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Hi, this is my 1st lecture on Regressing Analysis, I would like to introduce myself as Dr. 

Soumen Maity, I did my B.Sc and M.Sc in statistics and receipt of Ph.D degree from 

Indian Statistical Institute, KolKata. Currently, I am faculty at Indian Institute of 

Technology, Kharagpur and Indian Institute of Science Education and Research, Pune. I 

am grateful to both the institute for giving me this opportunity to work on NPTEL 

project. 
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So, here is the course prerequisites, so I would expect the viewers, especially the students 

to know basics of probability and statistics, and statistical inference. So, more precisely 

now, I would like the viewer to know the discrete probability and also continuous 

approval to distributions and say, point estimation, interval estimation and also attesting 

of hypothesis. So, this course is divided into several topics or module, so here are the 

topics. 
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It is simple linear regression, multiple linear regression, selecting the best regression 

model, multicollinearity, model adequacy checking, test for influential observations and 

then, transformation and weighting to correct model inadequacies. 
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Dummy variables, polynomial regression, generalized linear models, non linear 

estimation and regression models with auto correlated errors, measurement errors and 

calibration problem. And finally, will be solving some problems, so I will have some sort 

of tutorial classes. 
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And I would be basically following this two books, the first one is applied regression 

analysis by Draper and Smith, and the second one is introduction to linear regression 

analysis by Montgomery, Peck and Vining. 

(Refer Slide Time: 03:54) 

 

So, here is the content of a today’s lecture, so today basically I will introduce what is a 

regression analysis. And then, I will be talking about simple linear regression and least 

square estimation of the parameter that means, the regression coefficient. So, let me talk 

about, what is regression analysis. 
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So, regression analysis is a statistical tool for investigating the relationship between a 

dependent variable and one or more independent variable. Just now, I will give an 

example to explain, what you mean by you know dependent variable and independent 

variables and regression analysis is widely used for prediction and forecasting. 
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And it has application in different fields like economics, management, life and biological 

science, physical and chemical science, engineering and social science. 
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So, here is the example, I told that, I will give an example to explain, what I mean by 

independent and dependent variable. So, I said that, regression analysis is a statistical 

tool for investigating the relationship between dependent variable and one or more 

independent variable. So, consider this example, suppose you are marketing analyst for 

Disney toys and you gather the following data, the first column is advertising cost and 

the second one is sales amount. 

So, here this and what we want is that, what is the relationship between the sales and 

advertising cost. So, here you can see that, the amount of money will be what we want to 

spend, that is sort of controlled variable, you can decide how much amount of money 

you want to spent for advertising. But, the sales amount is not a controlled variable, you 

cannot control the sales amount, so the sales amount is a dependent variable, it depends 

on advertisement cost, not only may be this is one factor, but it depends on the amount of 

money spent on advertisement. 

So, this is the dependent variable, but the advertising cost is a independent variable, also 

we call it controlled variable, you can control it. So usually, I hope that you understood 

the difference between the independent and dependent variable. So, usually this variable, 

which is independent, this is denoted by X and X is a regressor variable or also we call it 

independent variable. Whereas the sales amount, we do not have any control on sales 



amount and this type of variable is denoted by Y and Y is a response variable and also 

we call it dependent variable. 

So, as I told, regression analysis is statistical tool for investigating the relationship 

between one dependent variable and one or more independent variables. So, here I mean, 

the whole objective of this course is to find the relationship between the variables, one 

response variable and several independent variables, let me talk about scatter plot next. 
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So, here these are the same observation you know, I have been given a set of observation 

X i Y i. So, X i stands for regression variable and Y i stands for response variable and i 

have five observations like X 1 Y 1, X 2 Y 2, X 3 Y 3, X 4 Y 4, X 5 Y 5 and the scatter 

plot is basically obtained by plotting this data on X Y plane. Formally we can see that, 

scatter plot is mathematical diagram to display values of two variables for a set of data. 

