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Selecting the BEST Regression Model (Contd.) 
 

Hi, this is my second lecture on Selecting Best Regression Model, suppose you have a 

problem with large number of regressors. And one response variable having large 

number of regressors you may wonder, whether some them are irrelevant for the 

response variable, and whether those irrelevant regressor variables can be removed from 

the model, without affecting the model predictive power. 

So, by the best regression model in multiple linear regression setup, we mean a model 

that can explain the variability in y, and at the same time it includes as few regressors as 

possible. Because, you know more regressors in a model, if you have more regessors in 

the model then greater the cost of collecting the data, and also the cost for the 

maintenance increases. Well, so the known algorithms for a selecting the best regression 

model, they are basically classified into two classes, one is called a all possible 

regression approach, and other one is the called a sequential selection. 

So, in all possible regression approach what we did is that, if you have a problem with 

you know k minus 1 regressors, then you consider all the 2 to the power of k minus 1 

linear models. And the next step is that we fit those models, and we evaluate them with 

respect to some criteria. So, the criteria could be the coefficient to multiple 

determination, which is called you know r square, the criteria could be MS residual. It 

could be adjusted coefficient of multiple determination that I am going to talk about this 

one today, and also it could be the values statistics the is denoted by c p. 
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Let me talk about, the criteria for evaluating the subset tigation model one criteria is, a 

residual mean square. So, we denoted by MS residual, so what we observed in the last 

class is that SS residual P by this we mean that, the residual sum square for a model 

involving P minus 1 regressors. So, this one decreases as the number of regressors 

increases, but same is not necessarily true for MS residual, so MS residual may increase 

if you increase a number of regressors, also that is what we observed in the last class. 

Now, well what is the MS residual, MS residual is MS residual associated with a model 

involving P minus 1 regressors is equal to SS residual P by n minus P and of courses, 

you know lower value of MS residual P, indicates better fit. So, now, we will what we 

will do is that, we will plot a MS residual, minimum MS residual against P, so P is the 

number of unknown parameters in the model. And we will plot minimum MS residual 

along the y axis right. So, what we do is that see given a P all possible models with P 

minus 1 regressors are evaluated and a model giving minimum MS residual P is 

tabulated. So, to explain this one let me recall my one example, we discussed in the last 

class. 
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So, we will be considering the same example the HALD cement data, so here we have 

four regressors, and one respond variable. So, here K is equal to K minus 1 is equal to 4 

K minus 1 denotes the number of, so here K minus 1 is equal to 4. So, K minus 1 stands 

for the number of regressors, well. 
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And then what we do is that we write down the models all possible models, so here this 

is a model I said with no regressors. So, the number of regressors variable is equal to 

equal to 0 here, equal to 0 here, so that is why P, P is the number of unknown, so there is 



only one unknown that is the intercepted, so P is equal to 1 for this model. Now, these 

are the model involving one regressor or we will say that these are called one regressor 

model, that is why P equal to 2. Because, the number of unknowns for these models is 

equal to 2, these are the model with involving two regressors that is why P equal to 3. 
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And these are the model involving three regressor, and P is equal to 4 and this is the full 

model involving all the four regressor variables that is why P is equal to 5. And then first 

we write down all possible models. 
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And then we take one model and we fit that model that is what we did in the last class, 

you consider the model beta naught, beta 1, x 1 plus epsilon, and you compute the SS 

total, SS residual, SS regression. And you write down the anova table, here is the anova 

table for the first model and similarly, you have to do the same job for all possible, for all 

the 16 possible models well. Now, what is the MS residual here, the MS residual for this 

model is 115.1. 
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So, that is mentioned here the MS residual for this model is 115.06 more precisely, and 

similarly you fit the second model you get the anova table you find out the MS residual 

value. So, this way you compute the MS residual value for all the models, involving one 

regressor for all the models involving two regressor variables, these are the MS residual. 

And similarly, for the other models also you compute the MS residual value. Now, what 

we do is that you know the minimum MS residual value in this class is 80.35. So, we 

tabulate this one and the minimum in this class is 5.7, so we will take tabulate this one in 

our this grapier. 
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So, for P equal to 1, P equal to 2, 3, 4, 5 well for P equal to 1; that means, there is no P 

equal to 1 means this model no regressor, the MS residual value is 2, 2, 6 right. Suppose 

this is 10, 20, 30 then it is you know may be 200 here. So, for P equal to 1 it is 2, 2, 6, so 

somewhere here. Now, for P equal to 1 it is 2, 2, 6 for p equal to 2 it is 80.35, so you plot 

somewhere here I am not very particular about this scaling, now for P equal to 3 it is 5.7. 

