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Simple Linear Regression 

Hi, this is my second lecture in module one and on simple linear regression. In the first 

lecture, we have introduced simple linear regression model and they have learnt how to 

estimate the regression coefficients using least square technique. 
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Here is the content of today’s lecture first will give one example on simple linear 

regression. And then we talk about useful properties of least square fit and then the 

statistical property of least square estimator. 
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Well let me just recall the simple linear regression model. The general form of simple 

linear regression model is a Y equal to beta naught plus beta 1 X plus epsilon. 
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Were Y is the response variable X is the regressor variable and epsilon is the error term 

and beta naught is intercept and beta 1 is slope and we call beta naught into beta 1there 

regression coefficients. Now, given a set of observations say X i Y i for i equal to 1 to n 

we learned how to estimate the regression coefficients beta naught and beta 1 using least 

square technique. So, least squares method determines the parameters means the 



regression coefficients beta naught and beta 1 by minimizing residual sum of squares SS 

residual. Which is equal to e i square i equal to 1 to n, which is basically equal to the 

difference between the observed response value and the estimated response value y i hat. 

So, this is the residual and y i hat this is y i minus t i hat is the is equal to beta naught hat 

plus beta 1 hat X. So, this is beta naught hat minus beta 1 hat X i whole square. Because 

the fitted equation is y i hat equal to beta naught hat plus beta 1 hat X i. So, we learned 

that beta naught I mean this SS residual or residual sum of squares is minimum. When 

beta naught hat is equal to Y bar minus beta 1 hat X bar. 
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And beta 1 hat is equal to summation x i minus x bar y i minus y bar by summation x i 

minus x bar whole square. Well this quantity is also denoted by the symbol S x y by S x 

x and this one can also be written in the form summation x i y i minus x bar y bar n times 

by summation x i square minus n into x bar square. This is not difficult to observe just a 

simple algebra shows that this quantity is equal to this quantity. So, let us move to the 

disney toy example this is the cost on advertising and this is the sales amount, so these 

are the x i values and this are the y i values. And even to fit a straight-line model to this 

data this table shows. 
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Summation X i is equal to 15 summation, Y i is equal to 10 summation, X i square is 

equal to 55 summation, Y i square is equal to 26 and summation X i Y i is equal to 37. 
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And then we can compute the value of beta 1 hat. So, beta 1 hat is equal to summation X 

i Y i minus n times X bar into Y bar by summation X i square minus n times X bar 

square which is equal to 0.7. And similarly beta naught hat is equal to Y bar minus beta 1 

hat X bar which is equal to minus 0.1. Well so the fitted equation is Y hat equal to beta 

naught which is equal to minus 0.1 plus 0.7 into X. So, this is the fitted equation for the 



given observations, now what is the interpretation of this regression coefficient beta 1. 

So, it says that that the expected value of the response variable or. 
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The expected sales amount is increased by 0.7 units for each 1 dollar increase in 

advertising and the interpretation of the coefficient beta naught hat is that. 
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What is the average sales amount when X is equal to 0 beta naught is equal to Y hat, 

when x is equal to 0. So, beta naught beta naught hat this basically gives some idea about 

the average value of sales amount when the advertising cost is equal to 0. So I mean its 



very difficult explain why it is so because see we can expect some sales amount without 

advertising also. But here it is negative anyway, so the beta naught hat is the average 

sales volume which is equal to minus 0.1 when the advertising is equal to 0. 
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Well next we move to the useful properties of the least square fit. It says that we know 

what is residual is e i is the difference between the observed response value and the 

predicted or the estimated response value. So, it says that the sum of residuals in any 

regression model that contains a intercept beta naught is always 0. I am going to prove 

this one, so this summation e i is equal to 0.  

