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Transformations and weighting to  
correct model inadequacies (Contd.) 

Hi, so this is my 3rd lecture, on transformation and weighting to correct model 

inadequacy. 
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And here is the content of this topic, we already talked about, variance stabilizing 

transformation and transformation to linearize the model and also it talked about 

generalized and weighted least square. So, today I want to give an example to illustrate 

you know, this weighted least square technique, we talked in the previous class and also I 

am going to talk about this, analytical methods to select atoms formation. Ok, so, let me 

repeat once more that, in simple linear regression model, or in the multiple linear 

regression model. We make several assumption; on the error terms and given set of 

observations, say x i and y i. You do not know whether, your data set satisfy those 

assumptions or not. 

So, you have started you have learn several techniques to check, whether your data set 

satisfied the model assumption or not, in module called module adequacy checking, most 



specifically you know this residual plot, that is residual against a fitted response is an 

effective technique to test whether, your data set satisfy the model assumptions or not. 

Now, in this module what we are doing is that, you know we are supposed, your data set 

does not satisfy the module assumption, then how to correct the module inadequacies. 

So, we have learned about two techniques, like one is called variance stabilizing 

transformation and also we learned generalized and weighted least squares to correct 

model inadequacy. 
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So, today what I will do is that now, I will sort of repeat, weighted least square technique 

and then I will give an example to illustrate, weighted least square technique. So, 

weighted least square, so, linear regression model, with non constant variance, can be 

fitted, by the method of weighted least square. So, this is the particular case of 

generalized, least square technique and here, the variance is are not equal, but, the 

observations are sort of uncorrelated, that means the coherence terms are equal to 0. So, 

suppose you are your given the data sets x i, y i and your trying to fit a model between 

this two variables, between x and y, a simple linear regression model. 

So, y equal to Beta naught, plus Beta 1, x plus epsilon and you know here that variance 

of epsilon i, is not equal to sigma square for all i, there is no constant variance. So, what 

we do here is that, we consider the weighted least square function. The weighted least 

square function is equal to S, which is y i minus, y i had the basically so, that is Beta 



naught hat minus Beta 1 hat x i. This is the function we minimized to estimate Beta 

naught and Beta 1, in simple linear in ordinary least square. But, here what will do is that 

we give weighted is W i to the ith observation.  

And what we started in the previous lecture is that, this W i is proportional to 1 by sigma 

i square, ok. And I already explained this part in the previous class, why this weight is 

proportional to 1 by sigma i square. So, today what I am going to do is that the main 

problem you see here, you are the you are just given the observation x i and y i. So, you 

do not know what are, what is this sigma i square for the i-th observation. So, I will 

illustrate, how to estimate this sigma i square for a given set of observation, x i and y I, 

ok.  
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So, let me take an example, of this restaurant food sales data. So, here we have 

observation 30 observations here and this is the response variable y, this is income on 

food sell, per month and this is the advertising expense x I, for the whole year and so, 

here is your response variable y I, which is stands for the income per month and the 

regressal variable x i, which is cost on advertising per year. And we are trying to sort of 

find a relationship between, these two variables x i and y i and so, first what we do is 

that, well your given x i and y i for i equal to 1 to 30. 
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And why do not you just first fit a simple linear regression model, say using the ordinary 

least square technique. You fit a model, y equal to Beta naught, plus Beta 1 x, plus 

epsilon. So, you know how to estimate this parameter Beta naught and Beta 1, that you 

have learned in the 1st module, call simple linear regression model. So, here is the fitted 

model and then once you have the fitted model, you compute the residuals. So, residual 

means, you compute e i, e i is equal to y i minus y i hat. So, this is the original 

observation, or response value and this is the fitted response value. 

And, the new plot, this is what I call I know, this is call the residual plot, this is call 

residual plot, residual plot. So, here residual is plotted against the fitted response of y i 

hat and look at this plot here, it looks very similar to outward, open final to me, right. So, 

that means here, the constant variance assumption is highlighted. So, what happen here is 

that, here variance of y increases, or sigma square increases as, y increases. So, the 

constant variance assumption is highlighted here. So, this implies that the ordinary least 

square is fit is in appropriate here. So, you cannot go for of course, the ordinary least 

square fit is the starting point and then you have realized that, from the residual plot that 

ordinary least square fit is inappropriate. 

