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Hi, this is my 3rd lecture on Multicollinearity. The problem of multicollinearity exists 

when two or more regression variables are dependent or you can say that when two or 

more random regressive variables are linearly dependent. So, in the last class, we talked 

about different technique techniques to detect multicollinearity, we learned about 

examination of correlation matrix, and also we learned about you know Eigen system 

analysis of x prime index matrix or the correlation matrix. 
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So, first I will recall the Eigen system analysis we learned in the previous class, well 

what we will do here is that we first compute the K minus 1, Eigen values of the x prime 

x matrix, and then we compute the condition number which is K denoted by K equal to 

lambda max by lambda minimum. 
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And the larger value of K indicates the severe problem with multicollinearity as a general 

rule you know this is what we talked in the last class, if K is less than 100 then that 

indicates no serious problem with multicollinearity. If K is between 100 and 1000 then 

that indicates moderate to strong multicollinearity, but if K is greater than 1000 then that 

indicates a severe problem with multicollinearity. 

So, this is how we you know condition number is a used to detect the multicollinearity, 

the advantage of this Eigen system analysis is that it not only detect multicollinearity, it 

can measure the number of linear dependencies in the correlation matrix. And also, you 

know it can determine or it can identify the nature of linear dependencies between the 

regresses, so for that you know what we do is that we compute the condition indices. 
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Here, is the condition indices K j, K j is associated with the jth regressor, so the K j is 

lambda maximum by lambda j, and the number of K j greater than 1000 is a useful 

measure of the number of linear dependencies in x prime x. 
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And then I illustrated this result using the webster data, this is the webster data we talked 

about in the previous class, we have 6 regressors response variable right and I referred 

this data as you know webster data. 
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Now, for the Eigen values of x prime x matrix of the correlation matrix for the webster 

data is here, you know lambda 1 lambda 2 lambda 3 lambda 4 lambda 5 lambda 6 and 

the smallest Eigen value is this one, which is closed to 0. Now, we compute the condition 

number, so the condition number is 2188 which is greater than 1000, so this condition 

number indicates the presence of severe multicollinearity in the webster data. So, next 

what we will do is that, we will compute the condition indices also since we know the 

Eigen values we can compute the condition indices. 
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So, the condition indices are what is condition indices K j, K j is equal to lambda max by 

lambda j, so K 1 is lambda max is 2.4288 by lambda 1 is basically maximum, so lambda 

1 is 2.428 which is equal to 1. The K 2 is lambda max which is equal to 2.4288 by 

lambda 2 which is equal to 1.5462 equal to 1.57. Similarly, you compute K 3 which is 

equal to lambda max by lambda 3 is equal to 7.88, K 4 is lambda max by lambda 4 that 

is 2.4288 by lambda 4 is 0.9221 which is equal to 2.633. 

So, I did this a mistake here, this is K 3 this is K 5, any way you can compute for this K 

3 and then K 4 is equal to 3.05, K 5 is equal to this quantity and K 6 is equal to 2188.11. 

Now, we know that here only one condition index exceed 1000, that is K 6, so we 

conclude that there is only one near linear dependents in the data, because you know we I 

mentioned before that the number of K j greater than 1000 that measures the number of 

linear dependencies in the data. 

And since, here only one K j that is K 6 is greater than 1000, that is why the number of 

linear dependents or dependencies is equal to one only. Well, now what will this 

technique has lot of advantages like you know it not only detect the presence of 

multicollinearity it can measure the number of linear dependencies in the data and also it 

can identify the nature of the linear dependencies. 
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So, now, we will explain that portion, here Eigen system analysis can also be used to 

identify the nature of linear dependencies in data. So, let me explain this portion first, the 



correlation matrix x prime x may be decomposed as you know x prime x you can write 

or decompose as x prime x is equal to T D T, where D is a diagonal matrix, whose main 

diagonal elements are the Eigen values. So, D equal to diagonal lambda 1 lambda 2 

lambda K minus 1, and t is equal to t is a K minus 1 cross K minus 1 matrix, and whose 

the columns of this T matrix their t 1 t 2 t K minus 1. So, here this t i is the Eigen vector 

associated with lambda i, where t I is equal to a 1 a 2 a K minus 1 is the Eigen vector 

associated with Eigen value lambda i, so this is the decomposition of the correlation 

matrix. 
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Now, if lambda j, if the Eigen value lambda i is closed to 0, the elements of the 

associated Eigen vector, that is t i describe the nature of linear dependents. So, the nature 

of this linear dependents is like a 1 x 1 a 2 x 2 plus a K minus 1 x K minus 1 is equal to 

0, so this coefficient of the regressor variables a 1 a 2 a K minus 1. They are basically the 

elements of t i, this is the Eigen vector associated with lambda i and lambda is very 

closed to 0, so t i is the Eigen vector associated with lambda i and t i is equal to a 1 a 2 a 

K minus 1. 

