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Lecture - 34 

Regression Models with Autocorrelated Errors (contd.) 

Hi, this is my second lecture on regression models with auto correlated errors, and here is 

the contained of this topic. 
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We already talked about sources and effect of autocorrelation in the regression model. 

And, in the previous class we started talking about how to detect presence of 

autocorrelation, and we will be talking about parameter estimation in the presence of 

autocorrelation model. Let me repeat the objective of this topic, is that in simple linear 

regression model or in the multiple linear regression model we make several assumption 

on the errors terms like expectation of epsilon is equal to 0, variants of epsilon is equal to 

sigma square and the error terms are correlated. And, also we make assumption on the 

normality of the error terms that epsilon i follows normal distribution with parameter 0 

and sigma square. 

These are the assumption that we make while fitting a simple linear regression model or 

multiple linear regression model using least square technique. But, the problem is that 

you know when the data are collected sequentially in time, the assumptions of 



independence of error term may not be true. That means while you are collecting the 

observation sequentially in time, the observations might not be independent. Which 

implies that the error terms epsilon i they are not independent, and there exist some sort 

of you know autocorrelation between the errors. So, let me write down the formal 

definition of autocorrelation that you know already. 
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Errors are autocorrelated or some time we call serially correlated means correlation 

between errors s steps apart are always the same. That means, the correlation between 

epsilon u and epsilon u plus s is equal to, we denote this by, I mean this is not zero, and 

we denote this by rho s and this is for s equal to 1, 2 like this. This is what we mean by 

the autocorrelation in the error term, the error are correlated or serially correlated means 

correlation between errors s step apart are always the same. 

So, we talked about the source of this autocorrelation and the effect of autocorrelation in 

the previous class. And you are talking about the how to detect the presence of 

autocorrelation, once you have given a time data, we suspect that there exist 

autocorrelation but, you have to test whether autocorrelation exist or not. That means 

whether the error terms are correlated or not, for that we talked about statistical test 

called Durbin Watson test. We could not finish that in the last class so we sort of repeat 

that thing today again. So, here is the slide from my previous class, the Durbin Watson 

test. 
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So, you want to feat model. This is a multiple linear regression model by using the least 

square technique who the observation this. This could be a time series data that means 

the observations are taken sequentially in time. So, what we usually assume is that we 

assume that this epsilon the error term follows normal distribution with 0 sigma square, 

that means we assume that all the correlation rho s is the correlation between errors s 

step apart, that is zero that is what we assume. Now, here what we want to test is that we 

want to test whether this assumption is justified or not. 
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Here, is the hypothesis to test that, we test the hypothesis now, hypothesis that rho s is 

equal to 0 against the alternative hypothesis rho is equal to rho to the power s. Basically, 

you want to test whether this is equal to 0 against whether rho s is greater than 0 or less 

than 0 or not equal to 0. Greater than 0 means positive autocorrelation, rho s less than 0 

means negative autocorrelation and not equal to 0 means autocorrelation exist. 

Now, why this particular form rho to the power s that I explain this comes from the 

assumptions that the errors are having, I mean this is the error of first order 

autoregressive error. That means you can regress epsilon u 1 epsilon u minus 1. That is 

for a first order autoregressive error. 

We assume that this is true for the errors terms and where z u is again the error term for 

this regression model which follows normal 0 sigma square, and z u is independent of 

epsilon u minus 1 epsilon u minus 2 of all the previous terms and it is independent of z u 

minus 1 z u minus 2. And I explained you know how to get this form in the previous 

class. Let’s refer my previous lecture for this one this is coming from the assumption of 

first order auto regressive assumption. 
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Now, to test this hypothesis we are trying to test the hypothesis whether the correlation 

between the errors which are a step apart is equal to zero or that is equal to rho to the 

power of s. To test this hypothesis what we do is that we consider this Durbin Watson test 

statistic.  



Now, this involves the difference of residuals, successive residuals as you can see here. 

But, how to get them here is that you first fit regression model using ordinary least 

square technique assuming that all the assumptions are true on error term. And then 

compute the residual once once you fit this model, what you get is that you get y hat is 

equal to x beta hat. So, you have the fitted model once you have the fitted model you can 

compute e which is equal to y minus y hat, this is the observed and this is the estimated 

response and so you have all the residuals and then you form this base statistic. 

