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Hi, so this is my second tutorial class and we will be solving some problems from simple 

linear regression multiple linear regression. And also may be yield conditioning of the 

coefficient matrix x, so here is the problem. 
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Problem 3, because problem 1 and 2 we solved in the a previous tutorial, so this says that 

there are very few occasions where it makes sense to fit a model without an intercepted 

beta naught. If there were occasion to fit the model y equal to beta x plus epsilon that is a 

model without any intercept to a set of data x 1 y 1, x 2, y 2 x and y n and then least 

square estimate of this beta would be this. So, we will this part you know of what is the 

least square estimate for beta. Let me call it beta hat for a model without any intercept 

beta naught, and then the second part is that suppose you have a program calculator that 

will fit only the intercept model y equal to beta naught plus beta 1 x plus f silent.  

But, you want to fit non intercept model, so you have some program calculator that fit 

only intercept model what you want to fit non intercept model. Now, the question is by 

adding one more fake data say m x bar m y bar, where m is a function of n and letting the 



calculator fit the intercept model can you estimate this beta by using beta 1 hat. So, this 

is the problem may be I will try to explain it once more the problem itself. 
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So, what we are given is that we are given a set of data x 2 y 1, x 2, y 2 and x n y n and 

you want to fit a non intercept model like y equal to beta x plus f silent. But, we have a 

program calculator for fitting this model with intercept that is y equal to beta naught plus 

beta 1 x plus f silent. So, we have a program to fit this model and we know that for this 

model beta naught is the estimate of beta naught is equal to y bar 1 hat x bar and beta 1 

hat is equal to S x y by S x x. That means a this is x i minus x bar into y i minus y bar by 

summation x i minus x bar square, so we have a program to calculate these two things 

given a set of data.  

But, what we want, we want to fit this model to the given data right and it says that the 

question says that the least square estimate for beta. Here, is equal to summation x i y i 

by summation x i square first check this one what is the least square estimate for beta in 

the non intercept model. So, to find the least square estimate for beta what we do is that 

we minimize this function s which is equal to y i minus y i hat this is the i-th residual and 

we know that this one is equal to y i minus y i hat i can replace by beta hat x i right. Then 

the least square estimate of beta hat is obtained by minimizing this function with respect 

to beta. 



So, d S you differentiate it with respect to beta that equal to 0 implies that summation y i 

minus beta hat x i into x i equal to 0 which implies that beta hat is equal to summation x i 

y I, x i y i by x i square. So, we prove which you know the least square estimate for beta 

is a this quantity, now the problem is that we want to find this beta using the program 

calculators we have let me see the question once more. Suppose we have a program 

calculator that will fit only the intercept model this one, but we want to fit a non intercept 

model. The question is by adding one more fake data say this one, can we estimate beta 

by using beta one hat that means by using this program. 
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So, at this moment we have the data x i, x 1 y 1, x 2 y 2 and x n y n and if you add one 

more data say n plus 1 of that is m x bar n, sorry m x bar and m y bar where m is equal to 

m is equal to m by n plus 1 to the power of half minus 1. This is equal to say n by a then 

what is a, a is from, here I can write that a plus 1 square is equal to n plus 1, now what 

we will do is that we want to estimate x beta plus f silent, we want to estimate beta hat 

which is equal to x i y i by x i bar. But, we do not have program, for this one we have 

program for estimating the model intercept model that is y equal to beta naught plus beta 

1 x f silent. 

The program calculator gives us beta 1 hat equal to summation x i y i minus n x bar y bar 

by summation x i square n x bar square. Now, we used this formula for the revised data 

let me call this data as u v, now for this new data which is, now in involving n plus 1 



points what is u bar of u bar is equal to n x bar plus a new data m x bar m is nothing. But, 

n by a x bar by n plus 1 this one is equal to of n x bar into a plus 1 by a by n plus 1.  

So, we know that n plus 1 is a plus 1 whole square, so I can write it this way, so I can 

write this one as n x bar by a into a plus 1. So, this is my u bar for the data involving n 

plus 1 points and now let me compute S u u, S u u is nothing but you know what is S x x. 

So, S u u is equal to of summation x i square plus the new data m x bar square minus n 

plus 1 u bar square because s u u is a let me write. Here, s s u is nothing but summation u 

i square minus n plus 1 u bar square and here i is from 1 to n plus 1, so that is what I 

wrote, here and here i is from 1 to n and then we see the n plus 1 data.  

This 1 can written as summation x i square plus n square by a square into x square minus 

n plus 1 u bar square what is u bar square, u bar is this quantity. So, n square x bar square 

by a square into a plus 1 square, so I can cancel out these two things and then you can 

see that this term same as this term. So, you are left with summation x i square, so S u u 

is equal to x i square from i equal to 1 to n. 