And the second property says that the sum of the observed value is equal to the sum of 

the fitted values y i hat. So I mean this second property is consequence of the first 

property it is obtained from this one only. Let me prove the first property which says that 

the some of residuals in any regression model that contains an intercept beta naught is 

always equal to 0. So, what it to do is that we have to recall the. 
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L S method least squares method least squares method determines the parameter beta 

naught and beta 1 by minimizing by minimizing SS residual that this residual sum of 

square. Which is equal to summation e i square and this is basically equal to summation 

y i minus y i hat square. And this is equal to summation y i minus beta naught hat minus 

beta 1 hat x i square well. 

So, least squares method or L S method determines the parameter beta naught hat and 

beta 1 hat by minimizing this quantity. So, what we do is that we differentiate the 

residual sum of square with respect to beta naught hat and we equate that with 0. We did 

the first normally equations the normally equations differentiate SS residual with beta 

naught hat that gives one normally equation.  

And again we differentiate residual sum of squares with respect to beta 1 hat that gives 

another normally equation the first normally equation. We differentiate SS residual with 

respect to 0, sorry with respect to beta naught hat that gives summation y i minus beta 

naught hat minus beta 1 hat x i 2 times of this and one negative sign here. So, and we 

equate this 2 equal to 0 this is the first normally equation and which is nothing but see. 

This is nothing but y i minus y i hat, so this one is nothing but summation e i equal to 0. 

To the first normally equation says that the sum of the residual is equal to 0. And this 

residual sum of residual e i is nothing but summation. So, this is the first property the 

second property says that well this is residual some of residual is equal to y i minus y i 



hat this is the residual ith residual. And we know this is equal to 0 from the first property, 

which implies that summation y i is equal to summation y i hat. So, this one is the 

consequence of the previous property or the first property it says that the sum of 

observed values equal to is equal to the sum of the fitted value well. So, next will move 

to the third property.  
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It says that summation x i e i equal to 0, that means sum of residuals waited by the 

corresponding value of the regressor variable is equal to 0. So, sum of residual e i waited 

by the corresponding value of the regression variable this is the value of the ith 

regression variable this is equal to 0. And the fourth property says that summation y i hat 

e i is equal to 0. That means the sum of residuals waited by the corresponding fitted 

value of the response variable is equal to 0, well let me prove this two properties. 

Property three and property four well by differentiating this residual sum of square with 

respect to beta naught hat. We got this normally equation this is the first normally 

equation, now again we differentiate this normally equation sorry this some of residual 

with respect to beta 1 hat. 
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And that gives summation y i minus beta naught hat minus beta 1 hat x i and we are 

differentiating with respect to beta 1 hat. So, this quantity will be multiplied by minus 2 

into x i, so minus 2 into x i which is equal to 0. This is the second normal equation and 

this one is nothing but summation y i. And this part is y i hat into x i equal to 0, which 

implies summation e i x i equal to 0 which is the third property. Now, the fourth property 

is summation e i y i hat this is equal to 0. But, summation e i y i is not equal to 0 you 

should note that how to prove that summation e i y i hat equal to 0.  

This is again consequence of the first property and the third property well this can be 

written as summation e i what is a y i hat y i hat is equal to beta naught hat plus beta 1 

hat x i which is equal to 0. Which is equal to which is equal to summation beta naught 

hat e i plus beta 1 hat summation e i x i. Now, see summation e i from the first property 

this is equal to 0. So, this is equal to 0 plus the third property says that summation e i x i 

equal to 0. So, this is basically beta naught hat into 0 plus beta 1 hat into 0. So, this is 

equal to 0, so you prove that summation e i y i hat equal to 0. Ok, so these are the some 

properties of least square fit and will be using them in the future. 
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Next move to the statistical properties of least square estimators. So, we have estimated 

the regression coefficient beta naught and beta 1 using least square estimators. And we 

are going to prove that both beta naught hat and beta 1 hat are unbiased estimator of beta 

naught an beta 1 respectively well let me prove that. 
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First I will prove that beta naught hat and beta 1 hat are linear combinations of 

observations y i, that means we want to say that they are linear estimator. Ok for 

example, considered beta 1 hat , so what is beta 1 hat beta 1 hat is equal to summation x i 



minus x bar into y i minus y bar by summation x i minus x bar whole square. Now, I said 

that this is linear combination of the response variables y i s other observation y i s. This 

can be written as this can be written as summation x i minus x bar into y i only by 

summation x i minus x bar whole square this is it i mean this two quantity are same. 

