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Measurement Errors and Calibration Problem 

Hi, so today we will be talking on a new topic called measurement errors and calibration 

problem and here is the content of this topic. 
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So, case where the response and regressors are jointly distributed random variable and 

measurement error in regressors and also we will be talking about the calibration 

problem which is called inverse problem. Let me talk about the objective of this topic, in 

almost all regression model we assume that the response variable is a random variable, 

where the regressor variable like x 1 x 2 x k, they are called controlled variables, they are 

not random variable. So, what we will do in this topic is that we will talk about two 

variations of this situation and has I told you know that y is a random variable and x is 

controlled variable, which is not a random variable. Let me just recall why I say y is a 

random variable. 
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In simple linear regression model, what we consider the model is like y equal to beta 

naught plus beta 1 x plus epsilon. And, we assume that epsilon is random variable which 

follows normal distribution with mean 0 and variance sigma square. So, this is the 

assumption we make in simple linear regression and also in a multiple linear regression 

model. 

Assuming, that sigma is random variable which follows normal distribution and they are 

independent, if you put i here, is same as assuming that y is a random variable. So, what 

we assume is that the response variable y is a random variable and the regressors like x 1 

x 2 x k, they are not random variable, they are called controlled variable or also we call 

deterministic variable. 

So, here we will be talking about two variation of this situation. The first one is, both 

response and the regressor variable are jointly distributed random variables. And the 

second case we will be considering the second variation is, there are measurement error 

in regressors. So, let me talk about the first variation where both the response and the 

regressor variables are jointly distributed random variable. 
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Let me assume that the first case that x and y, is the regressor and the response variable 

are jointly normally distributed. Usually, x is not a random variable. But, here we are 

considering both of them are random variable and they are jointly normal distributed. 

Then the joint p d f, probability density function of x and y is 1 by 2 pie sigma 1 sigma 2 

1 minus rho square exponential 2 into 1 minus rho square y minus mu 1 by sigma 1 

square plus x minus mu 2 by sigma 2 square minus twice rho y minus mu 1 by sigma 1 

into x minus mu 2 by sigma 2. 

So, this is the joint p d f of x and y when they are jointly normally distributed. Here, 

expectation of y is equal to mu 1, variance of y is equal to sigma 1 square, expectation of 

x is equal to mu 2 and variance of x is equal to sigma 2 square. And there is one more 

parameter that is called correlation coefficient between x and y, so the rho is the 

correlation coefficient which is equal to the covariance between x and y, so y minus mu 1 

into x minus mu 2 by sigma 1 sigma 2. So, notation for this one is sigma 1 2 by sigma 1 

sigma 2, this is the correlation coefficient between y and x. And once you have the joint 

distribution we know we can find the conditional distribution also. 
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Let, me write down the conditional distribution of y given x follows normal distribution 

with mean mu 1 plus rho sigma 1 sigma 2 x minus mu 2 and variance 1 minus rho square 

sigma 1 square. So, this is the conditional distribution of x of y given x, which is 

normally distributed with some mean and variance. So, what we can write here is that the 

expectation of y given x is equal to mu 1 plus rho sigma 1 by sigma 2 x minus mu 2.And, 

this I can write as beta naught plus beta 1 x, where my beta naught is equal to mu 1 

minus rho mu 2 sigma 1 by sigma 2 and beta 1 is equal to rho sigma 1 by sigma 2. 

So, why I derived all these things because just to say that here you can see the 

conditional expectation of y or the expectation of y given x is this one. So, this is the 

model we need to consider when both x and y are random variable. And, what we do 

when x is not a random variable, when x is a controlled variable or deterministic 

variable, what we do is that we fit the model expectation of y which is equal to beta 

naught plus beta 1 x. This is the model we fit in the case when y is a random variable and 

x is a deterministic variable, it is not a random variable. 

So, writing this is same as y equal to beta naught plus beta 1 x plus epsilon, where 

epsilon follows normal 0 sigma square. Similarly, this is the difference only, this is the 

model we need to consider here whereas when both at x and y are random variable. And 

this is the model we consider when y is a random variable but, x is not a random 

variable. That is, in almost all cases this is the situation that y is the random variable but, 



x is not random variable, it is a controlled variable. Now, how to fit this model because 

we are talking about the case when both x and y are random variable, so from here we 

know the conditional distribution of y given x.  
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From, here we can say that this y i given x i this follows normal distribution with mean 

beta naught plus beta 1 x i and the variance is 1 minus rho square sigma 1 square and 

they are independent. So, I am given the observations y i x i both are random variable 

and I know that this is true, that is the random variable y given x is or random variable y 

i given x i are independent random variable. And they follow normal distribution with 

mean beta naught plus beta 1 x i and variance, a constant variance. 

