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Hi, we shall be talking on Multiple Linear Regression, so this is my first lecture in 

multiple linear regression. 

(Refer Slide Time: 01:04) 

 

And the content of today’s lecture is estimation of a model parameters in multiple linear 

regression and properties of least squares estimators, and then we will be talking about 

once the model has been fitted, will be talking about testing for the significance of 

regression. So, let me recall the disney toy problem, there we had only 1 regressor 

variables that is the amount of money spent on advertisement. 

Well we have observed that the regression variable, there that means the amount of 

money is spent on advertisement that explained 80 percent of total the variability in 

response variable, that is the variability in the sales amount. And the 20 percent of the 

variability, in the response variable that remained on explained, so that we say that is you 

know the S S residual part. Now there could be one more the regress able variable, which 

can explain the part of that unexplained variability in this response variable, that means 

the part of that 20 percent of the variability, which remain on explained in that case. 



And the one important regressive variable could be you know the number of cells parts 

in you employee, so also in the in most of the cases in practice. There you will have 

more than one regressive variable; and in that case, we need to move for multiple linear 

regression, let me explain the multiple linear, I mean multiple linear regression model 

well. 
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So, the situation here is that instead of 1 regressor here, we have more than 1 regressor 

variable, say we have K minus 1 regressor variable and the deniled form of multiple 

linear regression is y i equal to beta naught plus beta 1 X i 1. So, this one is the first 

regressor variable plus beta 2 X i 2 up to beta K minus 1 X i K minus 1 plus epsilon and 

this model is the you know basically, for the i th observation, so i runs from 1 to n. 

So, since we have no the more than 1 regressor variable, then that is why, we call it a 

multiple regression and since the model is linear that is why, it is called multiple linear 

regression. But, one should be careful you know, this is a linear function, when linear 

means, it is a the linear function of the unknown parameters, hear the unknown 

parameters are beta naught beta 1 beta 2 and beta there are K unknown parameters. So, 

this one is this model is linear of unknown parameters beta naught beta 1 up to beta K 

minus 1. 

So, it is not, I mean if the model is linear in unknown parameter then only called you 

know linear model well and we make the assumption that, the error this is the i th error, 



which follows normal distribution with I mean 0 and the variance sigma square. And 

they are also independent all the epsilon eyes are independent, so now will defined some 

matrices. 
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Y equals to Y 1 Y 2 Y n, these are the observations n observations, beta equal to beta 

naught beta 1 K minus 1. So, this is the K cross 1 vector, this is the vector of parameters 

and this is the vector of observation and epsilon equal to epsilon 1 epsilon 2 up to epsilon 

n. So, this one is the vector of errors and also it defined n cross K metrics, which is equal 

to X that is 1 x 1 1 x 1 2 x 1 K minus 1, so these are basically observation, the first 

observation is on regerssor 1, this is the first observation regressor 2, this is the first 

observation on regressor K minus 1. 

So, 1 x 2 1 x 2 2 x 2 K minus 1 and similarly, 1 x n 1 x n 2, this is first 1 to the n i th 

observation x n K minus 1, so this is you know, symmetric of known form, because all 

the value is unknown well we well, we have the data like, we have the data of this form 

Y i x i 1 x i 2 x i K minus 1. So, we have this data for i equal to 1 2 n and we have to 

using this state of observations. 
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We have to feet a model like this, it is a multiple linear regression model and this model 

can be, now using the metrics rotation, this model can be expressed as you know, Y 

equal to x beta plus epsilon well. This is the vector of observations, vectors of 

parameters, vectors of errors well, this is the model, we have 2 fit and this is the model in 

metrics form. We are giving the data of this form and using this data, we have to find, we 

have 2 fit the model, that means, the basically, we have 2 estimate the parameters well. 
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Now, will be talking about the estimation of model parameters, I mean in the multiple 

linear regression, there is almost know a new concept every all the concept, we have 

already talked about in the simple linear regression. So, like simple linear regression, 

here also, you know the estimating, we will be estimating parameters using the least 

squares method, so the parameters are determined by minimizing the S S residual well. 