So, now to correct this inequality of variances, we will go for weighted least square 

technique and for weighted least square technique, to use that we need to know sigma i 

square, because, there in the weighted least square technique in minimize this quantity S, 



which is W i, e i. That means, w i y i minus Beta naught hat, minus Beta 1 hat x i. We 

minimize this quantity. So, we need to know, the weight w i for the i-th observation from 

i equal to 1 to 30 here, ok. Now, I will talk about given a set of observation x i and y I, 

how to how to estimate, sigma i square, for the i-th observation. So, sigma i square is the 

population variance, from where the i-th observation is coming. 

(Refer Slide Time: 12:33)  

 

Well, so, here is the observation again; this is the income and the cost on advertising. 

Now, look at this data here. You can see that, this 3 x values there sort of near equal. So, 

what we do is that, will put them in one cluster. So, this is one cluster, these two values 

are again near equal. So, we put them in one cluster. Here you can see this five 

observations, or five regressal values there near equal, will put them in one cluster, so on. 

Now, here you compute the average of this cluster, x bar and the idea here is that you 

know, this 3 points are enough near equal to consider them as a single point. So, 

corresponds to a single response, corresponds to a single radix. 

What is call what you call x value? single x value. We have three responses and so, these 

are the three response values,  in this cluster and what we do is that, will compute the 

sample variance of this response values. So, here is the sample variance. I am show that 

you know what is sample variance, correspond to this cluster here is the sample variance 

correspond to, this is sample variance correspond to these two observation and here is the 

sample variance. Correspond to these five observations, ok. So, on you compute the 



sample variances. Now, if you look at the x value, x bar value and the sample variance, 

you can see that the sample variance of the response variable y that increases, as x 

increases and if you sort of plot scatter plot between x bar and the sample variance. You 

will see that there is a that scatter plot will indicate sort of linear relationship between at 

these two, ok. 
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So, what we do is that, then, we fit a linear relationship between x and the sample 

variance. So, least square fit gives, s y square equal to, this is the estimated value, equal 

to minus 7376216 plus 7819.77 x bar, ok. So, what we are doing is that, we try to find 

the regressal variable, or x values. Which are near equal and then we consider them as a 

single a point, correspond to the regressal variable and then correspond to that single 

point. You have several response values and you compute the sample variance of those 

response values. 

So, you can think of like, that particular observation example, (Refer Slide Time: 12:33) 

this one. Now, you can think of that, this observation, if this is my advertising cost. Then 

the response for the income, whatever I get that is coming from a population. Which has 

sample, which has variance this much: ok and that we do for all the clusters. And then, 

we see the relationship between the sample mean for the, for advertising cost and the 

sample variance for the response variable and we fit a linear relationship between these 

two. Why we do that?  



Now, what you can do is that, you can substitute, each x i value, into this equation, gives 

an estimate of variance sigma square correspond to y i. Now, here you put x I, you have 

30 x i values and then, you will get some estimate of the variance. Correspond to that x i, 

that means you will get here, the estimate of sigma. So, sigma i square hat, that is you 

know basically, s y i hat ok. So, this square once you have, sigma i square, for all i equal 

to I mean estimate of sigma i square for i equal to 1 to 30. You can compute w I, which 

is equal to 1 by sigma square. (Refer Slide Time: 12:33) So, here you can see that, you 

compute the sigma i square, corresponds to I mean estimate sigma i square correspond to 

this point and then you take 1 by sigma a square will get the weights here. So, the weight 

has given here.  
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And then so, your now in a position to apply weighted least square technique. So, you 

apply weighted least square technique, because, you know the weights. All the weights w 

i from i equal to 1 to 30 and here is the model, obtain using weighted least square 

technique, ok. And now, to see whether this fit has any improvement, what the previous 

one. Again what you do is that, you have the fitted equation and then you compute the 



residual and you know the fitted response. So, you again what you do is that, you again 

plot draw the residual plot. 