Now, to estimate this parameter and do we want to fit the model, y given x is equal to 

beta naught plus beta 1 x. Fitting this model means we need to estimate the coefficients 

beta naught and beta 1. So, what we will do is that we will go for maximum likelihood 

estimator, because here we know the distribution of conditional distribution of y given x 

i. 

So, the likelihood function is, hence they are independent the likelihood function of y 1 y 

2 y n given x 1 x 2 x n is just the product of marginal density, so that is nothing but, 1 by 

root over of 2 pie sigma 1 square 1 minus rho square and e to the power of minus 1 by 2 

sigma 1 square 1 minus rho square y i minus beta naught minus beta 1 x i square, i equal 

to 1 to n. This is the likelihood function and this can be written as 1 by root over of 2 pie 



sigma 1 square 1 minus rho square to the power of n e to the power of minus 1 by 2 

sigma 1 square 1 minus rho square summation y i minus beta naught minus beta 1 x i 

whole square. 

So, what the maximum likelihood estimate technique suggest is that, you construct the 

likelihood function and here you can go for and find the parameter beta naught and beta 

1 in such a way that the likelihood function is maximum. Maximizing this likelihood is 

same as minimizing this thing, so we find beta naught and beta 1 such that this is 

minimum. Find beta naught and beta 1 such that y i minus beta naught minus beta 1 x i 

whole square, i equal to 1 to n, this is minimum. This is nothing but, the least squared 

function we consider while estimating beta naught and beta 1 using the least squared 

technique in simple linear regression model. So, we know what is beta naught hat and 

beta 1 hat. 
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Beta naught hat is equal to y bar minus beta 1 hat x bar and beta 1 hat is equal to 

summation y i minus y bar x i minus x bar summation x i minus x bar whole square. This 

is nothing but, S x y by S x x. So, these are identical to those given by least square 

estimate, because we are minimizing the same function here we are minimizing the least 

square function here also, in case where x is a controlled variable. 

So, here we are trying to estimate the model expectation of y given x which is equal to 

beta naught plus beta 1 hat, sorry beta naught plus beta 1 x. And we found that the 



estimate, the maximum likelihood estimate for beta naught and beta 1 are the same as 

obtained by least squared technique in case when x is a controlled variable. 
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Here, we have new parameter called the correlation coefficient rho. This is the 

correlation coefficient between x and y. What you want is that, we want to draw some 

inference about this correlation coefficient. First, we find an estimator for this one. The 

estimator of row which is a correlation coefficient, is the sample correlation coefficient 

that is equal to r. 

So, r is the sample correlation coefficient which is y i minus y bar into x i minus x bar by 

square root of summation y i minus y bar whole square into x i minus x bar whole 

square. This is the sample correlation coefficient and this is the estimator for population 

correlation coefficient rho. 

And this can be written as, you need a standard notation s x y by square root of S x x S y 

y. So, S y y is this one and we know that this one is also called S S square, sorry S S 

total. So, I will write this as S x y by square root of S x x and then S S total. Now, note 

that whether there is a relation between this sample correlation coefficient, which is an 

estimator for rho and regression coefficient beta 1. So, we know that beta 1 hat is equal 

to S x y by S x x which can be written in terms of r. This can be written as S S total by S 

x x square root of this into r, you can check that, just plug r here you will get back this 

one. So, this says that beta 1 hat and r are closely related. 



Also, what we will do is, we will see what is r square here. So, from this expression r 

square is equal to S x x by S S total into beta 1 hat square. And this one can be written as, 

we know that beta 1 hat is S x y by S x x. This can be written as, beta 1 hat into S x y by 

S S total. You can check that, you know just take out 1 beta 1 hat and plug this value 

here. We know that this one is nothing but, S S regression. This is interesting so, S S 

regression by S S total. And you know what is this quantity this is called the coefficient 

of determination, that is a capital r square. This is called coefficient of determination. 

So, what does this r square do is that it measures the proportion of variability in the 

response variable that is explained by the regression model. And what does r do is that it 

measures the linear association between x and y, here we observe that you know r square 

is equal to the small r square which is the sample correlation coefficient, is equal to the 

capital r square which is the coefficient of determination. So, what you do is that we have 

a new parameter rho which is the correlation coefficient between x and y. And we 

learned how to test the significance of this, I mean whether this correlation coefficient is 

significant or not by testing the hypothesis. 
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That h naught is rho equal to 0 against h 1 that rho is not equal to 0. So, this is a useful 

test. And the tester statistic for this hypothesis is t naught which is equal to r root of r of n 

minus 2 by 1 minus r square, square root of this thing. And this follows t n minus 2 

degree of freedom under h naught. 