So, the least square method determines the parameters, so hear instead of you know the 

only beta naught and beta o n, we have basically, K unknown parameters that is the only 

difference. So, the least squares method determines, the parameter by minimizing by 

minimizing S residuals residual, so what is S S residual, So, S S residual is the basically, 

it is e i square from 1 to n, which is again nothing but Y i minus Y i hat square 1 to n 

right. 

Now, suppose my fitted model is beta naught hat plus beta 1 hat X 1 plus beta K minus 1 

hat X K minus 1, so this quantity is equal to, so S S residual is equal to Y i minus beta 

naught hat minus beta 1 hat X i 1, because you know, I am talking about the i th fitted 

value beta 2 hat X i 2 like this beta K minus 1 hat X i K minus 1 hole square. Now, you 

know, the least square method determines, the parameter by minimizing this S S 

residual, what will do here is that I mean will also represent this S residual in metrics 

form, for that will defined the residual effecter e, which 1 is basically e 1 e 2 e n. 

So, e i is the i th residual, so e can be written as e is Y minus Y hat, so this is Y is the 

vector, I mean vector of observations and the vector of observations, for the repeated 

value well, this is my e. Now, S S residual is equal to summation e i square 1 to n, so we 

are basically, you know talking about, another I mean, how to express this thing in terms 

of the metrics rotation. So, this can be written as e prime e right, if you yeah now this 

one is equal to equal to Y minus Y hat prime Y minus Y hat and this can be written as Y 

prime Y minus Y prime X beta hat minus beta hat prime X prime Y plus beta hat prime 

X prime X beta hat. 

I just missed one step in between, the basically you know I am replacing Y hat by Y hat 

by this expression, so metrics rotation in this nothing but Y hat equal to x beta hat. So, 

you replace Y hat by Y minus X beta hat prime Y minus X beta hat. So, and then you 

have this expression here, you know, this is you can take that, this is 1 cross 1 metrics, 



that means, it is a scalar quantity similarly, this one is also 1 cross 1 matrices. So, the 

basically, it is a scalar, so everything is scalar here. 

So, this 2 quantity, this 2 are same, so this can be written as Y prime Y minus 2 times, I 

am tacking this form beta prime, X prime Y plus beta hat prime X prime X beta hat. This 

is my S S residual metrics form, but if you do not understand this one, here is your S S 

residual here is your S S residual, which is very similar to the simple linear regression 

only, we have this additional terms, because of the additional regressor variable and the 

same thing is represented here in metrics form well. 

So, we have 2 different representation of the S S residual and now, we need to defined 

said this S S residual with expect to the unknown parameters. So, there are you know, 

there are K unknown parameters, so we have to define said this is S S residual with 

expect to each unknown parameter and that will give you, normally questions. So, then 

you will be having K normally equations and k unknown, so using this K normal 

independent, normal equation, you can find out get the estimator, for the unknown 

parameters, K unknown parameters. 
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So, here is the you know process, you know well, least squares method well, so what we 

have that, we have 2 Y, I am explaining both the things, if we do not understand the 

metrics representation. So, here the S S residual is of the form Y prime Y minus Y prime 

minus 2 times beta hat prime X prime Y plus beta hat prime X prime X beta hat. So, this 



is the metrics representation of the S S residual and another way to represent same thing 

is that, like the usual technique S S residual is equal to summation Y i minus beta naught 

hat minus beta 1 hat minus beta 1 hat X i 1. 

And similarly go up to beta k minus 1 hat X K minus 1 sorry, you to put, I here that is 

all, so this is my S S residual. Now, what I will D Y S that, I will differentiate to get the 

normal equations, I will defined said this S S residual with respect to beta naught fast. 

So, S S what, I have 2 do that is I will defined said this S S residual with expect to beta 

naught hat and equal to 0, this is the normal equation, which implies or which gives you 

define said this with expect to beta naught hat that, will give you summation Y i minus 

beta naught hat minus beta 1 hat X 1 X i 1 minus beta K minus 1 hat X i K minus 1 equal 

to 0. 