So now, I will explain scatter plot for this Disney toy data, so the first observation X 1 Y 

1 is plotted here, the second observation is X 2 Y 2, so that is plotted here. 

I should say that, usually in the regression analysis, the regression variable is plotted 

along the X axis and the response variable is plotted along the Y axis. So, these two 

points corresponds to this two data point and then, 3 2 is here and I have next 4 2 here 

and then, 5 4 here. So, this is the scatter plot corresponds to the data for Disney toy 

problem and this scatter plots are used to investigate the possible relationship between 



two variables. So, this scatter plots are used to investigate the possible relationship 

between two variables. 

Now, if the scatter plot indicates sort of linear relationship between the variables, so in 

that case, we need to go for linear model. But, if the scatter plot indicates sort of non 

linear relationship between X and Y then, we need to go for like, maybe quadratic fit or a 

cubic fit or the higher loaded polynomial fit. And looking at this scatter plot, I feel that, 

this scatter plot indicates sort of linear relationship between the response variable and the 

regression variable. 

So, for this Disney toy data, we would go for linear model between X and Y, and the 

objective of this module is to study, how to fit linear relationship, more specifically 

simple linear regression for given a response variable and one regression variable. 
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So now, we will talk about simple linear regression, so simple linear model, regression 

model is a model with a single regressor X, that has a linear relationship with a response 

Y. So, the simple linear regression model is a Y equal to beta naught plus beta 1 X plus 

epsilon, I will explain it. So, here you know that, Y is response variable, X is regressor 

variable, beta naught is called intercept, beta 1 is called slope and epsilon is a random 

error component. 



Before going into the detail of this one, I want to mention one more thing like, just recall 

the Disney toy example, there we have one variable that is, the advertising cost and X 

stands for advertising cost, the other one is sales amount. So, I told that, X is the 

controlled variable, so you can decide how much money you want to spend for 

advertising. So, X is not a random variable, whereas Y is dependent variable, you cannot 

control the sales amount, so Y is dependent variable, it depends on regressor variable and 

it cannot be controlled. 

So, Y is a random variable and X is not a random variable, it is a controlled variable, you 

can say it is a deterministic variable or mathematical variable, but X is not a random 

variable, Y is a random variable. So, come back to this simple linear regression model, Y 

equal to beta naught plus beta 1 X plus epsilon, so what is the meaning of this one is that, 

for a given X that means, given advertising cost, the corresponding observation Y that 

means, corresponding sales amount, consist of the value beta naught plus beta 1 X plus 

an amount epsilon. 

So, it says that, given the advertising cost, the corresponding sales amount consist of the 

value beta naught plus beta 1 X plus some error component I mean, the variable 

component. So, next we will make some basic assumption on simple linear model. 
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We now make some basic assumption on the model, the model is Y i equal to beta 

naught plus beta 1 X i plus epsilon i, for i equal to 1 to n. So, before I wrote Y equal to 



beta naught plus beta 1 X plus epsilon, now I am writing the same model for the i th 

observation. And here I said that, this is a random error components, so what we assume 

that, the first assumption is that, epsilon i is a random variable with zero mean and 

variance sigma square, which is unknown. 

So, what you are given is that, you have just given a set of observation X i Y i, for i 

equal to 1, that is all. And from the scatter plot, if you see that, the relationship is linear 

then, you are going to fit the simple linear regression model and you are making some 

assumption on the model. So, the epsilon i, the error term is a random variable with 0 

mean and variable sigma square, which is unknown. So that means, expectation of 

epsilon i is equal to 0 and variance of epsilon i is equal to sigma square. 

The second assumption is that, this is very important part, the second one is, the epsilon i 

and epsilon j are uncorrelated, i not equal to j that means, so the covariance between 

epsilon i and epsilon j is equal to 0. The third one is that, epsilon i is a normally 

distributed random variable with a mean 0 and variance sigma square. That means, we 

are assuming that, epsilon i follows normal distribution with mean 0 and variance sigma 

square. 

