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Sufficiency and Information

In the previous class, I have explained the concept of sufficiency. This concept is the concept

which is called the principle of data relation. So, we have a random sample X 1, X 2,  X n,

but  if  we  have  a  sufficient  statistic  T,  then  that  is  sufficient  that  gives  the  complete

information about theparameter which is contained in the sample. So, we need not retain itwe

have given one theorem, which is called factorization theorem and this is useful for deriving

sufficient statistics in various probability models.

Yesterday, I have discussed the normal probability model and I have shown you that how, if

we change the parameter space; that means, whether we have nu known or sigma square

known  or  both  are  unknown  in  each  of  the  cases,  the  sufficient  statistics  changes.  So,

sufficiency is the property of the probability model under consideration. Let me explain it

though a few more examples andwe will use the concept ofthis factorization theorem here.
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Let me start with exponential distribution, let X 1, X 2, X n follow exponential distribution

say with parameter lambda. So, in the factorization theorem we need to write down the joint

density of X 1, X 2, X n that is equal to lambda to the power n eto the power minus lambda

sigma x i. Now, this whole thing we can write as a function of sigma x i and lambda and h x

this h x, I am taking to be one itself the constant.

So, you can see by factorization theorem by factorization theorem sigma x i is sufficient, let

us consider another exponential model in which in place of a scale parameter we will have a

location parameter. So, let us consider say X 1, X 2, X n following exponential say, theta

minus x where x is greater than theta zero elsewhere. Now, in this case the joint density of X

1, X 2, X n is f of x theta that is equal to e to the power n theta minus sigma x i; however, this

description of x i greater than theta also place a role here.

Now, if we want to write it as a product here we will make use of the indicator function. So,

we can write it like this e to the power minus sigma x i, e to the power n theta indicator

function of the set  X 1 from theta to infinity and indicator function of other x it’s from 2 to n

from X 1 to infinity. So, what we can consider we canwe can write it as g of  X 1 theta into h

of x where, h of x I, am writing as e to power sigma x i into product i is equal to 2, 2 n I of x

I,  X 1 to infinity.

So, here this  X 1, X 2,  X n they are denoting the order statistics of  X 1, X 2,  X n. So, g is

this function this is a function of X 1 and theta. So, we conclude that X 1 is. So, X 1 is

sufficient. Now, note here when we had lambda as the parameter and here we had a scale

model the sufficient statistics was sigma X i although here, we are again we are dealing with

the  exponential  distribution,  but  the  nature  of  the  parameter  has  changed  therefore,  the

sufficient statistic is now, the minimum of the observations now, in a similar way let us take

up the two parameter exponential distribution.
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 Let  us  take   X 1,   X 2,   X n be  a  random sample  from a  two parameter  exponential

distribution say with density function f x, mu, sigma is equal to one by sigma e to the power

minus x minus mu by sigma for x greater than mu and it is equal to 0 otherwise. So, once

again the joint probability density function of X 1,  X 2,  X n this is now, 1 by sigma to the

power n e to the power n mu by sigma e to the power minus sigma x i by sigma.

And once again the condition that each of x i greater than mu I can express in terms of the

indicator function like  x 1 is from mu to infinity and x i is other x i is they are from  x 1 to

infinity i is equal to 2to n. So, this portion I can write as g of x 1 sigma x i and mu sigma and

this part is h X. So, here we concluded that x 1 and sigma x i is sufficient or we can also say x

1 and x bar because this is a one to one function of this, this is sufficient.

I also want to mention here we have earlier considered, the maximum likelihood estimators.

Now, let us remember one maximum likelihood estimators for each of these problems for

example, in this case the maximum likelihood estimator for lambda was one by x bar which

is a function of sigma x i in this particular case.The maximumlikelihood estimator was  x 1

that  is  a  minimum  of  observations  and  it  is  sufficient  here  similarly,  here  you  see  the

maximum likelihood estimator for mu and sigma, where  x 1and x bar minus  x 1respectively,

which is again a one-to-one function of x 1, x bar that is the sufficient statistics.