So, somewhere here for P equal to 4, it is the minimum 1 is 5.33, so and for p equal to 5 

it is 5.98, well this is 5.33 and 5.98. 

So, what happen here is the this value is for MS residual 3 is equal to 5.7, MS residual 4 

for P equal to 4 it is 5.33, and MS residual 5 for P equal to 5 it is 5.98. So, what happens 

here is that initially you know, initially MS residual decreases and then it stabilizes for 

some time and then it may increase also. So, here it is increasing little bit from 5.33 to 

5.98, so this you know because for SS residual it is not true, SS residual is always 

decreasing function. 

But, that same is not true for the SS residual sorry the same is not true for MS residual. 

So, it may increase also, so if the newly added regression variable is not relevant to the 

response variable, then the reduction you know the reduction in SS regression is not 

sufficient to compensate the 1 degree of freedom loss in the denominator that is why MS 

residual increases also some for sometime well. 
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So, what we do here, so the we choose a value p, such that MS residual P is almost equal 

to the MS residual for the full model or we choose a value of p, such that value of p 

where MS residual P turns upward. So, here these are the I mean selection criteria either 

you choose a p, in fact, it is a number of regressors in the regression model p minus 1. 

So, you choose a P such that the MS residual P is almost close to the MS residual for the 

full model, otherwise you choose a P such that from that point MS residual P turns 

upward. 
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So, here you can see that you know MS residual decreases till P equal to 4, and then it 

turns upward because for 5 it is again the value is more than the value for P equal to 4. 

So, here it turns upward, so here you can choose P equal to 4 the meaning of this one is 

that. 
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So, this MS residual criteria suggest that you go for the model involving the regressor x 

1, x 2, x 4 also you know this other two models, like. The model involving x 1, x 2, x 3 

and the model involving x 1, x 3, and x 4, they have also you know the comparable value 

of MS residual, so either it can go for this model or the these two models. And if you 

prefer you know, the model with two variables then of course, you have to go for the 

model with which involves x 1 and x 2 of course, this is how we evaluate the a model 

using the MS residual criteria. Now, next we are going to talk about one more criteria 

that is called a adjusted coefficient of multiple determination. 
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And this one is denoted by R bar square well, so let me just a call R square, R square is 

the coefficient of multiple determination, which is equal to SS regression by SS total. 

And this one is equal to if I this 1 is equal to 1 minus SS residual by SS T, now if I say 

this R square is associated with the model, which involves P minus 1 regressor, then I 

will put P here, one P here, and one p here. Now, what we know is that SS residual P 

always decreases as P increases. 

So, from here you can say that this implies this statement implies that coefficient of 

determination R square P this always increases as P increases. So, from here you know 

we can say that R square P or R square is not a good measure of the quality of fit, let me 

explain why because see whether the newly inserted or newly included regressor variable 

is relevant to the model or not. Irrespective of that fact whatever regressor variable you 

include, SS residual always decreases and R square always increases with the, when the 

number of regressor variable is here, number of regressor variable increases. 

So, that is why you know R square is R square cannot distinguish between whether the 

newly added regressor variable is relevant for the model or it is irrelevant for the model. 

So, that is why R square is or r square or SS residual is not a good measure, to check the 

quality of fit well. So, that is why what we define is that we define, we introduce 

adjusted coefficient of multiple determination, so what is that this R P bar square, this is 



the adjusted coefficient of multiple determination. The only difference is that here you 

know, we replace this SS residual P by MS residual P. 

And here, we replace the SS T by MS T and then this can be written as, now this 

adjusted you know R square can be written in terms of R square. So, this one is equal to 

1 minus, what is MS residual when there are P minus 1 regressor in m model, I can write 

that as SS residual by the degree of freedom n minus p. So, this is nothing, but MS 

residual P right, now what is SS T, SS sorry MS T, MS T is nothing, but SS T by the 

degree of freedom is n minus 1. 

So, this one is equal to 1 minus n minus 1 by n minus p into SS residual P by SS T and 

this 1 is nothing, but you know 1 minus R square. So, this can be written as 1 minus n 

minus 1 by n minus p into 1 minus R P square, and since you know here we have 

replaced SS residual by MS residual as I said before that MS residual will not necessarily 

always decrease as P increases. So, here from there you can say that you know R P 

square you can observe that R P bar square value will not necessarily increase with a 

addition of any regressor. So, that is why this adjusted coefficient of multiple 

determination, it is a better measure than the usual R square. 
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Now, let me just illustrate for this model how to get this adjusted coefficient of multiple 

determination, we have the fitted model and an ova table for the first model, well. Then 

what is the adjusted coefficient of multiple determination for this model. 
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So, there p equal to for this model Y equal to beta naught plus beta 1 x 1 plus epsilon. 