Now, what you can see that, this epsilon i’s are uncorrelated and they are normally 

distributed. So, under this normality assumption, now this epsilon i’s are not only 

uncorrelated, they independent also, so these are independent. So, what is the 

consequence I mean, of this one, in terms of the response variable Y i. So, what we are 

basically assuming is that, let me write down, see I said that, Y is a random variable and 

X is controlled variable, it is a deterministic variable, it is not a random variable. 

So and we made several assumption on epsilon i, now what is the consequence of this 

assumptions on Y, in terms of say, Y. 



(Refer Slide Time: 26:57) 

 

So, Y i is equal to beta naught plus beta 1 X i plus epsilon i, from here I can write, 

expectation of Y i is equal to expectation of beta naught plus beta 1 X i plus epsilon i and 

this is equal to beta naught plus beta 1 X i just, plus expectation of epsilon i, which is 

equal to 0. And what is the variance of Y i, variance of y i is equal to variance of beta 

naught plus beta 1 X i plus epsilon i, which is equal to variance of epsilon i, because 

these are not random variable, so which is equal to sigma square. 

And also finally, we assume that, epsilon i follows normal distribution with mean 0 and 

variance sigma square and they are independent. And the consequence of this one in 

terms of the response variable Y is, so y i follows normal distribution with mean beta 

naught plus beta 1 X i and variance sigma square and they are also independent. So, the 

assumption on the error term like epsilon i having expectation 0, variance sigma square 

and follows, they are uncorrelated and epsilon i follows normal distribution. 

So, finally, epsilon i is following normal distribution with mean 0, variance sigma square 

and they are independent. So, the consequence of that in terms of response variable is 

that, Y i follows normal distribution with mean beta naught plus beta 1 X i and variance 

constant variance sigma square. So, we are assuming that, the i th observation is from 

normal distribution with mean beta naught plus beta 1 X i and the constant variance 

sigma square. 



So, given a set of data, you need to be very careful about, whether your data set satisfy 

this basic assumption or not. But, if the dataset is not satisfying the basic assumptions 

then, you cannot go for the usual least square feet and all those things, I will be talking 

about those things may be in this class only. So, there will be topic called model 

adequacy checking, so that talks about, given a dataset, while fitting a simple linear 

regression model, how to check, whether the basic assumption are true or not, so we 

have to wait for that model adequacy checking topic. 
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So, let me once again graphically say, how this situation I mean, how this assumption is 

illustrated in this figure. So, we made the assumption like epsilon i follows normal 

distribution with 0 mean and variance sigma square and they are independent and the 

consequence of that, in terms of response variable is that, Y i follows this. So, what you 

are assuming is that, this is my X 1 Y 1 data, this is X 2 Y 2, this is X n Y n and this line 

is Y equal to beta naught plus beta 1 X. 

So, this you can put also i anyway, so the first situation like I mean, the assumption in 

terms of Y is graphically illustrate here. So, it says that, the i th observation or the i th 

response variable Y i, that is coming from a normal distribution with mean beta naught 

plus beta 1 X i and variance sigma square. So, this is the normal, so X Y 1, so this is the 

data X 1 Y 1, so Y 1 is from normal distribution with mean beta naught plus beta 1 X 1 

and variance sigma square, so this is from this distribution, this is normal distribution. 



And X 2 is again from normal distribution with a different mean, with mean beta naught 

plus beta 1 X 2 and constant variance sigma square. I mean, this part is, it is necessary 

that understand this part or the basic assumption we made. So, assuming this means, you 

are assuming that, the response variable follows normal distribution and the i th 

observation is coming from the normal distribution with mean beta naught plus beta 1 X 

i and constant variance sigma square. 
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So, next we will move for least squares estimation of the parameters, so we talked about, 

we know what is a simple linear regression model, Y equal to beta naught plus beta 1 X 

plus epsilon. So, least squares estimation of the parameters means, estimating the 

regression coefficients beta naught and beta 1, so this is called intercept and this is called 

slope and fitting the simple linear regression is nothing but, estimating this regression 

coefficients. So, it says that, the parameter beta naught and beta 1 are unknown and must 

be estimated using the data. 