So, this is plot of e i against y i hat and here instead of just simple residual, against the 

fitted response. You take the weighted residual and here also, you multiple that by the 

weight. So, here is this scat, here is the residual plot and this is the line, e equal to 0 and 

this sort of the residual plot indicates that, weighted least square has improves the fit. 

Because, before the weighted least square it was the sort of outward open panel, but, now 

it is, it has improve I mean here the residual are, all most like you know centered about 

the line e equal to 0. So, this is how we applied weighted least square technique to, 

whenever given a set of data. 

So, given a set of data so, the final massage so, given a set of data. You check whether, 

that satisfy the model assumptions. If it is not, then if you are willing to apply, weighted 

least square technique, you find out sigma i square. Because, the weight w i is 

proportional to 1 by sigma i square and we talked about how to find or how to estimate 

sigma i square just now. And then you fit a linear regression model using the weighted 

least square technique and finally, after fitting the after once you have the fitted model 

using the weighted least square technique. You again draw the residual plots and see the 

improvement ok. So, well this is what about the generalized least square and weighted 

least square technique. 
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And finally, will talk about one more technique, which is again to collect the model 

inadequacy. So, this technique is called Box Cox method. So, this is called Box Cox 

method and this one is a technique to correct the model inadequacy, by transforming the 

response variable ok and it says that. So, this one is in I mean this is, this one correct the 

model in inadequacy by transforming the response variable y to something else, ok and it 

says that useful class of transformation is power transformation, is power transformation. 

That is, you transform Y to, Y to the power of lambda, where, lambda is a parameter to 

be determined, ok. 

So, what you are doing is that. S o, you try to correct the model inadequacy by 

transforming Y to Y lambda and lambda is a parameter and which lambda whether it is 

2, 2.5 something, or minus 2 ok. Now, the problem with this power transformation or 

this particular power term transformation is that. So, the disadvantages is that as lambda 

approaches 0 Y to the power of lambda, approaches 1 right. So, that means, this is sort of 

meaningless, because, here all the response variable equal to 1. Irrespective of what is 

the value of regressal variable, all that response variable is equal to 1. So, this is and 

disadvantage of this particular power transformation, I mean transforming Y to Y 

lambda. 

So, it says that, the method says that, one approach to solve this difficulty is to use this 

transformation. Instead of Y transforming to Y lambda, you take this transformation W, 

which is equal to Y to the power of lambda, minus 1, by lambda for lambda equal 

lambda not equal to 0. And as you know that this function, tense to log Y, as lambda 

tense to 0, for lambda equal to 0. So, this solve the problem of all the response variable 

transforming to 1, as lambda tense to 1 as lambda tense to 0. But, the problem I mean 

problem with this one, or even this one is that, as lambda increases, the values of this 

functions change very much. Which makes it in practical: to compare regression models. 

As you see, you know of course, if lambda is large then W value will be very large and 

this makes it and in practical to compare the regression model.  
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So, we need to use some normalization factor here. So, the geometric mean of the 

response variable, which we denoted by Y dot, which is equal to Y i, n is used as 

normalization factor. So, what we do is that, we transform Y to V, where V is equal to Y 

to the power of lambda minus 1, by lambda into Y dot lambda minus 1. For lambda not 

equal to 0 and transform Y to Y dot log y. This is base e for lambda equal to 0. So, this is 

the transformations suggested by Box Cox method and the question is, now how to get 

this lambda value? So, given set of observation X I, Y i. What you are doing is that? a 

transforming all the response variable Y 1, Y 2, Y n to V 1, V 2, V n and use it to fit a 

linear model, between V and x. V equal to x Beta plus epsilon, by least square for any 

specified value of lambda. 

So, what Box Cox method does is that, you know it suggest some transformation from, 

some power transformation of course. From thorough response variable Y. So, you 

transform Y to V, for all i. I mean for transform Y i to V i for i equal to 1 to n. And then 

you fit a linear regression between the transform variable, V and the regressal variable X, 

by using the ordinary least techniques, for the specified value of lambda. Because, see 

still I did not talked about how to decide, how to fix the value of, how to decide the 

determine the value of lambda. 
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So, here is the method to determine the value of, to estimate the value of lambda. This is 

called maximum likelihood method of estimating lambda ok. So, what are the steps you 

know? It is suggest there, you know choose, a value of lambda from this interval, minus 

2, 2 it is a closed interval. At first and extend the range later if necessary, and then for 

each chosen lambda value, evaluate V and compute, S S residual correspond to that 

lambda. For the regression model, V equal to X Beta plus epsilon. For chosen value of 

lambda you fit this model, between X and Beta and then between X and V and then you 

compute the s s residual. You know what is this S S residual. 

