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This is my third tutorial, and today we will be solving you know some randomly selected 

problems. 
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Let me start with this problem, it is problem 6, because I have solved the 5 problems 

before. So that in the general linear regression situation with the beta naught term in the 

model, the correlation between the vector e and Y is 1 minus R square square root of this. 

This is sort of you know theoretical problem, but this has some implication, we will 

come to that point later on. 

So, the first part says that you know you find the correlation between the vector e, so this 

e is the residual vector and Y is observed response. And we have to find the correlation 

between e and Y, and we have to prove that that is square root of 1 minus R square, 

where R square is the coefficient of multiple determination. So, we know that this R 

square is equal to S S regression by S S total, so this R square parameter it sort of 

measure the proportion of variability in Y, that is explained by the model. 



(Refer Slide Time: 02:46) 

 

So, let me solve the first part a the correlation between e and Y, so the correlation 

between e and Y that is nothing but summation e i minus e bar into Y i minus Y bar by 

summation e i minus e bar square into Y i minus Y bar square and the square root of 

whole thing. So, we have to prove that this is equal to 1 minus R square, where R square 

is S S regression by S S total not, so easy. 

So, we can start with this numerator, e i minus e bar Y i minus Y bar i is from 1 to n, so 

can I write this one as just e i into Y i minus Y bar, because of the fact that e bar is equal 

to 0. If beta naught is in the model, because if beta naught is in the model then while 

differentiating the least square function s with respect to beta naught, we get summation 

e i equal to 0, and from there it is e bar is equal to 0. 

So, you can write, this is equal to e i into Y i minus Y bar i is from 1 to n, and this can be 

written again this can be written as e i Y i, i is from 1 to n, because you know this 

summation e i is equal to 0. So, in matrix notation this can be, in vector notation this can 

be written as e prime Y or Y prime e, anyway what is e prime Y can I write this as e 

prime e, it is not trivial, so we need to check this part, whether this is equal to e prime e. 

So, let me start with e prime e, and then I will prove that e prime e is equal to e prime y, 

so before that let me recall the multiple linear regression model Y equal to X beta plus 

epsilon. And here, we know that the parameter beta is estimated by beta hat, which is 

equal to X prime X inverse X prime Y, and then the fitted model is Y hat is equal to X 



beta hat, this is the fitted model. And we know that beta hat is equal to X prime X inverse 

X prime Y, so I can write this one as X and then I plug the value of beta hat here, so X 

prime X inverse X prime Y. 

And then I call this matrix, I call this H we this is called hat matrix, you know we know 

about this H matrix, so this is called hat matrix, because of the fact that, so finally what 

we got is that we, so Y hat is equal to H Y, because this hat matrix comes from Y to Y 

hat, that is why it is called hat matrix. Anyway, so where H is equal to X X prime X 

inverse X prime, so Y hat is equal to H Y, now what is e? 
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Then e is equal to the observed value minus the estimated value, so just now we have 

proved that Y hat is equal to H Y, so this one is equal to I minus H Y, so I is the identity 

matrix. So, now what we want is that, I want to prove this e prime e is equal to e prime Y 

that is what I want, now I have a formula for e in terms of hat matrix. So, let me start 

now e prime e i can write e prime e is now, in terms of hat matrix that is Y prime I minus 

H prime I minus H Y. 

And it is know that you know this hat matrix is idempotent matrix; that means, H square 

is equal to H, and then I minus H is also idempotent, so what I can write is that this is Y 

prime, this can be replace by only I minus H Y. Now, I minus H Y is equal to e, so this is 

equal to Y prime e, so we have proved that e prime e equal to Y prime e. 
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So, what we have proved is that the numerator is equal to e prime e, which is equal to e 

prime e is nothing but summation e i square which is nothing but S S residual, so we 

have proved that the numerator is S S residual. And what is this, this is nothing but e 

prime e and this one is nothing but Y prime I mean this is nothing but S S total, in fact let 

me write down once more here. 
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So, you want to find the correlation between e and Y, which is equal to summation e i 

minus e bar Y i minus Y bar by square root of summation e i minus e bar square Y i 



minus Y bar square. And we proved that this one is equal to e prime e the numerator is e 

prime e and then since e bar is equal to 0, this one is nothing but summation e i square, 

so this is again e prime e, and this one is nothing but S S total square root of this. 