(Refer Slide Time: 14:35) 

 

Similarly, you can prove that, similarly you can prove that S u v is equal to summation x 

i y i. 
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So, now if you apply the program calculator to the new data new set of data which 

involves n plus 1 data points and we called them u v then the program calculator will 

give you the estimate beta 1 hat which is equal to S u v by S u u. You have proved that S 

u v is nothing but summation x i square, sorry summation x i y i and S u u is equal to 

summation x i square. So, you prove that you know using the program calculator if you 

use a, if you add a fake data, here at the end then you can estimate the model without 

intercept using a formula of model including the intercept. So, that is what we proved 

just now. 
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Now, let me consider another problem, so called this problem 4, so this one says that fit 

the model y equal to beta naught plus beta 1 x 1 plus beta 2 x 2 plus epsilon to the data 

given below. So, here we have two regressors x 1 and x 2 and one response variable y 

and what it to do is that you provide and ANOVA table. This is quite set forward 

problem and perform the partial f tests to test h naught that beta i equal to 0 against h 1 

that beta is not equal to 0 for i equal to 1 2 given the other variable is already in the 

model. So, test the significance of i-th regressors in the presence of other regressors in 

the model. 

So, let me do till this one and then it set the comment on the relative contribution of the 

variables x 1 and x 2 depending on whether they enter the model first or second I will 

come to this point later on. So, it is a multiple linear regression problem involving two 

regressors and you are given a data like for x 1 x 2 and y. So, you have to fit the model 

that means you have to estimate the parameters beta naught beta 1 and beta 2. 

So, once you done with the estimation of the parameters then we can have a ANOVA 

table and after getting the ANOVA table we estimate, sorry we test the significance of 

the model. That is called the global test and after the global test what we will do we will 

go for the partial f tests to test the significance of the i-th regressors in the presence of 

other regressors. After that we just short of compare the relative contribution of x 1 and x 

2, I mean which is more significance to explain the variability in y. So, this is the given 

data for two regressors and one response variable, and we have to fit the model, the 

model is y equal to beta naught plus beta 1 x 1 plus beta 2 x 2 plus epsilon and we know 

how to fit this model. 
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So, what I will do is that, so first we will write down the x matrix, so x matrix you can 

see that this is corresponds to x naught which all 1 and the x 1 and x 2. So, once you 

have a x matrix you know that the estimated beta hat is equal to x prime x inverse x 

prime y. So, you are given y, you know x, you can compute you can check that beta 

naught is equal to 46 by 7, beta 1 is equal to 1 and beta 2 is equal to 2. So, the fitted 

model is this one, this is the fitted model y hat is equal to 46 by 7 plus x 2 beta 1, x y 

beta 1, x 1 beta 1 is equal to 1 and beta 2 x 2 beta 2 is equal to 2, so this is the fitted 

model. 
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Now, what we have to do is that once we have the a fitted model we will go for the a 

ANOVA table, so ANOVA table, so the source and then degree of freedom, sum of 

square M S and F value and the sources are, here the total. So, what is S S total S S T is a 

equal to summation y i minus y bar square and you can check that you are you know the 

y i values, so you can check that this is equal to 73.71. So, my S S total is 73.71 and we 

know y hat i values and then we know the original observed values also y i. So, from 

here you can compute e i, the i-th residual and then you can compute the S S residual 

also S S residual is nothing but summation e i square i is from 1 to n, so you can check 

that the S S residual is 1.71.  

So, this is residual and then we left with the regression, so the regression you can check 

that the regression is 72.00, now here is the problem how many observations we have, 

we have a 7 observations. So, the degree of freedom for S S total is 6 and then the 

residual degree of freedom would be 4 because there are 7 e i s and there are 3 restriction 

because of 3 parameters. So, the degree of freedom for the residual is 4 and the 

regression has the degree of freedom 2. So, now you can compute the M S value, M S 

values are 336, here and this is 0.43, so the F statistic value is 36.00 by 0.43 which is 

equal to 83.72, so using this F value this, is this is the total variability of in the response 

about the mean.  

This is a part of F total variability which is explained by this model and this is a part 

which remains unexplained. So, we can test the significance of the fitted model by 

testing this hypothesis that h naught that beta 1 is equal to beta 2 is equal to 0. So, this 

says that a fitted model is not significance, not significant against the alternative 

hypothesis which is say that H naught is not true that means the alternative hypothesis is 

what is this says that the fitted model is significance. You can clearly see that you know 

the model is very significant because it almost 99 percent of that total variability 

explained by the fitted equation.  