So, here number of unknowns is equal to p, so p equal to 2. So, basically I computing R 

2 bar square for this model, for this specific model. So, this 1 is equal to 1 minus n minus 

that is 13 minus 1 12 by n minus p n is equal to 13 for that you know HALD cement 

data. So, n minus p is equal to 11 and 1 minus R square R 2 square, so what is a value of 

this R 2 square the value was 53.4 percent here. 

So, basically this one is nothing, but 0.534. So, R 2 square is nothing, but SS regression 

by SS total, which is equal to 1450 by 2715 please refer my previous class. So, this one 

is equal to 0.534, so this value is equal to 1 minus 12 by 11 1 minus 0.534 which is going 

to be equal to 0. 492. So, this way, so this value of the adjusted coefficient of multiple 

determination for the first model is 0.49. 
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So, here is I am writing in percent, so it is a instead of 0.492 I am writing 49.2 percent. 

So, similarly you fit the second model you get the, you will get the value of adjusted 

coefficient of multiple determination similarly you do for all the model. 
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Here and for all the model involving three regressors, and four regressors these are the 

value well. So, what we do is that we plot coefficient of adjusted coefficient of multiple 

determination against the value of a P. 
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So, here also you all possible models with P minus 1 regressors are evaluated and model 

giving maximum R P bar square is tabulated. So, of course, you know higher value of 

adjusted coefficient of multiple determination, indicates a better fit that is why we 

consider the maximum value, from each class R P bar square well. So, what we know is 

that the maximum 1, 2, 3, 4, 5 and let me put 20, 40, 60, 80, 100, right let me have the 

values. So, R P equal to 1 when P equal to 1 the value is equal to 0. When P equal to 2, 

the maximum value is 64.5, when P equal to 3 the maximum value is 97.5. 
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When P equal to 4, the maximum value is 97.6 and here 97.3, so basically we will 

tabulate these values. 
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So, for 0 P equal to 1 it is 0, for P equal to 2 it is a 64.5, so somewhere here for P equal 

to 3 the value is 97.5. So, it is somewhere here, for P equal to 4, the value is 97.6 it is 

97.6 and for P equal to 5 it is 97.3, so here you can see you know it is not necessarily to 

it is always increasing, it can this value of adjusted R P square I can decreases also 

sometime well. So, it suggests that the selection criteria is that, you select a P where R P 

square reaches maximum. 

So, what according to this coefficient of multiple determination, among the two 

regression models, this one is the best the model involving x 1 and x 2 and among the 

three regressors model, both are good. You know, see I mean all three are good model 

involving x 1, x 2, x 3, x 1, x 2, x 4, x 1, x 3 and x 4 they all have very high value of 

adjusted coefficient of multiple determination right. And see the difference here is 97.6 

and for the two model, for the two regressor variable model the value is 97.5. 

So, there is a little gain in terms of this adjusted coefficient of multiple determination, if 

you add one more variable with this say if you add x 3 with this model, then the value is 

getting increase by 0.1. So, before it was 97.5 now if you add you know along with x 1, x 

2 if you add either 3 or 4 they the increase is not that significant. So, I mean I personally 

I will go for this model, you know x 1 the model two variables x 1 and x 2 that is 



enough. Because, there is no significant increase in the value of the adjusted coefficient 

of multiple determination, if you add one more regressor variable here well. 
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Next we will be talking about one more criteria that is called a mallows statistics and it is 

denoted by C p, so this statistics measures the overall bias or mean square error in the 

fitted model. So, by the mean square error is measure by this one is y i hat minus E y this 

one, y i hat is the i’th fitted value right and what is E y, this is the expected response for 

the regression I mean the for the regression model I mean the full model, regression 

model and the difference. 

So, the difference between the fitted value and the expected value is the error, you 

squared it, so it becomes square error and the mean is you know it take a mean means, 

expected value of this one. Well and this is for the i‘th observation you sum it over i 

equal to 1 to n, and this one is standardized by dividing it by the sigma square, well this 

is called a mean square error. And it can be proved that mean square error is this quantity 

can be estimated by, SS residual for the model involving P minus 1 regressors, by MS 

residual and this is for the full model of courses minus n plus 2 P. 