And it is known that this distribution of d lies between 0 and 4, and it is symmetric about 

2. Now, we are trying to test this hypothesis based on this, and the test statistic to test this 

hypothesis is this one, suggested by Durbin and Watson. Now, let me talk about the 

critical region you know how to decide whether to accept or reject this reasonal 

hypothesis based on this d value. 
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So, here is the first case. One sided test against the alternative, see we started with the 

hypothesis like h naught that rho s is equal to 0 against h 1, that rho s is equal to rho to 

the power of s. Now, we are testing the hypothesis which is rho equal to 0 against rho is 

greater than 0. Suppose this is true then rho s is also greater than 0, that means for all s, s 

equal to from s is 1 2 anything. So, testing this hypothesis is same are testing this 

hypothesis. Once rho is equal to 0 if null hypothesis is 0 then rho s is going to the 0. If 

the alternative hypothesis is true that means rho is greater than 0 then the original 



hypothesis says that rho s is greater than 0. That means the data has no positive 

autocorrelation.  

Well, so you have the Durbin Watson test statistic value d and if d is less than d L then it 

says that you reject h naught, d is greater than d u then you accept h naught and if it is 

between d L and d u the test is inconclusive. Now, let me talk little bit about what is this 

d L, this d lower value and d upper value. There is a table for d, d table. There you will 

get this d L and d u value for different n depending on how many observations are there. 

So, for different n and for different alpha the label of significance. Say for example, n 

equal to 20 in our previous example on soft drink concentration sale, you will get the d L 

value based on the different choices of alpha. 

There exist a table for this d low and d up value. Well, if the observed d value is in 

between d L and d u, then the test is inconclusive. I talked about the significance of why 

we reject the null hypothesis h naught when the d value is small. So, the d value you 

know what is d right, d is e u minus e u minus 1 square by e u square 1 to n minus 1 

perhaps and this is 2 to n, no this is till n. If d value is small we reject the null hypothesis 

that means we will accept all alternative hypothesis, that means we say there exist a 

positive autocorrelation. 

When d is small there exist positive autocorrelation. Now, if you can recall the scatter 

plot for d i and against d i minus 1, so if you see the scatter plot like this we say there 

exist positive autocorrelation. That means e i increases with e i minus 1, so the ith 

observation depends on i minus 1 ith observations. There is a correlation between the 

successive observations.  

So, if the data are centered about this line e i equal to e i minus 1, that means the 

successive error terms are of similar magnitude they are almost same. Here, it says the 

positive autocorrelation indicates successive error terms are of similar magnitude that 

means they are almost same. So, the difference in residual this difference will be small. 

That is why you know, I mean the small value of d indicates the existence of positive 

autocorrelation. I hope this is clear. 
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Now, let me go for the second case. One sided test against alternative rho less than 0. The 

meaning of this one is that original we stared with the hypothesis that rho s is equal to 0 

against h 1 that rho s is equal to rho to the power of s. Now, if rho is negative then this 

rho s is going to be negative that means the alternative hypothesis says that there exist 

negative autocorrelation.  

And this can be tested by testing the same statistic d. So, here it says that if 4 minus d is 

less than d L, you reject h naught. If 4 minus d is greater than d u, you accept h naught. 

And if 4 minus d value is in between d u and d L the test is inconclusive. So, similar 

argument. Here, basically we want to test hypothesis and finally, testing this hypothesis 

is same as testing rho equal to 0 against h 1 rho is less than 0. And the final case, the 

third case. 
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Case three, here we test h naught rho equal to 0 against the alternative hypothesis that 

rho is not equal to 0. So, it is a two sided alternative. And, here if d is less than d L or 4 

minus d is less than d L we reject h naught so small value of d indicates that there exist a 

autocorrelation. And if d is greater than d u and 4 minus d is greater than d u, then you 

accept h naught, so the high value of d indicates that there is no autocorrelation in the 

error and otherwise the test is inconclusive. Now, let me consider an example. 
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This is the example I took in the previous class also, this is called soft drink concentrate 

sales. Here, we have two one regressor variable that is annual advertising expenditure 

and y t is annual sales. This is the regressor variable sorry x t is the regressor variable 

and response variable is y t, so we have the data x t y t sequentially in time. So, we have 

the data for 20 years starting from say nineteen hundred sixty to nineteen hundred 

seventy nine.  

That is of course, I mean this is what we call the time series data such data are called 

time series data. Initially, you know ignoring that whether the basic assumption while 

fitting a straight line model between y t and between y and x using the ordinary least 

square technique you forget about you ignore whether assumptions are true or not, you 

just fit a model between y and x. 