One can very easily prove that summation x i minus x bar into y bar that quantity is 

equal to 0. This is not difficult to prove that now this is from i equal to 1 to n and i equal 

to 1 to n. Now, this can be written as summation C i y i were C i is equal to here i equal 

to 1 to n were C i is equal to x i minus x bar by summation x i minus x bar whole square. 

So, I prove that beta 1 hat is a linear combination of the observations y i. Similarly, one 

can prove that beta naught hat is also easily what is beta naught hat beta naught hat. 
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Beta naught hat is equal to y bar minus beta 1 hat x bar. So, this is also a linear 

combination of the observation. Because this is nothing but this is nothing but 

summation y i from i equal to 1 to n 1 to n and minus beta 1 hat x bar. We already prove 

that beta 1 hat is a linear combination of the observation y i and the first term is also a 

linear combination of y i. So, the whole thing is a linear combinations of the observations 

y i. So, this just prove that the estimator we got they are linear estimator they are linear 

in y i next let me prove that the estimator beta naught and beta 1 they are. 
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Unbiased estimator that is we are going to prove that expectation of beta 1 hat is equal to 

beta 1. So, if this is true then we call beta 1 is an unbiased estimator. Well let me start 

from here the simple linear regression model is y i is equal to beta naught plus beta 1 x i 

plus epsilon i. Now, y bar y bar which is equal to summation y i i equal to 1 to n. This is 

equal to beta naught plus beta 1 x i will be replaced by x bar and epsilon i will be 

replaced by epsilon bar. So, were x bar were x bar is of course, equal to summation x i 1 

to n and epsilon bar is also equal to summation epsilon y summation epsilon y 1 to n. 

Then from here y i minus y bar is equal to y i minus y bar is equal to beta 1 into x i 

minus x bar plus epsilon i minus epsilon bar. So, the expected value of the expected 

value of y i minus y bar is equal to. See one thing you should observe that you should 

always remember that y is a random variable. The response variable y is a random 

variable, but x is not a random variable it is its controlled variable. So, for given i this is 

just a constant, so expected value of y i minus y bar is equal to beta 1 x i minus x bar 

plus expectation of epsilon i minus epsilon bar. 

Now, epsilon i is the random error which follows which is a random variable and this 

follows we are assumed that epsilon i follows normal 0 sigma square. So, the expected 

value of e i is equal to 0 and similarly the expected value of epsilon bar is also equal to 0. 

The expected value of y i minus y bar this term is going to be 0 is equal to beta 1 into x i 

minus x bar. Now, our aim is to prove that beta 1 hat is an unbiased estimated of beta 1, 



so expectation of beta 1 hat is equal to expectation of what is beta 1 hat beta 1 hat is 

equal to summation x i minus x bar y i minus y bar by summation x i minus x bar whole 

square. So, this one is nothing but summation x i minus x bar into expectation of y i 

minus y bar by summation x i minus x bar whole square. 
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Now note that we proved that expectation of y i minus y bar is equal to beta 1 into x i 

minus x bar, so expectation of beta 1 hat is equal to summation x i minus x bar. 
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And this quantity is equal to beta 1 beta 1 x i minus x bar by summation x i minus x bar 

whole square. So, this is nothing but beta 1 only because this one is nothing but x i minus 

x bar whole square. So, he proved that beta 1 is an beta 1 hat is an unbiased estimated of 

beta 1 similarly, next we prove that beta 1 hat. 
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Sorry beta naught hat is also unbiased that means we are going to prove that expectation 

