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Today, we will be solving some problem from simple linear regression model, that is the 

first topic we talked about. 
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And here is one problem from simple linear regression model, a study was made on the 

effect of temperature on the yield of a chemical process. The following data were 

collected in coded form, so this is the X stands for the temperature and Y is the yield of a 

chemical process. So, Y is the response variable and X is a regressor variable and we 

want to fit a simple linear regression model here, so we are given 11 observations here. 

So, this is quite straight forward, the first question is, assuming a model like Y equal to 

beta naught plus beta 1 X plus epsilon. What are the least squared estimates of the 

regression coefficient beta naught and beta 1 and what is the fitted equation. We have 

solved similar problems while we are talking about the simple linear regression model. 

And then the second question is construct the ANOVA table and test the hypothesis that 

beta 1 equal to 0 with level of significance 0.05 and then what are the confidence limit 

for beta 1. 



And the fourth question is, what are the confidence limit for the true mean value of Y, 

when X equal to 3. Let me start with the first one, so we are given these observations, x i 

y i, for i equal to 1 to 11. And first we will be fitting a simple linear regression model 

using the least square technique. 
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So, what we are given is that, we are given x i and y i, for i equal to 1 to 11 and you want 

to fit a model like y equal to or y i equal to beta naught plus beta 1 x i plus epsilon i. So, 

we know that, this beta naught and beta 1, they are obtained by minimizing the least 

square function that is S, which is equal to y i minus beta naught hat minus beta 1 hat x i. 

So, this is the i th residual and by minimizing this one for i equal to 1 to 11, we get the 

least square estimate of the regression coefficient beta naught and beta 1. 

So, beta one hat, we know that this is equal to S xy, please refer my first topic simple 

linear regression, so S xx, so this can be also written as summation x i y i minus n x bar y 

bar. So, here n is equal to 11, by sum over x i square minus n x bar square. So, you are 

given x i y i for i equal to 1 to n, so what you do is that, best thing is that, you compute 

sum over x i, summation y i, summation x i square, summation y i square and also the 

product x i y i then you are done. 

So, you can compute all these things for the given observations and then you can check 

that, this one is equal to 158 by 110, which is equal to 1.44. And beta naught hat is equal 

to y bar minus beta 1 hat x bar and you can check that, this one is 102 by 11 that is, 9.27. 



So, we are done with the first problem, so the fitted equation is y i hat is equal to 9.27 

plus 1.44 x i, so this is the fitted model for the given problem. 
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So, the next problem is, it says that, construct the ANOVA table and then test the 

hypothesis that, H naught that beta 1 equal to 0 at level of significance 0.05. 
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So now, construct the ANOVA table, so source of variation, degree of freedom, sum of 

square, MS and the F statistics. So, the source total variation that is, SS T, so SS T is 

equal to summation y i minus y bar square, i is from 1 to 11 and you can check that, this 



is equal to 248.18, so the SS total is 248.18. Now, it has, what is the degree of freedom, 

degree of freedom is 10, because you know that, this y i minus y bar, they satisfy a 

constraint like summation y i minus y bar is equal to 0. 

So, there is a one constraint here, so that is why, one degree of freedom less here, now 

you can compute SS regression. SS regression is beta 1 hat square S xx and we know 

that, beta 1 hat is 158 by 110 square and S xx is 110, so this is equal to 226.94. So, this is 

regression here and SS regression is 226.94 and the degree of freedom here, see SS 

regression is also equal to e i square, from i equal to 1 to 11. So, this is another way to 

compute, you have the fitted model, you know y i hat, you have the original observation 

y i, so you can compute e i, for i equal to 1 to 11. 

But, you do not have the freedom of choosing all the e i's independently, because there 

are two constraints on e i. So, you can choose 9 residuals I mean, you have the freedom 

of choosing 9 residuals and remaining two have to be chosen in such a way that, those 

two restrictions are satisfied. So, the degree of freedom for SS regression is equal to 9 

and then the remaining part, the part which remain unexplained, the part of variability 

that is, SS residual and that has degree of freedom 1. 

And the SS is obtained by SS total minus SS regression that is, 22.23 and the MS value 

is... I said the residual degree of freedom is 9, so this is the residual degree of freedom 

and the regression degree of freedom is equal to 1. So, the MS residual is SS residual by 

the degree of freedom that is, 2.36 and the MS regression is SS regression by degree of 

freedom that is, 226.94. So, the F statistics is MS regression by MS residual, which is 

equal to 96.17. 