So, how to test this one, this one can be test using the F statistic given here, so the 

observed F value which is equal to 83.72 and you compare with, compare this value with 

the tabulated value what is the degree of freedom for F. So, F follows, here F has degree 

of freedom 2, 4, now you check the tabulated value of F 0.05, 2, 4 from the F table that 

you can check that this one is 6.94, so the observed value is greater than the tabulated 

value which implies that H naught is rejected.  



So, the global test says that the fitted model is significant, now what we will do is that 

there are two regressors variable in the model we will test the significance of say x 2 fast 

in the presence of x 1. So, we will test whether x 2 is significant in the presence of x 1 

when x 1 is there in the model and then again, similarly what we will do is that we will 

test the significance of x 1 in the presence of x 2 in the model. So, those things we will 

do using of partial F test also we can go for a t test. 
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Now, we will go for partial F test, so we test H naught that beta 2 is equal to 0 against the 

H 1 that beta 2 is not equal to 0 and this test is in the presence, in the presence of x 1 in 

the model, so how do you test this one we go for if you go for the partial F test. Here, is 

the F statistic, F is equal to S S regression for the full model minus S S regression for the 

restricted model, restricted model. We will see you can check that this has to be divided 

by 1 by M S residual we know what is the full model, full model is y equal to beta 

naught plus beta 1 x 1 plus beta 2 x 2 plus epsilon and a restricted model is the model 

under H naught.  

So, restricted model is basically y equal to beta naught plus beta 1 x 1 plus F silent, so 

we know what is S S regression for the full model. So, if you look at the ANOVA table 

we know that S S regression for the full model is 72, so here we will put 72 minus. Now, 

to find the S S regression for this restricted model what you have to do is that you have 

to fit a model with x 1 alone that means you have to fit this model.  



You can check that the fitted model would be y hat is equal to 46 by 7 minus 66 by 68 

into x 1, so you have you are given the data x 1 x 2 y, so you can fit a model between x 1 

and y you know how that that means a simple linear regression. So, this is a fitted model 

and once you have a fitted model you can compute the S S regression due to this model 

that that is nothing but 64.06 you check this one. Now, this has degree of freedom 2 and 

this has degree of freedom 1 I hope you know why that is, so 2 minus 1 is equal to 1, so 

you divide this by one and now the M S residual from the ANOVA table of M S residual 

is 0.43. 

So, you put that the M S residual is 0.43 well, so this one is equal to 18.53 and we know 

that this F statistic has degree of freedom 1, 4, 4 is the residual freedom. Now, you find 

the tabulated value of F 0.05, 1, 4 that is equal to 7.71 and you have observed value F 

that is 18.53. So, this test says that yes beta 2 is significant, so this means H naught is 

rejected, so H naught is rejected at 5 percent level of significance and of, so at the 5 

percent level of significance we can say that x 2 is significance in the presence of this 

one in the model.  

Now, let us check whether this is significant at a 0.01 level of significance, so compute 

you find the value of tabulated value of F 0.01, 1, 4 that you can check that this is equal 

to 21.02. So, the F value is less than this one, so here H naught is accepted that means at 

1 percent level of significance x 2 is not significant in the presence of x 1. Whereas, at 

the 5 percent level of significance x 2 is significant in the presence of x 1, so that is the 

conclusion of this partial test. So, at least you know at 5 percent significance we 

observed that beta 2 is significant or x 2 is significant in the presence of x 1.  
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Now, what we will do is that we will check the significance of x 1 in the presence of x 2, 

so we will go for the partial test say H naught that is beta 1 equal to 0 against the 

alternative hypothesis H 1 that beta 1 is not equal to 0. So, here same thing we the 

statistic for testing this hypothesis F, which is S S regression for the full model minus S 

S regression for the restricted model. Here, it should be divided by 1 by M S residual, so 

here what is the restricted model. 

Here, the restricted model is y equal to beta naught plus beta 2 x 2 plus epsilon because 

the restricted model is the model under H naught. So, again you have to fit model with x 

2 alone and you can check that fitted model is y hat equal to 46 by 7 plus 69 by 68 x 2 

and once you have the fitted model you can find out the S S regression. So, S S 

regression is equal to 70.01, so this one is greater than the S S regression we got for the 

model with x 1 alone that was 64 anyway.  

So, this one is equal to the 72 is a regression, S S regression for the full model and this 

one is 70.01 by M S residual we know that is 0.43. So, this one is equal to 4.64, now you 

check, so your observed value is 4.64 and the tabulated value F 0.05, 1, 4, here that is 

equal to 7.71. The observed value is less than the tabulated value that means H naught is 

accepted, what is the meaning of this one that means beta naught 1, sorry that means beta 

1 equal to 0 when beta 2 is in the model beta 1 equal to 0 is accepted. So, the implication 



of this one is that if x 2 is there in the model we do not need x 1 because you can see that 

the full model can explain 72, I mean for the full model S S regression is 72.  