So, this can be written as e prime e by S S total square root and e prime e is nothing but S 

S residual by S S T, and S S residual is nothing but S S total minus S S regression by S S 

T. So, we are almost done, and then this can be written as 1 minus S S regression by S S 

T, so this one is nothing but 1 minus this one is R square, so 1 minus R square, so we 

proved that the correlation between e and Y is square root of 1 minus R square. 
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So, here is the problem, so we have solved part one of this problem and what is the 

implication of this, the implication of this result is that, it is a mistake to attempt to find 

the defective regressions by a plot of residual e i against the observation Y i as this 

always shows a slope. So, if you can recall, you know once we have a fitted model say Y 

hat is equal to X beta hat, then what we do is that we compute the residuals and in a topic 

called model adequacy checking, we talked about several residual plots. 

And the residual plots is sort of to check, whether the model assumptions are correct or 

also to check the goodness of the fit. So, what we do in the residual plot is that we plot, e 

i residual against Y i hat not Y i, so this is the reason why we plot the residual against Y i 

hat not against Y, because there is a correlation between e i, and there is a correlation 

between e and Y. And the correlation, we just proved that it is 1 minus R square square 



root of that, so that is why we do not go for plotting e i against Y i, because there is 

always a theoretical slope between them. Since, because of this correlation, now so it the 

second part says that this slope is 1 minus R square, what is the meaning of this one, is 

that if you fit linear relationship between e and Y, the slope is going to be 1 minus R 

square in that linear fit. 
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So, now let me fit relation between e and Y, suppose the relation is it is a straight line 

relation, so e is equal to say a plus b Y. So, what I have to do is that I have to prove that 

this b is equal to 1 minus R square, the slope is 1 minus R square, this is part b. So, we 

know what is this b is equal to e prime Y by Y prime Y, because you know when we fit 

like Y equal to beta naught plus beta 1 X, we know that beta 1 is nothing but S X Y by S 

X X. 

So, similar to that, so S X Y is nothing but X prime Y and in X prime X, so this has been 

followed from here, now e prime Y is just now we proved that e prime Y can be written 

as e prime e, so by Y prime Y. So, e prime e is nothing but S S residual by Y prime Y is S 

S total, so this one is nothing but S S total minus S S regression by S S total, so this is 

nothing but 1 minus S S regression by S S total, which is equal to 1 minus R, so the slope 

the b we have proved that this is 1 minus R square. 
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And the third part of this question is that, so further that the correlation between e and Y 

hat is equal to 0 say in the residual plot, we plot e against Y i Y hat, because their 

correlation is 0. We have to prove that, now may be I proved this in the during the class 

also, anyway so the correlation between part c between e and Y hat and that one is equal 

to. 
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So, first we will start with summation e i minus e bar into Y i hat minus Y hat bar, now e 

bar is equal to 0. So, this can be written as e prime Y hat, and we know that Y hat is 



equal to H Y and also we know that e is equal to 1 minus H, I minus H Y, just now we 

proved this two things. 

Now, if I plug this two values here, what I will get is that my e prime Y hat is equal to e 

prime, so Y prime I minus H and Y hat that is H Y, so this is equal to Y prime H minus H 

square into Y, now see this H is a Hadamard matrix. So, H square idempotent matrix, so 

H square is equal to H, that is why this is equal to 0, so the correlation you can see the 

covariance is equal to 0. So, the correlation is the numerator this is the numerator of this 

correlation expression, so the correlation between e Y hat is equal to 0, because of this 

fact, so we are done with the first problem. 
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Let me prove one more problem, which is again you know theoretical call it problem 7. 