So, we can observe that maximum likelihood estimator if it exists is actually, a function of the

sufficient statistics the reason is obvious because in the factorization theorem, we are writing

down the density as a function of the parameter and the sufficient statistics into a function,

which is free from the parameter. Now, in the method of maximum likelihood estimator, we

are maximizing the density function or the mass function with respect to the parameter.

Now, the part of the density which contains the parameter contains the variableonly through

the sufficient statistics therefore, the maximization problem will give a solution in terms of

the sufficient statistics alone. 
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So, we have a general comment here that if maximum likelihood estimators exist, they are

functions of sufficient statistics.Let us take some more examples here say for example, X 1,

X 2, X n a random sample fromsay double exponential distribution half e to the power minus

x minus theta, where x is any real number and theta is any real number. In this case, if we

consider the sufficiency. So, the joint distribution of X 1, X 2, X n that is equal to one by two

to power n e to the power minus sigma modulus x i minus theta, i is equal to one toone. Now,

here you observe I cannot reduce it further as a function of parameter and a another variable

here because each of the x i is appearing in themodulus sign and therefore, I cannot separate

it out. 



At the most I can consider the reduction as one by two to the power n e to power minus sigma

modulus of x i order statistics minus theta. So, this function is now a function of the order

statistics and theta and this you can. Now, call h x. So, we conclude that the order statistics X

1, X 2, X n is sufficient this order statistics. Now, remember here for this problem what was

the maximum likelihood estimator. The maximum likelihood estimator was median.Median

of the observations and median is afunction of this is a function of order statistics because if

we have a odd number of observations say x 2 m plus one then x m plus one that is the

middle of the observation was the median and if we have an even number of observations that

is  x 2 m then any number between x m and x m plus 1 and we can actually, consider say the

middle of the two that is x m plus x m plus 1 by 2 as the maximum likelihood estimator.

So, this is a function of order of statistics in this case also. So, this statement is true in general

another thing which I just now, pointed out that many times.When we are writing down the

density function say in this case, we are we have to incorporate the region of the variable,

which is dependent upon the parameter as a part of thejoint density function because if we do

not include it then we cannot derive the sufficient statistics.For example, if we have written

only this part then there is no sufficient statistics here because e to the power minus sigma x i

can be separately written e to the power n theta can be separately written.

However, this is not a complete description of the density unless we include the reason x i

greater  than  theta  for  all  I  and this  is  the way of  including this  a  similar  phenomena is

observed in the uniform distributions also like in the uniform distribution.
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 The range is dependent upon the range of variable is dependent on the parameter. So, let us

consider say  X1, X 2, X n say a random sample from uniform zero theta distribution. Now,

in this case the joint density is equal to 1 by theta to the power nand once again each of thex i

is between 1 to n and it is equal to 0 elsewhere. So, this part we will express as then one by

theta to the power n I of say X n from 0 to theta and the other x i isare from 0 to  X n for I is

equal to 1to n minus 1. So, you can see this portion you can express as g of  X n theta and this

part  you can write  as h x.  So,  X n is  sufficient;  however, if  we consider  say a uniform

distribution which ison a two sided interval here we have taken one side as 0.

Suppose, we consider say from theta minus say 1 by 2, 2 theta plus 1 by 2 in this case the

joint distribution is simply 1 because theta plus half minus theta minus half is 1; however,

each of the x i’s they are between theta plus half and theta minus half. So, this part then you

can incorporate as indicator function of  X 1 from theta minus half to theta plus half and the

indicator function of X n from theta minus half to theta plus half. And the remainingorder

statistics lying between X 1 and X n I is equal to 2, 2 n minus 1. So, this you can see it is a

function of  X 1,  X n theta into h x this part is h x and this part is a function  X 1,  X n and

theta. So, here  X 1, X n is sufficient although the parameter remains one dimensional here,

but  the  order  statistics  contains  two  terms  if  you  remember  the  maximum  likelihood

estimator. 