Now, you know that, we can test this hypothesis say H naught that is, beta naught equal 

to 0 against H 1, that beta 1 is not equal to 0 using this F statistics and the observed value 

of F is equal to 96.17 and this has degree of freedom 1, 9. So, you check the tabulated 

value of F 0.05, 1, 9, so that is equal to 5.12. So, the observed F is greater than the 

tabulated F. 
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So, the conclusion is that, we reject H naught that is, beta 1 is equal to 0 is rejected that 

means, there is linear relationship between Y and X. So, the next problem is, what are the 

confidence limit for beta 1, so we have a point estimation for beta 1, now we will find 

the confidence limit for beta 1. So, before doing that, may be you know already, but I 

want to say the another way to test this hypothesis, that H naught beta 1 equal to 0 

against H 1 beta 1 not equal to 0. 

This can be tested also using the t statistic that is, T equal to beta 1 hat by MS residual by 

S xx, I hope you know all these things. So, this is the t statistic under the null hypothesis, 

that beta 1 is equal to 0 and this follows t distribution with the degree of freedom n 

minus 2. So, here it is 9 and then you can check that, this t value is beta 1 hat is 1.44 and 

MS residual is 2.36 and S xx is 110 and you can check that, this value is 9.83. And now, 

you look at the tabulated value of t that is, t 0.05, degree of freedom 9, that is equal to 

1.833. 

So, again the I mean, of course you will get the same result. Whether you use F statistic 

for testing the hypothesis or you use the t statistic for testing the hypothesis, result will 

be the same. And also you know, in fact in F is equal to t square under the null 

hypothesis. So, here again the observed value is greater that the tabulated value, so we 

reject H naught, that beta 1 is equal to 0, so next we will go for the third problem. 
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What are the confidence limit for beta 1 at 0.05 level of significance. 
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So, for this one, the question is, what are the confidence limits at alpha equal to 0.05 for 

beta 1. So, what we know is that, we know that this beta 1 hat, which is a linear 

combination of y i and y i is follow normal distribution, so linear combination of normal 

distribution is again normal. So, this follows normal distribution with parameter with 

mean beta 1 and variance sigma square S xx. So, I can write this one as, again beta 1 hat 

minus beta 1 by sigma square by S xx, this follows normal 0 1. 



But, what happen is that, this sigma square, the population variance is usually unknown, 

so we need to estimate this one, we estimate this one by MS residual. And once you 

replace this sigma square by MS residual, this follows t distribution, so beta 1 hat minus 

beta 1 by MS residual S xx, this follows t distribution with degree of freedom n minus 2. 

And from here, I can say that, beta 1 hat minus beta 1 by MS residual S xx, this less than 

equal to t alpha by 2 n minus 2 and greater than t alpha by 2 n minus 2 degree of 

freedom, of course minus. 

This has probability 1 minus alpha that is, 0.95 and from here, we get 95 percent 

confidence limit for beta 1. So, this can be written as, so the beta 1 from here, beta 1 less 

than equal to beta 1 hat plus t alpha by 2 n minus 2 and of course, multiplied by this 

thing, MS residual by S xx. And here, beta 1 hat minus t alpha by 2 degree of freedom n 

minus 2 MS residual by S xx, again this has probability 1 minus alpha. So, this is the 

lower limit for beta 1 and this is the upper limit for beta 1. Now, we know everything, we 

know what is the beta 1 hat, we can find this tabulated value. This is t 0.25, because 

alpha is 0.05 and we know all these values. 
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So, you can check that, finally this beta 1 is, let me put beta 1 hat here, so this is 1.44 and 

t value is 2.263 and the standard error of beta 1 hat is 0.146. And similarly, here 1.44 

minus 2.263 into 0.146 and here is the limit for beta 1, it is 1.77 and 1.11. 
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So, till now, these problems we have already discussed in the module, I think even 4 

also, it says that, the fourth problem is that, what are the confidence limit for the true 

mean value of Y, when X is equal to 3. So, what does this mean, we have to find the 

confidence limit for the true mean value that is, mean of Y or expected value of the 

response variable at X equal to 3. 