This problem says that you have to prove the coefficient of determination is equal to the 

square of the correlation between Y and Y hat. So, what you have to prove here is that, 

you have to prove that the correlation between Y and Y hat and the square of this one is 

equal to R square, R square is again the coefficient of determination, which is equal to S 

S regression by S S total. 

So, it is nice to prove this one, let me write down that what is R this correlation, I will 

use the notation R Y Y hat, this is the correlation between Y and Y hat which is equal to 

summation Y i minus Y bar into Y i hat minus Y hat bar. You can write, but this two are 

same by summation Y i minus Y bar square summation Y i hat minus Y bar, I hope you 



understand that Y bar is equal to Y hat bar this is the mean of the observed value and this 

is the mean of the estimated value. 

You know that e i is equal to summation e i is equal to 0, for a model with intercept, and 

then e i is nothing but Y i minus Y i hat, so this says that Y i summation Y i is equal to 

sum Y i hat, and then of course Y bar is equal to Y hat bar anyway, so this square the 

square root of this. Now, this can be this Y i can be written as we know that this Y i is 

equal to Y i hat plus the residual e i. 

So, if i put that expression here what I will get is that, I will get Y i hat minus Y bar into 

Y i hat minus Y bar, because this is nothing but Y bar only plus I have extra term here, 

because of this plus e i, so plus Y i hat minus Y bar into e i. And the denominator is the 

same, let me write down that this is Y i minus Y bar square sum Y i hat minus Y bar 

square. Now, what about this one is this 0, yes just now we have proved that the 

correlation between e and Y is equal to 0, so this is the covariance between e and Y, e and 

Y hat. 
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Just, now we had proved that in the previous problem, we have proved that the 

correlation between e and Y hat is 0; that means the covariance between e and Y hat is 

equal to 0. 
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So, this term is going to be equal to 0, so what we are left with is that then the correlation 

this R Y Y hat is equal to sum Y i hat minus Y bar square by this. 
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So, I can write this one as summation Y i minus Y bar square, and the square root of the 

whole thing is it clear, because this one is square, and then you could cancel out. So, R Y 

y hat is equal to this one, and this one is equal to the numerator is S S regression and the 

denominator is S S total, so what I got is that this is equal to R square. So, that is what 



you have to prove that the square of the correlation between Y Y hat, so what you got is 

that R Y Y hat square is equal to R square, this is what we wanted to prove. 
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So, next we will consider a practical problem, and this problem is involving orthogonal 

polynomial, I mean polynomial fitting using orthogonal polynomial. So, here in this 

problem we will sort of explain you know, how to decide about the degree of decide 

about the order of the polynomial. So, here the problem is that new born baby was 

weighted weekly, and 20 such weights are shown below, so this is the first week the baby 

has weight 141 ounce, and similarly for 20 weeks the data are given. 

And if you plot a if you draw scatter plot for this one, I am sure that you are you are 

going to have a non-linear pattern may be. So, you fit to the data using orthogonal 

polynomials, a polynomial model of degree justified by the accuracy of the figures, so 

the degree is not given, so you have to decide about the degree of the polynomial, you 

are going to fit here. 

So, we will sort of follow the that we talked about, how to decide about the degree while 

talking about orthogonal polynomial fit or polynomial fitting. So, you start with linear 

model, and then next you fit polynomial of order 2, and then you see the significance of 

beta 2 that is the coefficient of X square. If beta 2 is significant then only you go for third 

order polynomial, but if you see the beta 2 is not significant, then first order polynomial 



first order model is enough, but if beta 2 is significant then you go for third order 

polynomial. 