The maximum likelihood estimator for this problem was any value between X n minus half to

X 1 plus half.  So,  which is  a functionof  X 1,  X n.  So, the statement that the maximum

likelihood estimators, if they exist they are functions of the sufficient statistics is satisfied

here also now this factorization theorem is very useful.
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 If we are considering a general distribution in an exponential  family so,  let  us consider

distributions in exponential family. So, if we are considering a k dimensional exponential

family let f x theta be equal to c theta h x e to the power sigma say Qi theta T x i is equal to

say 1 to  k thisis  called a  k dimensional  exponential  family, provide the parameter  space

contains a k dimensional rectangle. So, based on a random sample X 1,  X 2,  X n the joint

probability density function we can write as c theta to the power n product of h x i e to the

power sigma Q i theta into T of. So, let me change here I j because I j is being used here.

I is equal to 1to k t, x j sigma j is equal to 1to n.Now, this I can write as c to the power n

thetae to the power sigma Q i theta sigma T j t ofthere is a mistake it is T i x. So, T I, x j. So,

this becomes what I am done doing is I am taking this summation inside. So, this becomes

sigma of T i, X j, j is equal to 1to n I is equal to 1 to k into product of h x j, j is equal to 1to n.

So, this part is now a function of sigma T 1, x j, j is equal to 1to n sigma T 2, x j, j is equal to

1 to n and. 



So, on sigma T k, x j, j is equal to 1 to n and the parameter and this part we can consider as h

x. So, we conclude that sigma of T 1, x j sigma of T 2, x j and so on.Sigma of T k, x j, j is

equal to 1to n this is sufficient of course, when we write like this we assume that this q 1, q 2

etcetera are linearly, independent otherwise some of the terms can be merged together. Now,

let me introduce the relationship between the Fisher’s information measure and the concept of

sufficiency.

(Refer Slide Time: 20:55)

So, if you remember the Fisher’s information was defined as Fisher’sinformation was defined

as I x theta is equal to expectation of del by del theta log of f x theta whole square, here the



assumption is that the distribution of x is f x theta and of course, this could be p d f or p m f

with respect to a measure mu andwe are making the assumption of regulatory conditions that

is differentiation under the integral sign is allowed.

So, this is under regulatory conditions if the distribution of X is f x theta then the information

measure Fisher’s information in X about theta is defined asexpectation of del by del theta log

of f x theta is square. Now, if t is any statistic and suppose the density of let me give the name

as phi T theta,thenFisher’s information in T is defined as I T theta is equal to expectation of

del by del theta log of phi T theta square, once again we are making assumption about.

So, this could be p d f also or p m f and we should have the regularityconditions satisfied for

phi also means, we should be able to differentiate the density with respect to that parameter,

we should be able  to  differentiate  under  the integral  sign.  So, here also under  regularity

conditions  we  satisfy  it  under  regularity  conditions.  So,  we  have  the  following  result

regarding relationship between sufficiency and information.Let T x have p d f or p m f phi t

theta del by del theta phi t thetaexists d by d theta of integral phi T theta d mu T over an

imageset b is equal to del phi by del theta d mu T for any measurable set b that is in the space

of T values.

Then we have the following results first is that expectation of del by del theta log of f x theta

given T is equal to t this conditional expectation is equal to del phiby del theta divided by phi

e theta almost everywhere. Secondly, the information in the x is always greater than or equal

to the information in any statistic T with equality holding if and only if T is sufficient. So,

what we are saying suppose we have X 1, X 2, X n as a sample and T is any statistic. Then in

general the information content in a statistic will be less than or equal to the information

contained in the full sample; however, if T is sufficient then it will be the same and this is a

necessary and sufficient condition. 