And then it says that, the maximum likelihood estimator of estimating lambda, 

corresponds to the value of lambda. For which S S, residual lambda is minimum. So, this 

is you know of course, you compute you take different value of lambda between this, in 

this interval you compute, you fit the model between Y between V and X simple linear 

regression model, or of course, multiple linear regression model, if number of regresses 

is more than 1. And then you compute S S residual, for each lambda and you then you 

see for which lambda, this S S residual is minimum and that value of lambda is the 

maximum likelihood estimator of lambda ok. 
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Now, I given example, to illustrate this Box Cox method. So, here, this is called you 

know electric utility data. So, I have 53 observations total and this y the response 

variable is, stands for the peak our demand and the regressal variable x stands for the 

energy usage per month. So, this is for a foe first family, this is the energy usage in the 

particular month and hers is the pick our demand. And what you will interested to do is 

that, you are interested to do find a relationship between,  the monthly usage and the 

pick our demand. So, here we have only one regression variable and the response 

variable and of course, what you will do is that. Will fit a, will start with a simple linear 

regression model using ordinary least square technique.  
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And here is the fitted model between y and x, y hat is equal to minus 0.8313 plus 

0.00368 x. So, this is the fitted model between, or the relationship linear relationship 

between x and y. And of course, you know we need to check whether, this fit is good, or 

in other sense, I mean whether this data set here given a data set x i y i, for i equal to 1 to 

53 I believe. 1 to 53 and you need to check whether this data set satisfied the basic 

assumption or not. For that what we do is that, you fit the simple linear regression model, 

does not matter whether this data set satisfied the basic assumptions or not. You fit a 

linear regression model using ordinary least square. 

And then you compute the residuals, you compute the residual and you have the fitted 

response, you plot them. So, this is what is called the residual plot and this residual plot 

will suggest, or will say whether the data set satisfy the basic assumption or not. So, here 

instead of I think instead of e I, we have standardized, we have use standardized residual 

does not matter. So, if you see the residual plot here. So, t i is plotted against estimated 

response. So, you can see here that again, this residual plot is sort of outward open panel. 

That means, this residual plot indicates that, ordinary least square fit is not appropriate 

and because, of the fact that here, the variance of y increases, or sigma square increases 

as y increases, ok. So, this data sort of highlight the constant variance assumptions. So, 

we cannot continue with the ordinary least square fit, here what we I will do is that? will 

try to apply the Box Cox technique here. 
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So, the residual plots suggest that the error variance increases at as you know, energy 

consumption increases. That means, I think the this is the x value y. So, this is the 

ordinary least square fit and now, what we do is that will take a lambda, from this 

interval minus 2, 2 plus 2. So, first we start with minus 2 and you compute V, you know, 

what is that V for lambda equal to 2. So, you transform here Y to V and then you fit a 

model between V and X, V equal to X Beta plus epsilon, ok and here is the residual 

value. 

So, you do it for different lambda value and compute the corresponding S S residual. So, 

here you can see that, S S residual is minimum for lambda equal to 0.5, ok. So, this is 

called the maximum likelihood estimate of lambda. So, maximum likelihood estimate of 

lambda is; lambda hat is equal to 0.5. So, the transformation finally, we go for is this 

one. You transform Y to, Y to the power of half that is Y to the power of lambda, minus 

1 and lambda Y to the power of lambda minus 1. So, lambda minus 1 is again half year. 

So, this is the final transformation, this is the geometric mean of the response variable. 