So, what you are given is that, you are just given a set of observations and you have to 

fit, if the scatter plot indicates that, there is linear relationship, you can go for simple 

linear regression fit and also in the regression analysis, the starting point is generally 

fitting linear model. So, suppose this is the scatter plot for the Disney toy data and we 

have to fit, so we have to estimate the regression coefficients that means, we have to fit 

straight line for the given data. 



Suppose, the fitted model is Y hat, which is equal to beta naught hat plus beta 2 hat into 

X, so this is the fitted line. And you can see that, I have drawn two lines, the same scatter 

plot, this is one straight line, say suppose this is my fitted model for this scatter plot or 

for this data and this is another fit. Now, which one is better, whether this one better or 

this one is better. So, I will come back to this slide again, let me write one important 

thing. 
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The line fitted by least square is the one, that a makes the sum of squares of all vertical 

discrepancies as small as possible. So, this is the main idea behind the least square fit, the 

line fitted by least square technique is the one, that makes the sum of square of all 

vertical discrepancies as small as possible. 
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So, what is the meaning of that, so what the least square technique does is that, it fits a 

line such that, what I mean by this vertical discrepancy, this is the vertical discrepancy 

for the fourth observation. So, for the fourth observation, this is X 4, basically this is X 4 

Y 4, X 4 Y 4 is equal to 4 2. And suppose, this is a fit, this is the fitted line Y hat is equal 

to beta naught hat plus beta 1 hat X and then, this point is nothing but, X 4 Y 4. 

The vertical discrepancy is nothing but, let me write that as e 4, that is called a residual 

for the fourth observation. So, e 4 is equal to this distance that is, Y 4 minus Y 4 hat, so 

this is what do you mean by vertical discrepancy and what the least square estimation or 

least square technique does is that, it fits a model such that, this e i square for i equal to 1 

to n in general, but here it is 1 to 5, this is minimum. So, in order to say which fit is good, 

whether this is good or this one is good, so what you do is that, you compute this e i 

square, this is called residual sum of square, this is SS residual. 

You compute SS residual for this fit, you compute SS residual for this fit and you see, 

which one is smaller, that one is better than the other one. And what the least squares 

estimation does is that, it provides a fit, which has minimum SS residual. So, I hope that, 

you understood the basic and very nice and natural idea behind the least square 

estimation. 
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So, we estimate beta naught and beta 1 so that, the sum of square of all the differences 

between the observation Y i and the fitted line is minimum. So, the minimum of this one 

is that, compute all the residuals e 1, e 2, e 3, e n and then, this beta naught and beta 1 are 

estimated so that, this summation e i square, i equal to 1 to n is minimum. I will write 

this, so estimate beta naught and beta 1 so that, the sum of square of all the difference 

between the observation Y i and the fitted line is minimum. 

That means S, which is nothing but, SS residual, sum of square residual, which is equal 

to e i square, i equal to 1 to n, which is nothing but, Y i minus Y i hat square, which is 

nothing but, Y i minus beta naught hat minus beta 1 hat X i square is minimum. So, you 

have to estimate, you have to find this beta naught hat beta 1 hat, which is beta naught 

hat is the estimate of beta naught and beta 1 hat is the estimate of beta 1 such that, this is 

minimum. 
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So, the least square estimator of beta naught and beta 1 that is, a beta naught hat and beta 

1 hat, they must satisfy the following two equations, you differentiate S with respect to 

beta naught and at the point beta naught hat beta 1 hat. So, let me just write down what is 

S, S is equal to summation Y i minus beta naught hat minus beta 1 hat X i square, so this 

is what the S is, so you find beta naught and beta 1 such that, this is minimum. So, this 

one is equal to partial derivative of this one with respect to beta naught is minus 2 Y i 

minus beta naught hat minus beta 1 hat X i equal to 0, so this is one equation. 