So, this is my first normal equation and you know this term is nothing but e i Y i minus 

Y i hat, so this can be also return, this first normal equation can be also return has 

summation, e i i from 1 2 n equal to 0, so this is my first normal equation. Similarly next 

you defines, it is this quantity, I mean you defines, it is residual with expect to beta 1 hat 

that, will give you the normal equation, summation e i X i 1 equal to 0, so this is very 

similar to the simple linear equation. 

And similarly, you defines it with respect to beta 2 hat and you go up to beta K minus 1 

hat and the final normal equation is summation e i X i K minus 1 equal to 0, so here you 

have K normal equations and you have K unknown parameters and all this normal 

equations are independent, So, solving this K normal equations will give you K unknown 

parameters beta naught, beta 1 beta up to beta K minus 1, this is the usual tech, I mean 

form, what we have used in the case of simple liner regression. 

Now, I mean you know, I will go for the metrics representation of the same thing, what I 

will do is that I just define said that S S residual, which has been explained you know, 

which as been expressed in terms of metrics rotation and I will defined and said that with 

respect to beta hat well. This is my S S residual with expect to in terms of this is 

presented in terms of metrics rotation. 

Now let me define said this one S S residual with respect to beta hat, defined said in 

respect to beta hat equals to 0, which implies or which gives you know defines side, this 

with respect to a beta hat that will give you minus 2 X prime Y. So, I am define setting, 



so this is independent of beta, so while depending this term, it is 0, now you defined set 

the second term. So, that will give you minus 2 X prime by when you define it third term 

that will give you plus 2 times X prime X beta hat and you equate, this equal to 0, I mean 

you can write down the metrics forms in detail and define state, you will get this one. 

So, from here you know, hear it is combine to since the same thing written here and here, 

now finding the beta hat, in this metrics representation is easy from is this normal 

equation. So, this is in fact, you know it consist of K normal equations, this K normal 

equations, so from hear, we get this implies beta hat is equal to X prime X inverse X 

prime Y. So, here is the least square estimator of the unknown parameters beta naught 

beta 1 up to beta K minus 1. And if you solve this K normal equations, you will be 

getting the same thing, now will be talking about the statistical property of this least 

square estimator. 
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So, of least square estimator, so what I am going to do is that, I am just going to prove 

that, whatever estimator, we have obtained that means, beta hat, which is equal to X 

prime X inverse X prime Y. This is an unbiased estimator of beta, let me prove that, 

unbiased means to prove that expectation of beta hat is equal to beta. So, expectation of 

this one is expectation of X prime X inverse X prime Y, now what is Y is in metrics 

rotation equal to X beta plus epsilon, so this one is basically equal to E X prime X 

inverse X prime X beta plus epsilon right. 



So, this can be written as expectation of X prime X inverse X prime X beta plus 

expectation of X prime X inverse X prime epsilon well, this quantity, this is going to be 

identity. So, expectation of and this one is equal to beta only plus expectation of this 

term or this random variable here, you know this epsilon is random variable, which 

follows normal distribution with expectation 0. And variance sigma square with the 

expectation of epsilon, we know that expectation of epsilon is equal to 0, sure that is 

equal to 0, which means this is equal to beta. 

So, here prove that expectation of beta hat is equal to beta, that means, beta hat the 

estimator the least square estimator, we have obtained that is an unbiased estimator of 

beta. So, next we are going to derive the variance of this estimator, so the variance of 

beta hat is equal to the variance of X prime X inverse X prime Y right. So, this one is 

going to be, we know the variance of Y is equal to sigma square well, the variance 

covariates metrics, this Y is basically vector and observation vector. 