And in the first module in simple linear regression model, we denoted this one by 

expectation of Y given X equal to 3. I mean, maybe we should not use this notation, 

because X is not random variable, but both are same, this is what I want to say here. So, 

we have to find the confidence interval for this mean value at X equal to 3, so how to do 

that. 
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So, what we want is that, we want confidence limit for E Y at X equal to 3, so let me 

write this thing, instead of X 3, I will write that, you are looking for say, 95 percent 

confidence interval for mean value of Y at say, X equal to x naught. So, x naught is 

nothing but 3 that I will plug at the end, let me solve this (Refer Time: 24:41) for x 

naught. So, this is nothing but beta naught plus beta 1 x naught, because we have 

considered the model y equal to beta naught plus beta 1 x plus epsilon. 

So, the expected value of y at x naught is this one, because expectation of epsilon is 

equal to 0. And first what we will do is, we will find an unbiased estimator for this one, 

this at X equal to x naught that means, unbiased estimator of beta naught plus beta 1 x 

naught is nothing but beta naught hat plus beta 1 hat x naught, because beta naught hat is 

an unbiased estimator of beta naught and beta 1 hat is an unbiased estimator of beta 1. 

So, this one, so the unbiased estimator beta naught hat plus beta 1 hat x naught, this is 

point estimator for the expected mean at X equal to x not and we are looking for a 

confidence interval for this one. So, this follows normal distribution with mean beta 

naught plus beta 1 x naught and you can check that, this has variance sigma square 1 by 

n plus x naught minus x bar whole square by S xx. So, of course then this minus the 

mean by square root of this, follows normal 0 1 and if you replace this sigma square by 

MS residual then that follows t estimation, so let me write that only. 



So, what I can do now, that beta naught hat plus beta 1 hat x naught minus the mean beta 

naught plus beta one x naught and we are looking for a confidence interval for this one, 

this by MS residual 1 by n plus x naught minus x bar whole square S xx square root. This 

follows t distribution with the degree of freedom n minus 2 and from here, you know 

now of course, you know it, so the whole thing let me write call it say, A. So, A less than 

equal to t alpha by 2 n minus 2 minus t alpha by 2 n minus 2, this has probability 1 minus 

alpha where, A is nothing but this variable. So, from here, we will get confidence interval 

for beta naught plus beta 1 x naught, which is the mean response at the point X equal to x 

not. 
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So, what we will get from there is that, beta naught plus beta 1 x naught is less than beta 

naught plus beta 1 hat x naught plus t alpha by 2 n minus 2. And then the standard error 

of this one that is, MS residual 1 by n plus x naught minus x bar whole square S xx. And 

similarly here, the same thing, beta naught hat plus beta 1 hat x naught minus this one 

that is, t alpha by 2 n minus 2, it is quite straight forward thing, MS residual 1 by n plus x 

naught minus x bar whole square by S xx, so this will go here well, so you are done. 

So, you know everything here whatever you need and finally, you can check that or 

should I put them. So, we know that, this one is, let me do for the upper limit that is, 9.27 

this part and then this is n equal to 11, so it is 9 degree of freedom and alpha is 0.05. So, 

alpha by 2 is 0.025, so that is 2.262, and then you have here, the MS residual is 2.36 and 



n is 11 plus x naught is 3 and x bar is 0 here. So, 3 square by S xx that is, 1 1 0, so this 

one is the upper bound for beta naught plus beta 1 x naught. 

And you can check that, this one is 9.27 plus I think, 9.27 is beta naught only, so plus 

beta 1 into x naught that is, beta 1 is 1.44 into x naught that is, 3. So, this whole thing is 

going to be equal to, you can check that, this is nothing but 15.03, it is the upper limit 

beta 1 x naught and the lower limit you can check, that is 12.15. So, we found confidence 

limit for mean response at the point X equal to 3. 

(Refer Slide Time: 33:00) 

 

Now, this might be little, we did not try this one before, what it says is that, what are the 

confidence limit at 0.05 level of significance for the difference between the true mean 

value of Y, when X 1 equal to 3. So, that is nothing but mean value of Y at X 1 equal to 3 

and the mean value of Y that is, E Y at say X 2 equal to minus 2. So, this problem says, 

what is the difference between these naught, what is the confidence limit for this one. So, 

if I call this one say, z 1 and let me call this as z 2, what are the confidence limit for z 1 

minus z 2. 

Now, just now we know what is the unbiased estimator for this one, so the unbiased 

estimator for z 1. For simplification, the unbiased estimator for z 1 is nothing but beta 

naught hat plus beta 1 hat X naught, here it is X 1, so 3 and the unbiased estimator for z 

2, call it z 2 hat, that is equal to beta naught hat plus beta 1 hat minus 2, into minus 2. 