So, maybe I will just give the little motivation behind this, you know if lambda i is 

closed to 0 then the condition index associated with lambda i is large, I mean that would 

be greater than 1000. And I mean and then you will get one linear dependents between 

the regressor variables associated with lambda i, so that is why you know as I mentioned 



before also you know that the number of condition indices greater than 1000 that 

measures the number of linear dependencies in the data. And corresponding to each 

lambda i for which the condition index is greater than 1000, you will get a linear 

dependents or you will get you can identify linear dependents between the regressor 

coefficient. 
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Let me explain I mean illustrate this thing using the webster data, here the smallest Eigen 

value is lambda 6 which is equal to 0.0011 and the associated Eigen vector that is say t 6 

is equal to minus 0.447 minus 0.421 minus 0.541 minus 0.573 minus 0.006 minus 0.002. 

So, this is the associated Eigen vector corresponds to lambda 6 and then the nature of 

linear dependents is minus 0.447 x 1 minus 0.421 x 2 minus 0.541 x 3 minus 0.573 x 4 

minus 0.006 x 5 minus 0.002 x 6 equal to 0. 

And from here you know since these two are very small, we can ignore x 5 and x 6 from 

this equation and this implies that x 1 is equal to minus 0.941 x 2 minus 1.21 x 3 minus 

1.28 x 4. So, this is the linear dependents between the regressor x 1 x 2 and x 3 and x 4, 

and this linear dependents is associated with lambda 6. And if you have more Eigen 

value which are closed to 0, corresponds to each lambda i mean which are very small or 

which are closed to 0, you will get a linear dependents like this. So, what we learned 

from this Eigen system analysis is that it can detect the presence of multicollinearity, it 



can measure the number of linear dependencies in the data, and also it can identify the 

nature of linear dependencies in the data. 
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So, next we move to the variants inflation factor, this is another way to you know to 

detect the presence of multicollinearity, this is called variance inflation factors. So, first 

we will recall the variance of ith regressors coefficient, I mean variance of ith regressor 

coefficient means the variance of the least co estimate of i th regression coefficient beta i 

hat. 

We know that this one is equal to sigma square x prime x inverse the i ith element of x 

prime x inverse, now you know this can be it can be proved that this i ith element is 

equal to 1 by 1 minus R i square sigma square here. Now, what is this R i square R i 

square is the coefficient of multiple determination, when x i is regressed on the 

remaining regressors. 

Now, see if the ith regressor x i is nearly orthogonal to the remaining regressor, here you 

know this nearly orthogonal I mean that if the ith regressor is independent of the 

remaining regressors. Then R i square is small and 1 by 1 minus R i square is close to 

unity well, so the meaning of this one is that no x i is nearly orthogonal to the remaining 

regressors; that means, x i is independent of the remaining regressors. That means, there 

is no linear dependents associated with x i, I mean x i can cannot be represent in terms of 

the linear combination of the other regressors. 



Then the coefficient of multiple determination when you are regressing x i on the 

remaining regressors the coefficient multiple determination will be small, and the value 

of 1 minus 1 by 1 minus R square is close to unity, and the variance of beta i hat is going 

to be sigma square close to sigma square. Now, if x i is nearly linearly dependent on 

some subset of the of the remaining regressor, R i square value will be near to close to 1, 

R i square is near unity and 1 by 1 minus R i square is large. 

So, the meaning of this, you know x i is linearly dependent on some subset of the 

remaining regressors; that means, there is a linear dependents between x i and some 

subset of the remaining regressors. If some linear dependence is there between x i and 

some subset of the remaining regressors; that means, x i can be represented in terms of as 

a linear combination of some subset of the remaining regressors well. 

So, the which implies that R i square which is the coefficient of multiple determination 

when x i is regressed on the remaining regressors is will be large and that will be closed 

to unity. And that implies that the value of 1 by 1 minus R i square is large, that 

ultimately you know if x i is there is a linear dependence in the data between the 

regressors. Then variance of beta i hat is going to be large because this factor is going to 

be large well, so this factor you know this 1 by 1 minus R i square well let me write here. 
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So, variance of beta i hat is equal to sigma square into 1 by 1 minus R i square and this 

quantity this factor you know this can be viewed as the factor, by which the variance of 



beta i hat is increased due to linear dependents among the regressors well. So, if there is 

a linear dependence between x i and a subset of the remaining regressors, then the value 

of this is large, then the variance of beta i hat is also large. Now, if x i is independent of 

the remaining regressors or I say that it is if it is nearly orthogonal to the remaining 

regressors, then this value this factor is closed to 1 and the variance of beta i hat is almost 

equal to sigma square. 