Here, is the rejection criteria. We reject h naught if the modulus value of this one is 

greater than t alpha by 2 n minus 2. So, here we learned about how to test the correlation 

coefficient is equal to 0 against the alternative hypothesis that the correlation coefficient 

is not equal to 0. Well so, we talked about one case here where both the regressor 

variable x and the response variable y, both of them are random variables. And we 

observed that the linear model we need to fit here is very similar to the case when y is a 

random variable and x is a controlled variable, that is the situation in almost all cases. 

Here, we assume that the random variable x and y they jointly follow normal distribution 

by variant normal distribution. And we have a new parameter called rho here, which is 

the correlation coefficient between this two random variable and if you see we learned 

how to test the hypothesis that rho is equal to 0 against rho is not equal to 0. If you see 

from this testing you know rho is equal to 0, that means there is no linear relationship 

between the regressor variable and response variable, which is same as testing the beta 1 

is equal to 0 against beta 1 is not equal to 0. Also, we say that if beta naught sorry if the 

beta 1 is equal to 0, then there is no relationship between x and y. 
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Next, we will be talking about another deviation that is measurement errors in regressors. 

Here, we wish to fit the simple linear regression model but, the problem here is that, the 

regressor is measured with error. So, what I mean by this, here suppose x i is the 

observed value of the regressor, so this is the observed value. In usual case you know we 



consider that y is sorry x is controlled variable and then there is no error while measuring 

the value of x I, which is equal to small x i but, here the regressor is measured with error, 

so x i is equal to small x i plus a i. So, what is this small x i, small x i is the true value 

and this a i is called the measurement error. I will give an example to illustrate this 

situation. 
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Let, me consider this example. Suppose x is a regressor variable which stands for the 

current flow in an electric circuit. And the current flow is measured with an ammeter, 

which is not completely accurate. So, here a measurement error is experienced. So this is 

the observed current flow capital x and the small x is the true current flow and this one is 

the measurement error. What we are given is that we are given the observation say y i 

that is a response variable and we are given x i capital x i we are given the observed 

value, but we want to find linear relationship between y i and the true value of the 

regressor variable. So, we will be talking about how to deal with such situation. Now, let 

me go to my previous slide. 
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Here, is the observed value you understood this is the observed current flow, this is the 

true current flow and here is the measurement error. And here we make the assumption 

that, with this expected value of measurement error is equal to 0 and variance of a i the 

constant variance sigma a square. Of course, the response variable is a random variable. 

The response variable is subject to the usual error epsilon i for i equal to 1 to n. 
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Now, what we want is that we want to find relationship between the response variable y 

and the true value of x. So, we want to fit we want to consider the model. The regression 



model is y i is equal to beta naught plus beta 1 x i plus epsilon. So, here only the problem 

is that we do not have small x I, this is the true value. But, what we have is that we are 

given y i the response variable and the capital x i that is the measured value of the 

regressor variable. 

This can be written as beta naught plus beta 1 in terms of capital x i. I can write this as, x 

i minus a i, because of the fact that we assume that the measured value is equal to the 

true value plus the measurement error plus epsilon, because we are given y i and capital 

x i so we have to convert this model in terms of capital x i, that is quite clear.  

So, this is equal to beta naught plus beta 1 x i plus epsilon i minus beta 1 a i. This is 

equal to beta naught plus beta 1 capital x i. I should write, I mean I should not mix here 

capital x i and small x I, I used to do that before, because both of them are same but, here 

I have to be careful. So, this is equal to gamma i, where this gamma i is equal to epsilon i 

minus beta 1 a i. Now, this appears to be you know now we have the model in terms of 

capital x i, y i is equal to beta naught plus beta 1 x i plus some error term.  

You may think that we are done, because this is the model we know how to fit this model 

before also but, the problem here is that see this capital x i is random variable and this 

gamma i is also random variable, now we need to check whether before when x was 

controlled variable there was no correlation between this two right. Now, here we need to 

check whether they are correlated or they are independent. So, what we will do is that we 

will compute the covariance of x i and gamma i which is nothing but expectation of x i 

minus e x i into gamma i. Because expectation of gamma is of course, equal to 0 because 

both expectation of epsilon i is equal to the expectation of a i that is 0. 