And thus, the unbiased estimator for z 1 minus z 2 is z 1 hat minus z 2 hat, which is 



equal to beta naught hat plus beta 1 hat 3 minus beta naught hat plus beta 1 hat minus 2, 

which is nothing but beta 1 hat into 5. 

And we know that, beta 1 hat is equal to 1.44 into 5, which is equal to 7.20, so what we 

did is that, we found a point estimation for z 1 minus z 2. And the point estimation is 

7.21, now we have to find the confidence interval for z 1 minus z 2. So, what it do is that, 

we have to find a distribution for z 1 hat minus z 2 hat. 
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And for that, we need to compute the variance of z 1 hat minus z 2 hat, is nothing but 

variance of 5 beta 1 hat, because that is what we got here. So, z 1 hat minus z 2 hat is 5 

beta 1 hat, so this one is nothing but 25 into variance of beta 1 hat and this is equal to 25 

into sigma square by S xx, which is equal to 25 sigma square by 110. So, z 1 hat minus z 

2 hat, which is an unbiased estimator for z 1 minus z 2, that follows normal distribution 

with mean z 1 minus z 2 and variance 25 sigma square by 110. 

And then again this minus by square root of this follows standard normal and if you 

replace this sigma square by MS residual then it is t distribution, so z 1 minus z 2 minus 

z 1 minus z 2 by square root of 25 MS residual by 110, this follows t distribution with 

degree of freedom n minus 2. And from here, I can write that, z 1 minus z 2 is then less 

than equal to z 1 hat minus z 2 hat plus t alpha by 2, 9 degree of freedom and here it is 25 

into MS residual is 2.36 and S xx is 110. 



And similarly, here also it is z 1 hat minus z 2 hat minus t alpha by 2, 9 degree of 

freedom by the same thing, 25 into 2.36 by 110. And finally, we know that, this one is 

7.20 so finally, the confidence interval for z 1 minus z 2 is 8.86 and the lower limit is 

5.54. So, this is how we find confidence interval for the mean difference at two different 

point. So, the first problem was quite easy and this sort of problem we already solved in 

the first module or in the first topic. Now, we will go for the second problem and here, I 

recommend you do not look at the solution first, you try independently. And then if you 

can solve it independently that means, you have understood the things. 
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Here is the problem, consider the simple linear regression model y equal to beta naught 

plus beta 1 x plus epsilon, where the intercept is known. So, this is something new, so for 

this linear model, the beta naught is already known then what you have to do is that, find 

the least square estimator of the slope beta 1 for this model. This is the first problem then 

what is the variance of the slope beta 1 hat for the least squared estimator found in part 1. 

So, you find a least square estimator of beta 1 say that is beta 1 hat then find the variance 

of beta 1 hat. And the final problem is that, it says that, find the confidence interval for 

beta 1 and is this interval narrower than the estimator for the case, where both slope and 

intercept are unknown. You try to solve independently and then see my solution and here 

is the solution. 
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The first part is, you are given a model y i, you have to feed this model beta naught plus 

beta 1 x i plus epsilon i and epsilon i satisfies all these assumption, assumed that normal 

0 sigma square. The only thing is that, here beta naught is known, so only you have to 

find the least square estimator for beta 1 hat. So, how do we find that we will compute 

the least square function S, which is equal to e i square. What is e i square, e i square is y 

i minus y i hat square, which is equal to y i minus, y i hat is beta naught minus beta 1 hat 

x i. 

So, see here, I did not put hat, because this is the parameter we do not need to estimate, 

we have to estimate only beta 1. And then this is the least squared function and then you 

find beta 1 hat in such a way that, this is minimum. So, you have to differentiate this 

least square function with respect to beta 1, this is equal to 0 implies that, summation y i 

minus beta naught minus beta 1 hat x i into, x i is equal to 0. And from here, i get that, y i 

minus beta naught into x i equal to beta 1 hat summation x i square. 

So, this implies that, my least square estimator for beta 1 is equal to summation y i minus 

beta naught x i by summation x i square. So, this is the, so you are done with the first 

part, this is the least square estimator for beta 1 hat, when beta naught is known. The 

second problem is, you find the variance of beta 1 hat. 
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The second part is find the variance of beta 1 hat and what is the beta 1 hat, beta 1 hat we 

just found that, this is equal to summation y i minus beta naught into x i by x i square. 