Again, you have to test the significance of beta 3, if beta 3 is significant, then you go for 

fourth degree polynomial, if it is not significant you stop at second degree polynomial 

something like that. So, here this problem sort of you know give idea about how to how 

to decide about the order of the polynomial, so let me recall little bit what is polynomial 

model. 
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So, we wish to fit the model say Y equal to beta naught plus beta 1 x plus beta 2 x square 

plus beta k x to the power of k plus epsilon. And what we learned there is that you know 

instead of fitting this model there are several advantage, if we go for polynomial fitting 

using orthogonal polynomial. So, instead of fitting this model, we fit Y equal to I think 

alpha naught plus alpha 1 p 1 x alpha 2 p 2 x plus alpha k p k x plus epsilon, so p k x is 

kth order orthogonal polynomial and of course, they are all orthogonal polynomials. 

So, we know how to fit this model we know what are these orthogonal polynomial, if 

you know I please refer my lecture on polynomial fittings, for to know more about you 

know this orthogonal polynomials. So, what we know is that, we know that alpha not hat 

is equal to Y bar, we know that alpha j hat is equal to p j x i into Y i by p j x i square. So, 

what i want to say here is that, so by using all this formula, so you know Y i and of 

course, x i are all you know equally spaced, you can just consider them 1 2 3 4 up to 20. 



And you know this orthogonal polynomial, so this is the jth order orthogonal polynomial, 

so you can compute beta naught and beta j hat for j equal to 1 to k. Now, let me just write 

down that also you know that the S S regression due to alpha 1, that is the contribution of 

the first order term in the polynomial, that is equal to alpha 1 hat sum over Y i p 1 x i. 

And similarly, this is regression due to alpha 2 is equal to alpha 2 hat sum over Y i p 2 x i 

for i equal to 1 to n, and similarly S S regression alpha 3 equal to alpha 3 hat i is from 1 

to n Y i p 3 x i. Why I am talking about all this S S regression due to alpha 1, alpha 2, 

alpha 3 is that what you know I feel is that you first given the given the problem, you 

know you have x i Y i values. 
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So, these are the x i Y i values, this is your x i, this is Y i, so given this thing you first 

compute what is the total variability in the response variable. So, the response variable 

here is Y, so Y and this is x you compute S S total. First to check the variability in Y 

about the mean, that is Y i minus Y bar square, and once you know the total variability 

here it is you can check, that this is 26018.. 

So, this is the total variability and I want my model to explain this variability, now what I 

will do is that I will check the S S regression due to alpha 1. So, S S regression due to 

alpha 1 will give me, how much of the total variability in Y is explained by the linear 

term. And similarly, the S S regression due to alpha 2 will give me, how much of the 

total variability is explained by the quadratic term that is by beta 2 or alpha 2, and 



similarly S S regression due to alpha 3 will give the amount of variability, that is 

explained by the cubic term. 

So, you see how much of the variability is explained alpha 1, how much of the variability 

is explained by the alpha 2, and how much of the variability is explained by alpha 3. If 

you see that alpha 1 and alpha 2 together they have almost explained major part of the 

variability in Y, then you can stop at the quadratic fit, but if you see that still there are 

significant part, which has not been explained by the quadratic fit, then you can go for 

the cubic term. 
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So, this is my S S total and I want to my model to explain this variability, so what I will 

do is that I will compute see I know, I am not going into detail of computing all this 

things. So, you can compute alpha 1 hat, you can check that this is equal to you can have 

the computations each you can check that this S S regression is equal to due to alpha 1 is 

very large. This is 25438.75 and S S regression due to alpha 2 is 489 0 0 and S S 

regression due to alpha 3 is 1.15, and let me repeat that S S total that is Y i minus Y bar 

the variability in the response variable about mean is equal to 26018. 

So, you can see this is the total variability, and the first order term or the linear term has 

already been explained major part of this total variability, and alpha 2 is also significant 

this is 489, and what you can do is that you know see you can now make a anova table, 

let me do that. 
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So, anova table source degree of freedom S S M S and F, so regression due to alpha 1, 

regression due to alpha 2, regression due to alpha 3 and say residual and then total. So, 

total S S we computed that this is 26018, and S S regression is due to alpha 1 is 

25438.75, S S regression due to alpha 2 is 489, and S S regression due to alpha 3 is 1.15. 

