x and theta is given by, I will

use  the  notation  F  star  because  F  I  am  using  for  the  marginal,  so  for  the,  for  the

conditional, so for the joint I will use f star. This is nothing, but f x given theta into g

theta. So, that is equal to e to the power minus theta for 0 less than x less than theta, theta

greater than 0, it is equal to 0 elsewhere.

In order to calculate the posterior distribution of theta given x, now I need the marginal

distribution of x.
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So, the marginal probability density of x is given by, let us use the notation, say h x, that

is the integral of f star x theta with respect to theta. Now here, if you look at the joint

distribution, the joint distribution is e to the power minus theta when theta is greater than

x, at other points it is zero. So, this will become x to infinity e to the power minus theta d

theta. So, this is naturally equal to e to the power minus x for x greater than 0 and it is 0

for x less than or equal to 0. That means, the marginal distribution of x is nothing, but the

exponential distribution with parameter, scale parameter 1 and the location parameter 0.

So, the posterior probability density of theta given x, that is, f star x theta divided by h x,

that is equal to e to the power, e to the power x minus theta for theta greater than x, it is

equal to 0 if theta is less than or equal to x. This is nothing, but exponential distribution

with location parameter x.

So, now what is our aim? Our aim is to find out the value of delta, which will minimize

this. This I call posterior expected loss of estimator delta with respect to prior pi. So, we

calculate this, the posterior expected loss of delta is expectation of L theta delta x, this is

considered with respect to the conditional distribution of theta given x, that is equal to L

theta delta x. Since here x is fix, I can use this small x here e to the power x minus theta

d theta from x to infinity, that is equal to integral theta minus delta x square e to the

power x minus theta d theta x to infinity.



Now, we can substitute, say a here we can minimize. Now, if you observe this, this is

nothing, but a convex function of a. Therefore, the minimizing choice is obtained if you

differentiate with respect to n put equal to 0.
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We can find the minimizing choice of delta x, that is, a as the solution of, so if you

differentiate that, you get minus twice theta minus delta x e to the power x minus theta d,

theta is equal to 0. This implies delta x is nothing, but integral of theta e to the power x

minus theta d theta from x to infinity. So, this integral is nothing, but x plus 1. So, in fact,

you can observe this as the mean of this distribution. Actually, it is expectation of theta

given x, so delta x is equal to x plus 1 is the Bayes estimator of theta with respect to prior

pi, that is taken as gamma 2, 1 distribution.

Now, one thing we noticed here, we had considered the squared error loss function. In

the squared error loss function when we differentiate and put is equal to 0, the solution is

turning out to be the mean of the posterior distribution here.

Now, in fact, this is a more general phenomena, which I will state it as a lemma here. In

the  problem of  estimating  parameter,  parametric  function,  say  alpha  theta  with  loss

function squared error, that is, L theta a is equal to alpha theta minus a whole square. The

Bayes decision rule with respect to a prior pi is the mean of the posterior distribution.



Let us look at the proof of this. We can, give it in a general sense, we need to minimize

the posterior expected loss, that is, expectation of L theta delta x given x equal x, so this

is integral or expectation with respect to the conditional distribution of theta given x.

Now, this is nothing, but expectation of alpha theta minus delta x whole square. This is

with respect to the conditional distribution of theta given x. Now, in this one delta x is

fixed, so we are calling it as a.
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So, when you differentiate and put equal to 0, you get twice alpha theta minus delta x

given x equal to x, with a minus sign, this is equal to 0, that is giving you delta x is equal

to expectation of alpha theta given x equal to x, that is the posterior expectation of alpha

theta. Now, in the previous problem alpha theta was equal to theta, that means, it was

simply the mean.

In a similar way, we have general statements regarding weighted quadratic error loss

function. For example, if we consider, say suppose, we consider loss function as, say

omega theta into theta minus a square, let me call it L star, then the Bayes estimator is

obtained as theta omega theta d G theta given x.
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Similarly, if I have absolute error loss function,  if L theta a is,  say modulus of theta

minus a, then the Bayes estimator will be the median of the posterior distribution. Just to

give  an  example  here,  in  the  previous  case  when  we  have  calculated  the  posterior

distribution as exponential distribution with location parameter a x. Here, if we calculate

the median, in this case the median is, for example, in the case of x following uniform 0

theta, theta following gamma distribution with parameter 2 and 1 and loss function, say

modulus  of  theta  minus  a,  the  Bayes  estimator  will  be  the  median  of  the  posterior

distribution, which is x plus log 2.

So, let me give another notation, let us call it delta x. So, delta 1 x is Bayes estimator

with respect to the absolute error loss function, whereas with respect to squared error loss

function, we got x plus 1. So, the change of the loss function certainly changes the form

of the Bayes estimator.

We also talk about, what is known as, limit of Bayes estimators. An estimator delta is

said to be a limit of Bayes estimators. If there is a sequence of estimators, say delta n

such that delta n x converges to delta x for almost all x, that means, the probability, that

this will converge is 1.
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We defined also a generalized Bayes rule. Let us recollect the process of finding out the

Bayes  rules.  We  consider  a  prior  distribution,  which  is  treated  as  a  probability

distribution  for  the  parameter  theta.  Using  this  we  are  able  to  calculate  the  joint

distribution of x and theta, from there we calculate the marginal distribution of x, from

there we derived the conditional probability distribution of theta given x.

In deriving the solution, that is, in order to find out the minimum value of the posterior

expected loss, what we need is ultimately the posterior distribution, that mean, we should

be able to talk about a posterior  distribution.  Now, this  procedure of finding out the

posterior distribution or you can say, the solution of minimizing the posterior expected

loss has one advantage. It could be possible, that initially, whatever pi theta we are taking

is  not  a  proper  probability  distribution,  that  means,  we may even be having infinite

probability measure, that means, not a probability measure, it is simply a measure.

But can we talk about the joint distribution and then, we can calculate in the same way a

marginal  distribution,  which  may  again  not  be  a  proper  probability  distribution.

Ultimately,  when  we  write  down  the  conditional,  that  is,  g  theta  given  x,  is  it  a

probability distribution? If that is, so we can still  talk about a Bayes rule or a Bayes

estimator.  Now,  such  a,  such  an  estimator  is  called  a  generalized  Bayes  rule.  So,

sometimes the parameter theta is having a measure, so I am saying it is not a probability

measure pi, which need not be proper probability measure.



So, we call it a improper measure or generalized measure. However, however, if L theta

delta x, d F, d g theta given x assumes a minimum for delta is equal to delta naught, then

delta naught is said to be a generalized Bayes estimator with respect to improper prior pi.

We also define extended Bayes rule, A rule delta naught is said to be extended Bayes if

for every epsilon greater than 0, there exists a prior, say pi epsilon, such that delta naught

is  an  epsilon  Bayes  estimator  with  respect  to  prior  pi  epsilon.  Let  me  modify  this

statement here, estimator, estimator.

Sometimes I am using the word rule in the framework of the general decision theory

here. In the next class I will give examples of extended Bayes rules, generalized Bayes

rules, limit of Bayes rules and how, in the usual estimation problems they are same or

different from the say, maximum likelihood estimators or the best invariant estimators,

etcetera. We will also consider the desirable properties of the Bayes estimators and we

will connect it to the finding out minimax estimators.

So, in the next two lectures we will  be discussing these various connections and the

methods of finding out Bayes and minimax estimators.