So, the variance of this one, so here only random variable is y i, so this one is equal to 

variance of summation y i minus beta naught into x i variance of this, by summation x i 

square whole square. So, this one is equal to, they are all independent, y i's are 

independent, so this is x i square variance of y i. 

Variance of y i minus beta naught is nothing but variance of y i, because beta naught is a 

constant for i equal to 1 to n by summation x i square whole square and variance of y i, 

we know that, variance of y i is equal to sigma square. So, we can put now the sigma 

square into x i square by summation x i square whole square. So, this is equal to sigma 

square by summation x i square, so this is the variance of beta 1 hat. And then the third 

problem was, you find confidence interval for beta 1 hat. 
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So, the last part was, find confidence interval for beta 1, so we know the variance of beta 

1 hat. Let me check, whether beta 1 hat is unbiased, so you find the expectation of beta 1 

hat. 
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So, that is nothing but expectation of summation y i minus beta naught x i sum over x i 

square and this one is equal to, y i minus beta naught is nothing but beta 1 x i from the 

model you get, into x i. So, you put the expectation inside by summation of x i square, let 

me make it clear, so you can put this expectation and bring this expectation inside. So, y i 



minus beta naught, y i is equal to beta naught plus beta 1 x i plus epsilon. So, expectation 

of y i minus beta naught is equal to expectation of beta 1 x i plus epsilon i and 

expectation of epsilon is equal to 0. So, expectation of beta 1 x i, which is beta 1 x i, so 

this one is beta 1 into summation x i square by summation x i square, that is nothing but 

beta 1. So, what we found is that, expectation of beta 1 hat is equal to beta 1, so though 

beta 1 hat is unbiased and we also know the variance of beta 1. 
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So, beta 1 hat follows normal distribution with mean beta 1 and variance sigma square 

by summation x i square. And then the usual technique, this minus this by square root of 

this follows standard normal and then beta 1 hat minus beta 1 by, if you replace this 

sigma by MS residual by x i square then what you get is that, this follows t distribution 

with degree of freedom n minus 1 here. This is the residual degree of freedom and you 

should understand that, here the model is y equal to beta naught plus beta 1 x i plus 

epsilon i. 

So, y i is this and here, while minimizing this least square function S, which is equal to e 

i square, there we differentiated this one with respect to beta 1 only. So, there is only one 

restriction on epsilon i and so you have the freedom of choosing n minus 1 e i 

independently and then the last one has to be chosen in such a way that, the restriction is 

satisfied. So, that is why, the SS residual here has degree of freedom n minus 1, not n 

minus 2, so this is one point. 



And from here, you can check that, we can write that, beta 1 hat minus beta 1 by MS 

residual by summation x i square, this less than equal to t alpha by 2 n minus 1, t alpha 

by 2 n minus 1 minus, this has probability 1 minus alpha. 
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And then finally, what we have is that, we have the interval for beta 1 that is, beta 1 hat 

plus MS residual summation x i square t alpha by 2 n minus 1. And the lower bound is 

beta 1 hat minus MS residual by summation x i square t alpha by 2 n minus 1, this is the 

lower bound for this. Now, what happen in the usual case when both beta naught and 

beta 1 are unknown, we get this confidence interval for beta 1. There we get, it is beta 1 

hat plus MS residual by here, you will get S xx into t alpha by 2 and the degree of 

freedom is n minus 2, so this is the upper limit. 

And the lower limit is similar similarly, beta 1 hat minus MS residual by S xx into t alpha 

by 2 n minus 2. The question was, is this interval narrower than the estimator for the 

case, where both slope and the intercept are unknown. So, this is the case when both 

intercept and beta 1, they are unknown and this is the case when beta naught, the 

intercept is known. Now, whether this interval is narrow than this one, how to check that, 

see S xx is equal to summation x i square minus n x bar square. 

So, which implies that, S xx is smaller than summation x i square that means, this one is 

larger than this one. So, from here, I can say that, MS residual by summation x i square is 

less than equal to MS residual by S xx. So, this one is larger than this one and again from 



the t table you can check that, t value for this one t alpha by 2 n minus 2 is larger than, 

because they are the lower degree of freedom. is larger than t alpha by 2 n minus 1. So, 

both this one is larger than this one, this one is larger than this one, I should not write 

square root till that. So, that is why, of course that, this interval is narrower than this one, 

the final answer is, yes this interval is narrower than the interval for the case, where both 

beta naught and beta 1 are unknown. So now, we have to stop, so tomorrow again in the 

next class, we will be talking about some more problems on regression.  

Thank you. 