So, the variance of the whole thing and this one is independent of, I mean this is constant 

on with as not inform any random variable. So, this one is going to be X prime, X 

inverse, X prime i sigma square into X prime X inverse, so this ones you know, this can 

be finally, return as sigma square into X prime X inverse. Because, X prime X and X 

prime X inverse will cancel out, so it is sigma square into X prime X inverse well. So, 

next will be talking about, the different representation of S S residual. 
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S S residual in metrics rotation, this is we observed, we derived that this is equal to Y 

prime Y minus 2 beta hat prime X prime Y pulse beta hat prime X prime X beta hat 

right. Now, you know, we know that beta hat is equal to X prime X inverse X prime Y, 

so I am going to put value here, just to simplify this expression, this is equal to Y prime 

Y minus 2 times beta hat prime X prime Y plus beta hat prime X prime X and now will 

plug this beta hat hear, this is going to be X prime X inverse X prime Y. 

So, just I replaced this by beta hat by this expression, so this quantity is now, Y prime Y 

minus 2 beta hat prime X prime Y plus beta had prime X prime Y, because this is 

identity well. So, simplified form is Y prime Y minus beta hat prime X prime Y, because 

this is identity well. So, the simplified form is Y prime Y minus beta hat prime X prime 

Y, see the this same thing, you know this one’s nothing but summation e i square and 

here is the metrics representation of the summation e i square well. 

What we know is that, we that the summation e i follows, normal distribution with 

means, 0 and variance sigma square, now let me talk about, what is the degree of 

freedom of S S residual well, i equal to 1 2 n. So, we know that, the summation S S 

residual is summation e i square from 1 to n and e i follows, normal with mean 0 and 

variance sigma square. 

Now, I want to talk about the degree of freedom for this S S residual S S residual is some 

of in e i square, but just now we have derived that, you know this e i is they satisfy K 

constant, that means, there are K normal equations involving e i. So, here all the e i are I 

mean, you do not have freedom of choosing, all the e i is in e i independently, you can 

choose n minus K of them. You have the freedom of choosing n minus on n minus K of 

the n e i is and the remaining K have to be chosen in such a way that, they satisfy those 

K constants well. So, in the case of simple linear regression, we had 2 constants, on e i 

that is why you had the freedom of choosing n minus 2 e i is independently then the 

remaining 2, we have chosen, we have chosen such a way that, they satisfy the constant, 

those 2 constant. 
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And here instead of 2 constant on e i, we have basically, n constant and here, at the these 

n constants, you know sorry, K constant, these are the K constant we have. So, you 

cannot this e i square here, I mean you cannot choose n of them, you do not have the 

freedom of choosing all the n e is you can choose, you have the freedom of choosing n 

minus K e i is independently and then the remaining K have to be chosen in such a way 

that, they satisfy this K constant. So, basically, while losing K degree of freedom, 

because of this K K constant, on the residuals well. 
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So, that explain that the S S residual here, S S residual has n minus K degree of freedom 

right, now we know that, this follows from here, you can say that e i square by sigma 

square follows, chi square 1. And from here, you can say that S S residual S S residual 

by sigma square, which is nothing but summation e i square by sigma square, this 

follows 1 to n, this follows chi square n minus K naught n, because of those K constant 

well and we have this result. 

And also you can defined the mean square, residual mean square that is M S residual, 

which is obtained by dividing the S S residual by degree of freedom n minus k. So, and 

we know that, it is not difficult to prove that, this M S residual is an unbiased estimator 

of sigma square that means, we can it is easy to prove that, expected value of M S 

residual is equal to sigma square. So, we have an unbiased estimator for sigma square as 

well before moving to the statistical significance of the regressive model, I just want to 

give another representation of S S residual. 

So, the S S residual can be represented in several ways, you know just simply, you can 

write summation e i square i equal to 1 2 n then we had the metrics representation of S S 

residual and now, I am going to give another representation of the S S residual, which is 

in terms of the hat metrics right. Now, I do not have any use of this expression in future 

maybe will be using this expression, let me give another just another representation of 

the S S residual, using the hat metrics. 
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So, you say that, this is other way to express S S residual, so well what we know is that, 

we know that, e equal to in matrix rotation e equal to Y minus Y hat. So, Y this is 

basically the observation vector and this one is going to be Y minus, what is why hat is 

nothing but X beta hat right. Now, this one is going to be Y minus X, now will replace 

this beta hat by it is estimator X prime X inverse X prime Y right. So, what I got is that, 

this is equal to I minus X prime X inverse X prime right, this one is using the notation of 

H metrics, this is i minus H into Y. 