So, the variance inflation factor VIF associated with regressor x i is defined by VIF i 

which is equal to 1 by 1 minus R i square and; obviously, large value of VIF i indicates 

possible multicollinearity associated with x i. The meaning of this one is that you know if 

multicollinearity associated with x i; that means, this we if this is large; that means, there 

is a linear dependence between x i and subset of the remaining regressors. Then only the 

value of this one is going to be large, so the large value of v i f i indicates possible 

multicollinearity associated with the regressor x i. 
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Now in general you know VIF i greater than equal to 5 indicates possible 

multicollinearity problem, and VIF i greater than or equal to 10 indicates that 

multicollinearity is almost certainly a problem. So, this is how the variance inflation 

factor associated with the ith regressor can be used to detect the multicollinearity, so this 

technique variance inflation factor can determine can detect the problem of 

multicollinearity. 



But, any I mean of course, it cannot identify the nature of multicollinearity, so Eigen 

system analysis is a better technique, because it can detect the multicollinearity, it can 

measure the number of linear dependencies in the data, and also it can identify the nature 

of linear dependences in the data. So, next we will be talking about you know if you can 

if you detect that the you know there is multicollinearity in the data, then how to deal 

with multicollinearity, so we will be talking about several techniques to deal with 

multicollinearity. 
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So, dealing with, so first technique is you know collect additional data, well you know 

collecting traditional data has been suggested, as the best method of dealing with 

multicollinearity. What it says is that let me illustrate this one it will get ,suppose you 

have you are in the multiple linear regression model, and suppose you have only two 

regressors x 1 and x 2 and the response variable Y, and you have end data points. 

So, you have some data you have end data, now you have detected that you know 

multicollinearity exist in this data; that means, here we have only two regressors; that 

means, x 1 and x 2 they are linearly dependent. So, what we do is that we collect some 

more data say another m data to break the existing multicollinearity in the present data. 

So, what we do is that suppose, so this two regressors they are linearly dependent that is 

why that is the I mean multicollinearity, because of the linear dependence between these 

two regressors. 



Now, this additional data should be collected in a manner to break up the 

multicollinearity in the existing data, I hope you understood that you know initially you 

had end data points, and here you know x 1 and x 2 they are linearly dependent. So, you 

collect another some more additional data say m data points, in such a way you know, 

when you combine the complete set of data you know n plus m data then x and x 1 and x 

2 are not any more linearly dependent. 

You have to collect the data in a manner to break up the multicollinearity in the existing 

data, so this is you know one way to deal with multicollinearity or to break the 

multicollinearity in the existing data, but in many instance, you know this is not possible 

in practice. 
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Next, we will talk about one more technique to deal with multicollinearity that is called 

remove regressors from the model, here if two regressors are linearly dependent, it 

means the content redundant information. So, what we can do is that you know if two 

regressors for example, x 1 and x 2 they are linearly dependent may be for example, say 

x 1 is equal to twice of x 2, but then I mean basically they I mean the information 

regarding x 2 is redundant. 

So, what we can do is that thus we can pick one regresor to keep in the model and 

discard the other one, so this basically suggest you know, if you have two regressors, 

which are linearly dependent, and you can remove the other one. You can remove say for 



example, x 2 from this model, if say for example, x 1 x 2 and x 3 are linearly dependent, 

then eliminating one regressor variable, may helpful to reduce the effect of 

multicollinearity, but the problem is that you know if say for example, you have three 

regressors, x 1, x 2, x 3 in the model. 

And or may be more regressors, but x 1, x 2, x 3, they are linearly independent, then 

maybe you can remove one regressor for example, x 3 from the model, but you know to 

reduce the effect of multicollinearity. But, if x 3 might happen that you know x 3 the 

regressor which you have removed that x 3 might be significant to explain the variability 

in the response variable. In that case you know this removing one regressor may damage 

the predictive power of the model, well so that is why it says that you know eliminating 

regressor to reduce multicollinearity may damage the predictive power of the model. 
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So, this is one way you know to deal with the problem of multicollinearity, the other 

technique is collapse variables, so it says that you know you combine if there are linear 

dependence between two or more than two regressors, which are linearly dependent into 

a single composite variable. So, basically this collapse variable it says that if you have 

linear dependence between say 2 or more than 2 regressors, then you can combine you 

know those regressors by a composite regressor variable. 

So, these are the techniques to deal with multicollinearity, so one is you know collecting 

more data point, and the other one is removing one regressor from the model and 



combining the regressors, which are linearly dependent. So, that is like ways for in this 

module we have learned what is multicollinearity and you know this multicollinearity is 

the name of a problem in multiple regression model well. 

So, the problem of multicollinearity arises, when two or more regressor variables are 

linearly dependent and we have learned you know how to detect the multicollinearity, if 

it exist in the data. And also first you know we learned about how what are the problems 

due to multicollinearity, and then we have learned you know how to detect 

multicollinearity, if it exist in the data and also we learned how to deal with 

multicollinearity, so that is all for today. 

Thank you for your attention. 