expected value of beta naught hat is equal to beta naught, this is equal to expectation of y 

bar minus beta 1 hat x bar. So, what is y bar y bar equal to we proved in the previous 

light y bar is nothing but beta naught plus beta 1 x bar minus beta 1 hat x bar. So, this is 

equal to expectation of beta naught is beta naught expectation of beta 1 x bar is equal to 

beta 1 x bar. Now, the expectation of beta 1 hat just now we proved that expectation of 

beta naught beta 1 hat is equal to beta 1 hat sorry beta 1. So, this is equal to beta 1 x bar 

which is equal to beta naught, so we prove that both beta 1 hat and beta naught hat are 

unbiased. 
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Next, will talk about the variance of the variance of beta 1 hat and beta naught hat the 

variance of beta 1 hat is equal to sigma square by S x x and variance of beta naught hat is 

equal to sigma square into 1 by n plus x bar square by S x x. Anyway I mean we need to 

know how to how to derive these things well. 
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So, next we talk about the variance of variance of beta naught hat and beta 1 hat. So, the 

variance of beta 1 hat is equal to variance of what is beta 1 hat beta 1 hat is equal to 

summation x i minus x bar into y i minus y bar by summation x i minus x bar whole 



square. Well now this can be written as the variance of summation x i minus x bar into y 

i by summation x i minus x bar whole square. And this is nothing but see I before also I 

proved that this estimator is a linear combination of the observation y i.  

So, the variance of this quantity is and since y i y i is are independent you know well this 

is equal to variance of summation C i y i, were C i were C i is equal to x i minus x bar by 

summation x I minus x bar. Now, we know that the variance of the variance of 

summation C i y i is equal to summation sum of variances C i square variance of y i. 

This is true because because y i s are y i s are independent and we know that variance of 

y i is equal to sigma square this is equal to summation c i square sigma square. Now, 

what is summation C i square summation C i square we know this is this is C i. So, 

variance of beta 1 hat is equal to sigma square into summation C i square which is equal 

to summation x i minus x bar C i square. 
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So, summation x i minus x bar whole square by summation x i minus x bar whole square 

and the square of the whole thing. So, just replacing C i square by its value and this 

becomes sigma square by summation x i minus x bar whole square, which is equal to 

sigma square by S x x by notation. So, he proved that variance of beta 1 hat is equal to 

sigma square by S x x. 
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So, next we talk about the variance of beta naught hat variance of beta naught hat is 

equal to variance of y bar minus beta 1 hat x bar right. Now, this variance can be written 

as variance of y bar plus the variance of beta 1 hat x bar minus 2 times x bar the 

covariance of y bar and beta 1 hat right.  

Now, you know the variance of y bar i hope you know it it is equal to its not difficult to 

prove that this is equal to sigma square by n. Let me prove this variance of y bar is equal 

to the variance of 1 by n summation y i know y i is an independent. That is assumption 

we made at the beginning because e i is an independent. So, epsilon i s are independent y 

i s are also an independent the variance of this quantity is equal to summation of variance 

of y i by n square right and variance of y i is equal to sigma square. 

So, summation sigma square n times 1 to n y n square, so this is basically n sigma square 

by n square. This is equal to sigma square by n the variance of y bar is equal to sigma 

square by n, we know the variance of beta 1 hat and this is the constant quantity. So, the 

variance of this quantity is x bar square into the variance of beta 1 hat which is equal to 

which is equal to sigma square by S x x just we proved. Now, what about this covariance 

this is going to be this co-variance is going to be 0 this is 2 x bar into 0 into 0, but we 

need to prove this one. Ok the covariance between this can be proved that the covariance 

is equal to 0.  