So, here I can write that this is equal to capital x i, now the expected value of capital x i 

is equal to small x i, that is small x i and this one is equal to epsilon i minus beta 1 a i. 

Now, this one is equal to expectation of what is this capital x i minus small x i is equal to 

a i, so a i into epsilon i minus beta 1 a i. And we assume that, you know perhaps I forgot 

to mention this that here while I was talking about this model, here we assume that 

expect this two are independent, a i and epsilon i they are independent this is equal to 0. 

Then this one is equal to minus beta 1 expectation of a i square. So, expectation of a i 

square is nothing but, the variance of a i square which is equal to minus beta 1 sigma a 

square. So, here as you see that you know this observed value of x i of the regressor and 



the model error they are correlated, so you cannot apply the standard or the ordinary least 

square technique to estimate the parameter beta naught and beta 1 here. 
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So, it says that if we apply standard least square method to the data, the estimates of the 

model parameters are no longer unbiased. If you apply just simple or ordinary least 

square technique what we will get is that, beta 1 hat is equal to summation y i minus y 

bar into capital x i minus x bar, because this is the observed regressor value, by 

summation x i minus x bar whole square. But, you can check that the expected value of 

this beta 1 hat is equal to beta 1 by 1 plus theta, that is the beta 1 hat we got here is not an 

unbiased estimator of beta. Where theta is equal to sigma a square by sigma x square, 

again the sigma x square is equal to you need to check you know this one sigma x square 

is this. 

So, what this indicates is that if beta 1 hat is a biased estimator of beta 1, unless this theta 

is equal to 0 that means unless sigma a square is equal to 0, sigma a square is the 

measurement error variance. This will be 0 that is there is no measurement error in 

regressor. Also, you know if this sigma a square is very small relative to sigma x square, 

the biased will be then theta will be small, so the bias will be I mean once theta is small 

this quantity is almost close to 1 then the bias will be small. 
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Finally, the technique says that if variability in the measurement error that is sigma a 

square is small relative to the variability of the x value, then it suggest that the 

measurement error can be ignored and ordinary least square method can be applied. So, 

here we have learned how to fit a model in the presence of measurement error in the 

regressor variable. And next what we will be doing is, we will be talking about the 

calibration problem which is also called the inverse problem. 

Here, usually you know given a value of regressor variable x we estimate the response 

variable y. Here, the problem is just opposite, you are given value of y you have to 

estimate the corresponding regressor value that is called the calibration problem. So, here 

is the calibration problem. 
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The statement of this problem is that, given a observed value of y say y naught, you have 

to determine the x value corresponding to it. Let me give an example now why we need 

this calibration problem. Example is we know that the temperature reading given by a 

thermocouple is a linear function of the actual temperature. So, what I mean by this is 

that the observed temperature, this observed temperature given by this thermocouple is a 

linear function of the actual temperature.  

This observed temperature is equal to beta naught plus beta 1 actual temperature plus 

epsilon. In such situation you know the observed temperature and you want to know the 

actual temperature, so given a value of y say sum of the observed temperature y naught 

you can determine the corresponding x value that is the actual temperature. This is what 

the purpose of this calibration problem is and how do we solve this problem is that. 
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Suppose, we have some y i x i values for i equal to 1 to n. So, what you have to do is 

that, you just first fit the model y hat equal to beta naught hat plus beta 1 hat x. And let y 

naught be the observed value of x sorry observed value of y. And what you want to know 

is that, you want to know the value of x for which y equal to y naught, from this straight 

line fit. So, a natural point estimation of the corresponding value of x is say call it x 

naught hat is equal to, just put y naught here and then what is the x naught hat 

corresponding is equal to y naught minus beta 1 sorry beta naught hat by beta 1 hat, 

assuming that beta 1 hat is not equal to 0. 

This is a very simple problem like the calibration problem is also called the inverse 

problem. So, here given a value of x sorry given a value of y say y naught you have to 

find the corresponding x. Once you have a fitted model there is no problem finding a 

point estimation for the corresponding x values. 

So, what we have learned in this topic is that the usual situations in almost all cases what 

happened is that y is regressor variable, which is a random variable and x is regressor 

variable and it is usually a deterministic variable or controlled variable. And, here we 

have learned about two variations of this situation like when x and y both are random 

variable then how to fit the model. And also we have learned when there is a 

measurement error in regressor variable how to deal with that situation also, we need to 

stop now. Thank you.  