This is the fitted straight line model between y and x. Once you have the fitted model 

you can compute the residuals, so e t is nothing but, the observed response value and the 

estimated respond value at e at say t. So, once you have this residuals now you might be 

interested to test whether because, since it is a time series data we suspect that you know 

there might be autocorrelation present in this data. Now we can go for Durbin Watson 

test to test whether autocorrelation exist or not. 
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We have fitted this model say y hat y t is equal to 1608.508 plus 20.091 x t and then we 

can compute the residuals. Now, we use Durbin Watson test for this testing, that rho is 



equal to 0 against say h 1 rho greater than 0. Why we are doing this, because since the 

response variable y t and the regressor variable x t are time series data, they are taken 

over time series data so we suspect that autocorrelation may be present. If it is not a time 

series data, then we do not go for autocorrelation test. So, this is that hypothesis you 

want to test and we have the residuals. So, we computed the residuals here. Here you 

have the residuals.  

And, then you compute the Durbin Watson test statistic d which is equal to e i minus e i 

minus 1 or e t minus e t minus 1 square i is from 2 to 20 by e i square i is from 1 to 20. 

So, you can check that this one is 1.08. Now, you have to find d L value from the table 

for n equal to 20, because we have 20 observations here, so we can check from the table 

that d L is equal to 1.20 and d u is equal to 1.41 for n equal to 20 and the level of 

significance alpha is equal to 0.05. So, what you see that the observed value this d which 

is equal to 1.08 is less than d L which is equal to1.20. 

So, small d value indicates that there exist positive autocorrelation. Since, this is true we 

reject h naught, h naught says there is no autocorrelation. So reject h naught and 

conclude that the errors are positively auto correlated, this is one example to illustrate the 

Durbin Watson test. Now, given a time series data we suspect that there may exist 

autocorrelation, so what do we do is that we fit a simple straight line model using the 

ordinary least square technique.  

And once you have the fitted model we find the residuals and using those residuals we 

compute the Durbin Watson test statistics and see whether autocorrelation is present in 

the data or not. Suppose the result of Durbin Watson test is that autocorrelation is present 

in the time series data you are given. Then the next issue is how to estimate the 

regression coefficients in the presence of autocorrelation, so we will talk about that now, 

the parameter estimation method. 
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So, in the presence of parameter estimation method, in the presence of autocorrelation, in 

error, this is called Cochrane and Orcutt method to estimate the regression coefficients. It 

says that, considered the simple linear regression model with first order auto regressive 

error. That means, we are considering a model simple linear equation model y t is equal 

to beta naught plus beta 1 x t plus epsilon t. But, here epsilon t are not independent they 

are first order autoregressive error.  

That means where epsilon t can be regress on epsilon t minus 1, so epsilon t is equal to 

rho epsilon t minus 1 plus z t. And, this z t is normal distributed with mean 0 and variants 

sigma z, it is a constant variants. This is just to distinguish from sigma square and this 

equal sigma z square and they are independent. And here this rho is called this rho is 

autoregressive parameter or autocorrelation parameter might be. 

Now, how to fit this model because here you know you cannot apply ordinary least 

square technique, because the assumption on epsilon t that is this follows normal 0 sigma 

square with independent, this is not true, this is not true here. So, we cannot apply 

ordinary least square technique here. So, what we do is that we will transform this data y 

t to say y t dash. 
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We transform the response variable y t to y t dash, which is equal to y t minus rho y t 

minus 1. Then let me check, what is this y t prime now. So, y t prime is equal to y t 

minus rho y t minus 1, which I can write, I know that y t is equal to beta naught plus beta 

1 x t plus epsilon t, and this minus rho. What is y t minus 1 this is beta naught plus beta 1 

x t minus 1 plus epsilon t minus 1.  

So, this can be written as, beta naught into 1 minus rho plus beta 1 into x t minus rho x t 

minus 1 plus epsilon t minus rho epsilon t minus 1. Now, I can write this as beta naught 

dash plus beta 1 x t dash plus z t. If you can recall, we assume that this errors are first 

order autoregressive error. That means, epsilon t minus rho epsilon t minus 1 is equal to z 

t, where z t are independent with mean zero and variants sigma square z. 

Now, we have transformed the error term epsilon t to z t, where z t now this transform 

error, now error z t are independent. Now, you can apply the ordinary least square 

technique to this transform data. But, the problem here is that this y t prime and x t prime 

this transform time series data cannot be used directly as these two things, this y t dash 

which is equal to y t minus rho y t minus 1. This involves an unknown parameter rho, we 

do not know the value of rho right.  