(Refer Slide Time: 45:07) 

 

The covariance between y bar and beta 1 hat is equal to the covariance between what is y 

bar y bar is equal to summation y i by n. And beta 1 hat is equal to summation x i minus 

x bar into y i by summation x i minus x bar whole square right. Now, this covariance is 

see y i are independent, so the covariance between y i and y j is equal to 0 when i is not 

equal to j. So, this is nothing but the summation of x i minus x bar the covariance 

between y i and y i. So, which is nothing but the variance of y i right by summation x i 

minus x bar whole square and 1 n here. This is equal to this is equal to summation x i 

minus x bar variance of y i is equal to sigma square by n into summation x i minus x bar 

whole square. And this quantity see summation x i minus x bar is equal to 0. 

That is why the numerator is 0, so this is equal to sigma square into summation x i minus 

x bar this quantity is 0 always by n into summation x i minus x bar whole square. So, this 

is nothing this is equal to 0, because of the fact that summation x i minus x bar is always 

equal to 0. So, he proved that so he proved that covariance is equal to 0. 
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That means the variance of beta naught hat is equal to sigma square by n plus x bar 

square into variance of beta 1 hat which is equal to sigma square by S x x which we just 

proved. This is sigma square by into 1 by n plus x bar square by S x x, so we found . So, 

we proved that both the beta naught and beta 1 they are unbiased estimated sigma square. 
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And also we proved that the variance of beta naught hat is equal to sigma square 1 by n 

plus x bar square by S x x and the variance of beta 1 hat is equal to sigma square by S x 

x. Now, see both the variance formula the variance for beta naught hat and beta 1 hat 



both the involved a sigma square. So, but we do not know what is the value of sigma 

square, so sigma square must be replaced by its estimators. So, you need to estimate the 

value of sigma square, so next we talk about the estimation of sigma square, how to how 

to estimate sigma square. 
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Estimation of sigma square well the estimation of sigma square is obtained from the 

residual sum of square SS residual. And finally will be proving that expected value of SS 

residual by n minus 2. This thing is equal to sigma square that means the sum of residual 

sorry residual sum of square by n minus 2 is unbiased estimated of sigma square. And 

will be we can compute the value of residual sum of square given a set of observations 

and we know n. So, using this formula we can we can estimate the value of the 

population variance sigma square. So, well we need to prove this one SS residual is equal 

to summation e i square. That we know and which is equal to the difference the ith 

residual is the difference between ith observation and the estimated value y i at. 

So, this is equal to this is equal to square here this is equal to summation y i minus what 

is y i at is equal to beta naught hat minus beta 1 hat x i whole square. So, what we do 

here is that we know beta naught hat his equal to just trying to find a convenient form for 

SS residual. So, beta naught hat is equal to y bar minus beta 1 hat x bar right. So, will 

just plug this value here this is equal to summation y i minus y bar minus beta 1 hat x i 

plus beta 1 hat x bar whole square. 



This is equal to summation y i minus y bar minus beta 1 hat x i minus x bar whole 

square, now this can be written as summation y i minus y bar whole square minus. Let 

me write plus beta 1 hat square summation x i minus x bar whole square minus 2 times 

beta 1 hat summation x i minus x bar into y i minus y bar right. 
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So, this can be written in the form S y y plus beta 1 hat square is x x minus 2 beta 1 hat is 

x y, just notation. 
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Now, see we know that beta 1 hat is equal to S x y by S x x right so what I will do is that 

I will replace this S x S x y by beta 1 hat into S x x. So, this is equal to S y y minus beta 

1 hat is S x x minus 2 beta 1 hat. Now, replace this one by beta 1 hat S x x into this 

becomes S y y plus beta 1 hat S x x minus two times. This is square here square here beta 

1 hat square S x x, so which is equal to S x sorry S y y minus beta 1 hat S x x. This is a 

convenient form of SS residual and we are going to use this one in the next class. To 

prove that because you need to find the expected value of this one to prove. 
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The expectation of SS to prove that expectation of SS residual by n minus 2 equal to 

sigma square well, so will continue in the in the next class. 

Thank you. 