For the model involving only x 2 is 70, so which is almost like full model, so the 

implication of this one is that implication is that if x 2 is in model we do not need x 1 x 2 

is enough. So, if you have x 2 first in the model we do not need to include x 1, but if x 1 

is in model then we have tested that you know the significance of beta 2 in the presence 

of x 1 is significant. So, if this one is in the model then we include x 2, so x 2 helps out 

significantly, so this is what the implication of these two partial test. 
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Let me also conclude that thus x 2 is clearly the more useful variable and it explains I 

will compute the coefficient of determination R square for x 2 itself. So, for the model 

involving x 2 alone we have observed that S S regression is 70.01 and the total 

variability is in the response variable is put S S T is 73.71. That means the 95 percent of 

the total variability is explains by x 2 alone, so 95 percent of the variability in y it 

explains 95 percent of the variability in y about mean where as x 1 explains let me 

compute R square.  

So, along with s only x 1 in the model the S S regression was 64.06 by S S T that is 

73.01 this is 86 percent, so x 1 explain 86 percent of the total variability in y about mean. 

So, x 1 explain 95 percent of the total variability in y, whereas sorry, x 1 explain 95 

percent of the total variability in y, whereas x 1 explains 86 percent of the total 



variability in y and x 1 and x 2 together explain 72 by 73.71 that is 97 percent of total 

variability. So, the conclusion is that x 2 is a more useful regressor variable than x 1 

because x 2 alone can explain 95 percent of total variability and also x 2 is significant in 

the presence of x 1. Whereas, x 1 explain 86 percent of the total variability and x 1 is not 

significant in the presence of x 2. 
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But, one more thing you know I just want to say this problem is particularly interested 

interesting because of the one more fact. Here, you can see that the data, here you can 

see data there x 1 and x 2 are not independent I mean x 1 can be written in terms of x 2, 

in fact you can check that x 1 plus x 2 is almost equal to 0. So, there two regressor 

variable are dependent, so this short of indicates that you know there could be multi 

collinear I mean in fact there is multi collinear, co linearity in the this data. That is why 

the test also says that you know you do not need x 1 if x 2 is present in the model. So, it 

is enough to keep only x 2 in the model I mean both x 1 and x 2 are not required, so next 

will be considering another problem. 
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So, this problem is a let it call me problem 5, so it says that can we use the data below to 

get a unique fit to the model y equal to beta naught plus beta 1 x 1 plus beta 2 x 2 plus 

beta 3 x 3 plus f silent. So, can we fit this model uniquely using this data that is the 

question, so look at the data carefully, so this involves how many parameters it has a 1, 

2, 3, 4 parameter and we have this data. So, it is a multiple linear regression model with 

three regressors, so you can write it in this form y equal to x beta plus epsilon and then 

we know that, we know how to estimate this regression coefficient uniquely.  

We know that beta hat is equal to x prime x inverse x prime y and why what is the 

problem, here then why it is says that can we use the data below to get a unique fit to the 

model why not. So, look at the x matrix, here I have included x naught, here x naught 

means beta naught x naught and then x 1, x 2 and x 3 and you know that x 1 column is 

correspond to this column. Then simply I will compute x prime x inverse and then I get 

the estimate, but is there any problem here, so we need to check whether they exist or no 

all that. 

Whether this all this columns are independent or not, here I can see that x 1 plus x 2 plus 

x 3 is equal to 0 that means a the columns of this matrix are not independent which 

implies that x prime x is singular and then if it is. So, the determinant of x prime x is 

going to I mean its singular, so determinant of x prime x is going to be 0, so you cannot 

compute the inverse of this x prime x matrix. So, that is why the problem you know, you 



cannot compute the beta uniquely here, so the ultimate answer to this question is no. So, 

we cannot use the data below to get a unique fit to this model, so this problem is related 

to the yield conditioning of x matrix. 

So, today we considered 3 problems you know first problem was from the simple linear 

regression model, the second problem was base standard problem in multiple linear 

regression model. The problem was very interesting you know it is a short of you have 

two regressors and then we, finally we observed that you know x 2 is significant in the 

presence of x 1. So, but whereas x 1 is not significant in the presence of x 2, so x 2 is 

more useful regressor variable than x 1 for the given data and finally we observed the 

two regressors are not independent, so there exist multi collinearity. So, that is why one 

variable is enough to explain the total variability in the response variable and then finally 

the fifth problem was about the yield conditioning of the coefficient matrix. So, in the 

next tutorial again you know we will discuss some more problem.  

Thank you. 