And you can check that the S S residual is just 89.30 and the degree of freedom for this 

one is 1, this one is 1, this one is 1, and the total degree of freedom is 19, because there 

are 20 observations, and then the residual degree of freedom is 16. 

So, you can compute the M S value, M S residual is 5.58, and this value will be will 

remain same 25438.75 489.00 1.15. Now, see of course, then the a value F value, you 

can check that this value by this, that is going to be 4558.92 and F value for alpha 2 is 

this by this that is 87.63, and the F value for alpha 3 is 0.21, and this all this F follows 

has degree of freedom 1 16 and now you check the tabulated value of 0.05 1 16 that is 

equal to 4.49. 

So, you can see that this one is much larger than the tabulated value, this one is also 

much larger than the tabulated value, but this one is smaller than 4.49. The meaning of 

this one is that alpha 1 is significant, alpha 2 is also significant, because the f value 

observed F value is greater than the tabulated F value, and this table says that alpha 3 is 

not significant; that means, you can go for a quadratic fit. 



So, the final fit in terms of x is 136.227 plus 2.68 x plus 0.167 x square, so that you can 

check, but what I want to say is that this is my total variability, and I want to explain I 

want my model to explain these variability. Now, you can see that this linear term 

explain huge part of the total variability, the quadratic term explain this much of total 

variability, and the cubic term is not significant. 

And now, we can see that you know out of 26,000 of the total variability major part has 

been explained by the model and the remaining part is 89.30. So, I can go for a quadratic 

fit, but here just I want to say, suppose your cubic term is not significant, but this residual 

is still reasonably high, then you can go for alpha 4 see alpha 3 might not be significant, 

but alpha 4 could be significant I mean I feel, so. 

So, in that case you can go for a with linear term, quadratic term and the fourth degree, 

but not the third degree, so it depends on how small the residual is if the residual is 

reasonably small. Then you do not need to go for the higher order polynomial, but 

somehow I feel that you know, even if the third degree, even if the cubic term is not 

significant, it might happen that the fourth degree term is significant. But, you have to go 

for the fourth degree term fourth degree polynomial, only if the residual part is large 

otherwise, you know just forget about that you go for the quadratic fit. So, this is the 

problem, we talked about from the polynomial regression, and next let me talk about one 

more problem. 
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This is I do not know, what is the number this might be 8, so this problem says that, if 

you are asked to fit a straight line to the data, this given data what would you say about 

it. I mean it is a sort of difficult exactly know what the question is asking for or looking 

for. So, you are given 1 2 3 4 5 data points and here is the scattered plot, for the given 

data, so this is my x axis, this is my Y axis and here do we have anything to say, because 

see here you can see that this particular point that is 6 4.5. 

This particular point is not in the usual trend of the data, so that means at some point of 

time you know, I talked about influential observation and leverage point. So, this point 

you know this 6 4.5 it seems to be a influential point, because this one is not in the 

general trend of the other data, so 6 4.5 is an influential observation. And see, if you with 

this point I mean without this point you can you can think of fitting, if you fit a model to 

the remaining data you will get a fit with negative slope, so this should be the fitted 

mode line, I mean you will fit a line like this, for if you ignore this point. 

And, but if you include this point then your fitted line should be something like this one, 

so that is the problem with influential observation. So, without the point this 6, this is my 

6 4.5, so without this point the fitted model has negative slope, and with this point the 

fitted model has positive slope. So, this clearly says that the point 6 4.5 is an influential 

observation, so the recommendation here is that you know, if there exist influential 

observation very and few influential observation. 

If you can identify an influential observation in the given data may be you can ignore 

them, if they are not large in number you can ignore them, and fit a model for the 

remaining data. And what could have been better here is that you know, if you see here 

you know you have data up to 3, and then the next one is 6. So, some observations 

between x equal to 3, and x equal to 6 would be useful here, so this is also you know you 

can comment in that way. So, we solved you know some problems in this tutorial, and 

again in the next tutorial we will solve some randomly selected problems, now we need 

to stop.  

Thank you. 