So, this is what I was mentioning from the, that is the utilization of the information or the

content of the information in the concept of sufficiency that sufficient statistic contains all the

information, which is available in the sample because we are saying I T theta will become

equal to I h theta. So, this is the physical meaning of the concept of sufficiency that if, we are

considering this definition as the definition of information because this I x, theta we will call

information in the sample. So, what we are saying is that there is no loss of information, if we

consider a sufficient statistics. So, let me prove thistheorem here. 
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So, see we have say let x be the space of x values and say y denote the space of T values; that

means, T is a function from x to say y naturally, we will be considering the sigma field’s of

subsets of x and similarly a sigma field of subsets of y also. So, let us use some notation say

b, be the sigma field of subsets of x and say c be the sigma field of subsets of y which, we are

considering here. So, now, let us consider b asay a set c in c then for that define say b is equal

to t inverse c that is the set of x such that T x belongs to c. So, consider for any set say b

belonging to script b, let us consider expectation of delta by delta theta log of f x theta over

the setb. 

So, this is equal to del f by del theta divided by f x theta. Now, this is expectation. So, it

becomes f x theta d mu x over the set b. So, this f x theta and this f x theta cancels out, we are

getting integral del f by del theta d mu x over a over b.Now, this we can consider because we

have made the assumptionthat, we can differentiate under the integral sign. So, this equal to d

by d theta of f x theta over b. Now,this the integral of the density of the random variable x

over the set b. So, this is nothing, but probability of the set b.

Now, we have defined the set b to be the inverse function of or inverse image of T. So, b is

the set where T x belongs to c. So, this probability of x belonging to b is same as probability

of T belonging to c therefore, we can write it as d by d theta integral of phi Ttheta that is the

density of a T with respect to the corresponding measure over the set c.Now, once again we

have made the assumption that we can consider differentiation under theintegral sign. So, this



becomes del phi by del theta d mu T over the set c now, we can divide and multiply by the

density of t inside the integral sign.
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 So, we will get here this term as equal to del phi by del theta 1 by phi t theta phi T theta d mu

T over set c. So, now, this becomes nothing, but the derivative of log of phi t theta d mu T

over the set c this is nothing, but the expectation of this expectation of del log phi T theta by

del theta indicator function of the set c look at the statement that, we have proved. Now, we

started with expectation of del by del theta log of f x theta I b x.

We are showing that this term is now, equal to this term is equal to expectation of del log phi t

theta by del theta I c T.Now, what is the relationship between x and T and b and c t is a

function of  x  and b is  the inverse  image of  the set  c  therefore,  by the definition of  the

conditional  expectation,  we  conclude  that  by  the  definitionof  conditional  expectation  we

conclude that expectation of del by del theta log of f x theta given T is equal to T which is

equal to del phi by del theta one by divided by phi of T theta, that is the statement given here

of course, since we are obtaining this result from the expectation. So, we can say that this

statement is true almost everywhere.

That means, the set we have this may not be true will have probability 0; that means, their set

of values of small t for which this statement is not true then under the probability distribution

of t that set will have probability 0. So, actually whatwe have used here is we have simply



used the definition of the conditional expectation. In fact, let me write here remarka function

g t is said to be conditional expectation of y given T if expectation of y I, b, T is equal to

expectation of g t, I d, t for all b more measurable sets of b. So, we have used thisdefinition.

So, what we have done is we have established a relationship in the, in the log likelihood or

you can say the information content term in the density of the sufficient statistics and the

original variable.
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Let us look at the proof of the second part. So, consider here expectation of del phi by del

theta  1  by  phi  t  theta  minus  del  f  this  will  be  capital  here  because  you are  considering

expectation. So, this term is going to be greater than or equal to 0 because this is a perfect

square term here. Now, let us expand the left hand sidethe left hand side is equal to now you

expand this. So, this is becoming expectation of del log of phi t theta by del theta square plus

expectation of del log f x theta by del theta square minus twice expectation and the product of

these terms, that is del log phi t theta by del theta into del log f x theta by del theta.

At this stage you notice here that expectation conditional expectation of del by del theta log f

x theta given T is this term that is dellog this term is nothing, but del log phi T theta by del

theta.If I consider this expectation here I can write here it as expectation of expectation given

T then this term becomes expectation of del log phi T theta by del theta into del log f x theta

by del theta you can express as expectation of expectation del log phi T theta by del theta del

log f x theta by del theta given T.Now, if we use the relationship which we proved in the first



part that is this one thenthis conditional expectation becomes this term itself. So, this will

become square of.