And this 1 is denoted by C P I am not going into the detail of this you know how to get 

why C P is an estimate of this mean square error that is all. Now, here we need to 

observe a something like, first one is this MS residual is computed using all the 

regressors in the model, and SS residual P is computed for a model with only P minus 1 



regressor. So, we know about this notation, now what we need to observe something 

here, what is the value of C P for the full model. so here is the definition I mean here is 

the expression for C P. 
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Now, well let me write again C P equal to SS residual when the model involving for the 

model involving P minus 1 regressors, and this is MS residual for the full model minus n 

plus 2 P, and P is the number of unknown parameters in the model. Now, when P equal 

to K; that means, the number of regressors in the model is K minus 1. So, when if P 

equal to K then of course, SS residual P is SS residual for the full model right, then what 

is the value of C P when P equal to K. 

That means, what is the value of C K, so C K is the full model C K is SS residual you 

can write in bracket K; that means, the SS residual, in fact, for the full model by MS 

residual minus n plus 2 K. So, here this is nothing, but n minus K minus n plus 2 K, 

which is equal to K well, so what we observe is that for P equal to K C K equal to K. 

That means, for the full model the C K value is close to I mean is, in fact, it is C K value 

is equal to K, and you can note that the low C P value, indicates better fit. 

So, our selection criteria for you know for the model here is that of course, a small value 

of C P is desirable, and also C P should be close to, I mean C P is small mean it is close 

to P. If C P is equal to P; that means, the model involving P minus 1 regressors, is almost 



equivalent to the full model. Let me illustrate this mallows statics, using our example 

first. 
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So, for P equal to 2 I will calculate the C P value for P equal to 2; that means, I am 

considering the model y equal to beta naught plus beta 1 x 1 plus e epsilon, here P equal 

to 2. So, I will compute C 2, C 2 is I said it is SS residual 2 by MS residual minus n plus 

2 into P, so 2 into 2, so this one is nothing, but 1265 this is the SS residual, this is the SS 

residual, by MS residual no do not take this MS residual. This MS residual for the full 

model well, where is the full model this one is the here is the full model, and you take 

this MS residual value. So, this is the MS residual for the full model, so you take, so SS 

residual 2 by 5.98 which is the MS residual for the full model minus 13 plus 4, which is 

equal to 202.53 right. 
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So, this is the C P value 202.5 is the C P value for this model, similarly you get the an 

ova table for the second model, and compute the C P value. These are the C P values ,for 

model involving one regressors and two regressors. 

(Refer Slide Time: 50:01) 

 

And these are the C P values for the model involving three regressors, and four 

regressors. So, I said that you know the smaller value of C P or low value of C P 

indicates the better fit and also it should be close to P, so here you can see that these the 

three model involving x 1, x 2, x 3, x 1, x 2, x 4 and x 1, x 3, x 4. They are acceptable 



under the C P criteria, because these values are small I mean specially 3.02 is small one, 

and low C P value indicates better fit. So, among these models you know this one is the 

best one, but all three are acceptable because they are reasonably small and also close to 

P. 
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Now, here see there is no the small C P is here 138, but of course, it is very far from 2. 

So, this is not acceptable according to the C P criteria, now for two variable case or 

model involving two regressors, this one is the small one 2.86, and also it is very close to 

3. So, the model of which involves x 1 and x 2 is best one in I mean it is a good 

acceptable model in terms of the C P criteria well. 
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So, here you know again you can draw the graph of you can plot a C P against a P, so 

here is the P along the x axis and you plot minimum C P along the y axis. So, 1, 2, 3, 4, 

5, 6 and here also write 1, 2, 3, 4, 5, 6 you know I because I want to draw this line C P 

equal to P. For P equal to 1, the value is something 138, so it will be somewhere here for 

P equal to 2 sorry for P equal to 2 it is 138, for P equal to 1 it is 442 and for P equal to 2 

it is 138. So, for P equal to 1 it is somewhere here and for P equal to 3 it is 2.6, so it is 

below the line 2.6 here for P equal to 4 minimum is 3.02 and for P equal to 5 it is 5. 

For P equal to 4 it is 3.02, so it is somewhere here and for P equal to 5 it is 5, so you can 

see if you draw you join them. So, the selection criteria is that you choose a P small 

value of C P, which is close to P are desirable, so from this graph you can say that I 

mean for P equal to 3 the value is equal to 2.68 well. 
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So, among the two regression model this one is the best in terms of the C P criteria. 
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And among the three regression models, all three are acceptable in terms of the C P 

criteria, and overall if you see you know all the there are we talked about different 

criteria for evaluating the model. If you combine them, now you know for the two model 

it appears that the model involving x 1 and x 2 is the best one with respect to all the 

criteria. And among the three regression models, you know this one is of courses, it is 

good with respect to all the criteria’s. 



So, this is how you know we write down all the models involving maximum K minus 1 

regressors, and then we fit them and evaluate them in terms of using some criteria. And 

we choose the best model out of the all possible models. 

Thank you very much. 