And x t prime which is again x t minus rho x t minus 1, this two are function of unknown 

parameter rho. We cannot take this transformation right now but, let us see how to 



compute this unknown parameter, how to estimate this unknown parameter rho. So, this 

rho is called autocorrelation parameter or autoregressive parameter. 
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If you can recall, that this rho is basically epsilon t is equal to rho epsilon t minus 1 plus 

z t. Now, one way to compute or estimate this rho is that, we are given only the data x t 

and y t nothing else and it is known that they are time series data. So, what you have to 

do is that, you just fit simple linear regression model on x t y t, you compute residuals. 

And, then we know that the residuals are sort of observed e t, e t is observed value of 

epsilon t and then we can regress e t on e t minus 1 and from there we can compute the 

value of rho. So, let me explain that part now, first what you do is that you fit y t equal to 

beta naught plus beta 1 x t plus epsilon t, using ordinary least square technique. 

Using ordinary least square technique means you will assuming that this assumptions are 

true or you are ignoring all this assumption at this moment. So, you just fit the simple 

linear regression model between x t and y t and obtain the residuals e i. Once you have 

the residuals, then what you do is that you regress e i on e i minus 1, that is you fit a 

model like e i is equal to rho e i minus 1 plus z t. See, we do not know this epsilon t right 

and ith residual is sort of estimate of ith error term. 

So, we are regressing e i on e i minus 1, so you fit this model. We know all this residuals. 

So, what is this rho value now, how to get estimate for rho. That can be obtained by 

minimizing this quantities so we will go for the least square estimate. We will minimize 



this quantities s rho, s rho is say e i minus rho e i minus 1 square and we estimate rho in 

such a way that this is minimum, which essentially says that you differentiate this s rho 

with respect to rho this equal to 0 implies that summation e i minus rho e i minus 1 into e 

i minus 1 is equal to 0.  

I am differentiating with respect to rho and this gives me rho is from i is from 1 to n 

right. So, rho is equal to summation e i e i minus 1 i is from 2 to n now I have to take 

because of i minus 1 by summation e i minus 1 square i is from 2 to n and this is the 

estimated value of rho. 

And, this can be written as finally, I can write so the least square estimate of rho which 

is, let me call it rho hat which is equal to e t e t minus 1 t is from 2 to n by summation e 

from 2 to n e i minus 1, I can replace this as e t square t is from 1 to n. So, this is how we 

estimate rho and now we use this rho to transform the data. 
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So, using this estimate of rho, we obtain y t prime is equal to y t minus rho hat y t minus 

1 and x t prime is equal to x t minus rho hat x t minus 1. And, then you apply ordinary 

least square to the transform data, you can do this because you know that y t prime is 

equal to beta naught prime plus beta 1 x t prime plus z t. Where, z t follows all the 

conditions of Gauss Markov theorem. I mean, so this follows normal 0 z sigma z square 

and they are independent. So that is why you can apply ordinary least square technique 

to the transform data.  



And once you are done with you know ordinary least square, I mean once you have the 

fitted model like y t dash hat is equal to beta naught dash hat plus beta 1 hat x t, so this is 

the fitted model. Once you have the fitted model, where this parameters are obtained 

using ordinary least square technique, again you compete what you do is that you 

compute the residual, e residual for this model. 
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Now, you use Durbin Watson test to the residual obtained from the reparamaterized 

model. To check that whether still you have applied ordinary least square technique to 

the transform data y t prime x t prime they are also time series data. Again you need to 

check whether autocorrelation still exist on the transform data. So, if your Durbin Watson 

test indicates no autocorrelation in the errors then no additional analysis is needed. But, 

if Durbin Watson test indicates there is autocorrelation in the errors, then another 

iteration is required. 

That means you apply you need to check whether in the transform data you still have the 

autocorrelation using the Durbin Watson test. And, if you see in the transform data there 

is no autocorrelation in the errors for this transform data you stop there. There is no 

additional analysis required but, if you see that the Durbin Watson test indicated that 

there is exist what there is autocorrelation in the error for the transform time series data.  

Then you have to repeat the same thing once more and you know you may go for two 

iteration maximum and there you have to stop. So, here we talked about the data which 



are collected sequentially over time and they are called time series data. And, in time 

series data generally we suspect that the observations are not independent that essentially 

same like errors are not independent they are correlated. 

So, we need to test whether errors are auto correlated or not. For that, we have to learned 

Durbin Watson test and the residual plots and all this things. And, if you see that you 

know the Durbin Watson test results are indicate that autocorrelation exist in the data. 

Then we have learned a technique how to estimate the parameters in the presence of 

autocorrelation in the model. That is all for today. 

Thank you. 