So, this this is an n cross metrics, the n cross n metrics H, which is equal to Y t S into X 

prime X inverse, X prime is called the hat metrics here, this is called the hat metrics, 

because you know ultimately, what we had is that, here it is equal to Y minus H Y. So, 

this is called hat metrics, because it this H metrics terms from Y to, so this one is H Y 

nothing but Y hat, so this metrics comes from Y to Y hat that is why, it is called hat 

metrics. And now you know, you can you can prove that, you know H square equal to H 

well, so this is the specialty of this metrics. 

Now ,S S residual can be returned as S S residual is equal to e prime e, which is equal to 

Y prime i minus H prime i minus H Y and you can check that, this i minus H prime i 

minus H nothing but i minus H, so this can be returned as Y prime i minus H Y. So, this 

is know, the another way to express the S S residual right and as I said, at I am not going 

to use this expression of S S residual, in terms of hat metrics at this movement, I will be 

using in future well. Next, I will be moving to the sort of you know and I approach to test 

the statistical significance of the regressive model, for that I will be preparing with I will 

first, I will talk about S S total and then the S S regression well. 
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So, well what is S S total here, this is S S total is nothing but the variation in the 

observation or variation in the data, which is nothing but Y i minus Y bar whole square, i 

equal to 1 to n. So, we have n observations of the form Y i and then X i 1 and then X K 

minus 1, so this S S T is nothing but the variation in the response variable well. So, this 

can be returned as summation Y i squire minus n Y bar square, so this is not difficult to 

check well. 

What is the degree of freedom of this S S total has degree of freedom some of n terms, 

but of course, it satisfy the constant that, Y i minus Y bar, this is equal to 0. So, you do 

not have the freedom to choose all the terms, I mean Y 1 minus Y bar Y 2 minus Y bar 

up to Y n minus Y bar. So, you can choose n minus of you have the freedom of choosing 

n minus 1 of them and then the n th one as to chosen in such a way that, it is satisfy this 

constant, so S S has degree of freedom n minus 1. 

Now, what is S S regression S S regression is equal to S S total minus S S residual right 

well, so S S total equal to, we know that is equal to summation Y i square 1 2 n minus n 

Y bar squires minus S S residual, if you can recall, it is Y prime Y minus beta hat prime 

X prime Y in metrics rotation. Now, I can also, you know slowly, I mean this can be 

replaced in, I mean this can also returned as Y prime Y minus n Y bar square. So, this Y 

bar is nothing but the mean of the observations minus Y prime Y plus beta hat prime X 

prime Y. 



So, this 2 will cancel out and left with beta hat prime X prime Y minus n Y bar square, 

so we have the expression for S S regression, we have the expression for S S total, we 

have the expression for S S regression and just we left with the degree of freedom for S S 

regression. 
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What we know is that S S total is equal to S S regression plus S S residual well, so let me 

say again that, this is the total variability in the response variable and that variability is 

partisian into 2 parts. One is I mean, how much of the variability in the response variable 

is explained by the model that is S S residual and the part, which is not being explained 

by the regression model is called the S S residual well. We want to the model to be, such 

that we wanted the model to maximize S S regression and then obviously, minimizing S 

S residual. 

So, S S total as degree of freedom n minus 1, we know that S S residual has the degree of 

freedom n minus K, then the degree of freedom for S S regression is n minus sorry, is 

equal to K minus 1, so here is the degree of freedom for. So, S S regression as degree of 

freedom K minus 1 well, so in the next class, I will be talking about the statistical 

significance of the regression model, in case of multiple linear regression. 

Thank you very much. 