So, you transform Y to this. So, this is the suggestion from the Box Cox technique and if 

you check the residual plot for this transform data, for lambda equal to half. 
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Now, you can see the line e equal to 0. So, the transform fit here, I mean has improved 

because, this residual here, the standardized residual are all most central about the line i 

equal to 0, ok. 
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So, this is what the Box Cox method is and now, we have some time. So, what we do is 

that, will talk about some problem. Ok see the problem here, suppose, we have n 

observations of variables X 1, X 2, X k and Y. Where X’s are of course: regressor of 

weighted variable and Y is response variable. You have n observation for this variables, 



suppose, you have told that, observation Y i are uncorrected. But, the last observation 

has variance, 4 sigma square rather than sigma square. When the problem is that find the 

best linear unbiased estimated blue, of Beta using weight least square. Because, you 

know this sort of fit the weighted least square assumption, because, weighted least square 

is the particular case of generalized least square and in weight least square we assume 

that the observations are uncorrelated. But, the variances are non constant, I means, they 

are unequal. 

So, what the data we have here is that variance of Y I, is equal to, which is equal to of 

course, variance of epsilon i. Which is equal to sigma square, for i equal to 1 to n minus 

1 and variance of Y n, which is n as variance of epsilon n is given to be 4 sigma square 

well. So, the what is the variance co efferent of matrix here, variance of epsilon is equal 

to n sigma square and the data are uncorrelated. So, the variance terms all equal to 0, 0 

sigma square 0 0 0. And then finally, here it is, 4 sigma square, ok. So, this I can write as 

V sigma square, where V is diagonal 1, 1, 1 and then finally, it is 4 ok. 

So, what you have to do you have to find, best linear unbiased estimated of Beta. That is 

the regression co efficient. So, if I forget the formula for the estimated best linear 

unbiased estimated of Beta. You can derive it of course, let us start with the model Y 

equal to X Beta, plus epsilon and this variance of epsilon is not of the form sigma square 

i. So, what you do is that, in the generalized this technique, what we do is that we take a 

transformation of this model. You multiple by a matrix called G, G Y is equal to G X 

Beta, plus G epsilon. So, G Y are the transform data now and we need to choose a 

correct G right. 

So, and also we need to make this variance of G epsilon, which is equal to sigma square 

G V G prime, I hope you understand this one. I want this to be sigma square, i which is 

equivalent to G V G prime is equal to I, right; which is same as V inverse equal to G 

prime G, ok. So, V inverse is equals to we need to choose G such that V inverse is equal 

to G prime G and we know that, Beta hat is equal to X prime, G prime, G X inverse, X 

prime, G prime, G Y. I hope you understand this, because, in the simple linear regression 

model it is, Beta hat equal to just X prime X, inverse X prime Y.  

So, what I am doing is that I am replacing X by G X and Y by G Y. Then you get this 

formula. So, this 1 is equal to this is no this is known as this is blue, ok. So, what I have 



to do here is that, this G is nothing but, V inverse. So, the blue is, final blue is X prime, 

V inverse X, inverse X prime, V inverse Y and I know my V, this is my V and then no I 

know what is V inverse. So, the final best linear unbiased estimator of Beta is, X prime, 

diagonal of inverse of this. So, that will again diagonal matrix and it is 1 1 1 by 1 4 

inverse of this elements. This is my V inverse, X whole inverse and then X prime again 

the inverse that is diagonal 1, 1, 1, 1 by 4 Y, right. 

So, this is what the blue of, best liner unbraided estimator, of Beta hat. When you have 

this sort of restriction for the variance of Y i ok. So, that is all for today and we have to 

stop now. So, just let me conclude the whole module once more. So, we know that the 

simple linear regression model, or in the multiple regression model. There are some basic 

assumptions. Now, given a set of data you would not know, whether your set satisfy 

those basic assumptions or not. So, what you do is that, you start with the simple you fit 

a simple linear regression model, using the ordinary least square technique.  

And then you compute the residuals, you go for the residual plot, which is plot between 

residual and the fitted response. From the residual plot we say, whether your 

observations satisfied the basic assumptions or not. Well, so, if your data does not satisfy 

the basic assumption, then what we have learned in this module is that. How to correct 

those module inadequacy, using different techniques like, variance stabilizing 

transformation, weighted least square technique. Generalized least square techniques and 

also finally, we talked about, regarding transformation of response variable by using Box 

Cox method. So, that is all for today. 

Thank you.  