So, left hand side of one is then information in X, the first term is information in T plus

information  in  X minus  twice  information  in  T that  is  equal  to  information  in  X minus

information in T and the right hand side is it is greater than or equal to 0. 

(Refer Slide Time: 38:54)

So, we conclude that so, I x theta is greater than or equal to I t theta. So, information in a

statistic is always less than or equal to the information in the full sample now let us consider

when we will have equality. Now, let us derive a necessary and sufficient condition for the

equality in 1 now when will there be equality if we are considering I x theta is equal to I theta

I t theta equal to 0. So, that equal to 0 will come if we have equal to 0 here now this is an

expectation of a non negative quantity if we say that expectation is 0 then the quantity itself

must be 0 with probability one . So, I x theta is equal to I t theta is equivalent to saying that 1

by phi t theta or you can say del log phi T theta by del theta is equal to del log f x theta by del

theta almost everywhere.

That means, the set of values of x where this is not true will have probability 0. Now, you

integrate on both the sides. So, you will get log of phi t theta is equal to log of f x theta plus a

function of say x because this integration is with respect to theta. So, this is equivalent to



saying that if I consider f x theta, then it is equal to phi t theta into a function of x. Now, this

is nothing, but factorization theorem. So, we are saying that T is sufficient.

So, the information in the statistic T is equivalent to equal to the information n x if and only if

the random variable the statistic T is sufficient. So, this Fisher’s information is measure is

extremely important concept. In fact, in the current physics or in the information theory this

is widely used one can look at the references physics of Fisher’s informationthere is currently

a book, which has come out and italmost establishes entire physics theory on the Fisher’s

information measure.

Let me give an example of a calculation of the information, we will show that this statement

is true. So, let me take up say let us consider say  X 1,  X 2,  X n following say Poisson

lambda distribution, let us take several statistics let us take say T 1 is equal to  X 1,T 2 is say

X 1 plus X 2 and say t n is equal to X 1 plus X 2 plus X n that is sigma x i in the case of

Poisson distribution, the we can easily derive the distribution. So, T 1 follows Poisson lambda

T 2 will follow Poisson twolambda and T n will follow Poisson n lambda.

Let us, independently derive the information in T 1, T 2 and T n and also let us derive the

information in the full sample.What is information in full sample? X 1, X 2,  X n. So, let us

derive all these things. 
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So, information in one of the x that is calculated.If I calculate the information in X 1(Refer

Slide Time: 43:48) and if I take n times that information is easily we can see an additive

function. So, the density function or the probability mass functionin the Poisson distribution

is. So, log of this is f x lambda minus lambda plus x log lambda minus log of x factorial. So,

del by del lambda log of f that is equal to minus 1 plus x by lambda, which we can write as x

minus lambda by lambda. So, expectation of del by del lambda log of f x lambda square that

is equal to expectation of x minus lambda square by lambda square.

Now, this is nothing, but the variance of x because in Poisson distribution expectation of x

equal to lambda. So, this is equal to lambda by lambda square that is equal to1by lambda. So,

if  I  consider the information in T1 then that is  equal to 1 by lambda.If  we consider the

information in say x itself, then it is additive. So, it will become n by lambda, if I consider

information in T 2 that will be equal to 2 by lambda and if I consider information in T n that

is also equal to n by lambda.
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So, you can see this is less than this, this one is less than this; however, this one is equal to

this and T n that is sigma x i in the case of Poisson distribution, we have shown that it is

sufficient statistics. So, we observe that ifinformation of X is same as information in T as T n

is  sufficient.We write  a  comment  here,  that  information  is  additive.  So,  suppose  I  am

considering independent random variables let X and Y be independent random variables with

distributions say f 1 x, theta and f 2 y, theta.
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Then, let us consider information in x that is equal to expectation of del by del theta log of f

x, theta whole square, which is also same as minus expectation of del 2 by del theta 2 log of f

x, theta we have seen this relationship similarly, information in y that is equal to information

expectation of del by del theta log of f y say, this is f 1 this is f 2 that we can also write as

expectation of del 2 by del theta 2 log of f 2 y, theta. Information in x plus y so; that means,

we will  consider  the joint  distribution of  the jointdistribution of  X and Y is  because the

distributions are independent, it is equal to the product of the f x theta into f y, theta.

So, if I take log of f x, theta into f y, theta it is equal to log of f x, theta plus log of f y, theta.

So, if I consider let me write thisnotation for this joint density here say g of x, y, theta, then

log of g is equal to log of f plus log of log of f 1 plus log of f 2. So, if I consider del by del

theta log of g that is equal to del by del theta log of f 1 plus del by del theta log off 2. So, if I

consider second order derivative del by del theta 2 log of g that is equal to del 2 by del theta 2

log of f 1 plus del 2 by del theta 2 log of f 2.

So, if I take expectations here taking expectations.We get expectation of del 2 by del theta 2

log of g x, y, theta is equal to expectation of del 2 by del theta 2 log of f 1 x, theta plus

expectation of del 2 by del theta 2 log of f 2 y, theta. So, if I put a minus sign on both the

sidesthen this is becoming information in x plus y and this is becoming information in x and

this is information in y. So, we have proved that information is additive, if I am considering

independent observations, then information in this total will be equal to the information in



one plus the information into the other one, but independence is used here. Let me explain

theequality of sufficient statistic informationby means of another example here.

(Refer Slide Time: 50:53)

Let us considersay x, x 1,  x 2, x n following say normal mu 1 distribution.Let us consider say

T 1 is equal to x 1 minus x 2,T 2 is equal to x bar or sigma x i. So, what is the distribution of

T 2. T 2 will have normal n mu n. So, if we want to write down the distribution of this that is

equal to 1 by root 2 pi n, e to the power minus 1 by 2 n, t 2 minus n mu square.

That is equal to 1 by root 2. So, if I take log of f I get minus 1 by 2 log of 2pi minus 1 by 2

log of n minus 1 by 2 n, t 2 minus n mu square. So, del log f by del mu that will be equal to T

2 minus n mu because I get a minus n minus 2 n, here which will cancel out. So, if I consider

information in T 2 that will be equal to expectation of T 2 minus n mu square that is equal to

n.

Now, consider the information in the normal distribution we have already calculated it was

equal 2 in 1 of the variables it was one. So, in n variables it is n here which is matching here

information in x about mu thatwas also equal to n. So, you can see that these two things are

same let us look at the information in T 1. Now,T 1 here is normal 0 2. So, the density

function of T 1 will be free from. So, this is simply a constant because it is simply one by root

2 pi into root 2, e to the power minus T 1 by T 1 square by 2T 1 square by 4.



You can see there is no mu occurring here. So, if I consider log of this, this is independent of

mu and therefore,  if  I  consider  derivative  with respect  to  mu that  is  going to  be  0.  So,

information in T 1 is simply 0. Now, we will define this conceptlittle later, if the information

about the parameter is 0 in the statistic, it will be called ancillary statistic if the information is

full; that means, whatever information in the whole sample is there and if that is equal then it

is called a sufficient statistic.

So, thisconcept of information is very, very significantit actually tells the kind of statistic that

we are  considering  and therefore,  for  what  purpose it  should  be used.  Now, I  have  also

considered the cases that we can consider more than 1 sufficient statistics. So, we need to

distinguish  between  different  sufficient  statistics  in  the  sense  that.What  is  the  maximum

reduction of the data that is possible?That is called the concept of minimal sufficiency. So, in

the following lecture I will bestarting the concept ofminimal sufficiency.How to derive it?

How to characterize the concept ofminimal sufficiency? So, these are the topic that I will be

covering in the next lecture.