The other one is partial derivative of S with respect to beta 1 at the point beta naught hat 

beta 1 hat. So now, we are differentiating with respect to beta 1, so that is equal to minus 

2 summation Y i minus beta naught hat beta 1 hat X i into X i, so this is equal to 0. So, 

these two equations are called normal equations, since there are two unknown parameter, 

you will get two normal equations and you can see that, this normal equations are 

independent. 

So, you can uniquely fit beta naught and beta 1, so the estimator beta naught hat and beta 

1 hat are solution of the equation, summation Y i minus beta naught hat minus beta 1 hat 

X i equal to 0 and X i into Y i minus beta naught hat minus beta 1 hat X i equal to 0. So, 

you have two independent normal equation and from here, you can estimate beta naught 

hat and beta 1 hat, so you will be doing that, let me start with this one. 
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So, what the first equation is, summation Y i minus beta naught hat minus beta 1 hat X i 

equal to 0. So, from here, I can write that, summation Y i minus n beta naught hat, 

because this sum is over from 1 to n, minus beta 1 hat sum X i, i is from 1 to n, this is 

equal to 0. So then, n beta naught hat is equal to summation over Y i minus beta 1 hat 

summation X i. 

And from here, I can write that, beta naught hat equal to Y bar minus beta 1 hat X bar, of 

course where Y bar is equal to summation X i, X bar is equal to summation X i by n and 

Y bar is equal to summation Y i by n. So, this involves beta 1 hat, so you need to 

estimate beta 1 hat also I mean, you need to find beta 1 hat also. 
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So, let me start with the second normal equation, that was summation X i into Y i minus 

beta naught hat minus beta 1 hat X i equal to 0 and just now what we obtained is that, 

beta naught hat is equal to Y bar minus beta 1 hat X bar. So, I can plug this one here, so 

what I will get a that, X i of Y i, let me write one more line, minus Y bar plus beta 1 hat 

X bar minus beta 1 hat X i is equal to 0. So, from here, I can write that, X i into Y i 

minus Y bar is equal to beta 1 hat sum over X i minus X bar, I hope you understand this 

one. 

So, from here, I can write that, my beta 1 hat is equal to sum over Y i minus Y bar into X 

i by, I missed one X i here, by sum over X i minus X bar into X i. This can be written as 

sum over Y i minus Y bar into X i minus X bar by summation X i minus X bar into X i 

minus X bar, so this is X i minus X bar square. So, what I have added is that, I have 

added a term here, I can prove that, see because of the fact that I can prove that, X i Y 

bar into X bar is 0. So, let me just prove that, this is equal to sum over Y i X bar minus 

summation X bar Y bar and if I write Y bar is equal to 1 by n summation Y i. 

So, summation Y i, I can write as n into Y bar that is, n into X bar into Y bar minus, this 

sum is from 1 to n and it is independent of i, so n into X bar and Y bar. So, this is 0 and 

also you will use annotation that, this is equal to S X Y by S X X. 
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So, what we got is that, finally we got that, beta naught hat is equal to Y bar minus beta 1 

hat X bar and also we got that, beta 1 hat is equal to summation Y i minus Y bar into X i 

minus X bar by summation X i minus X bar whole square. So, we have learned, how to 

fit a simple linear regression model, given a set of observations X i Y i, for i equal to 1. 

We know how to fit simple linear regression model like, Y i is equal to beta naught plus 

beta 1 X i plus epsilon and here are the least square estimators, beta naught hat and beta 

1 hat. 

And in the next class, we will be talking about several properties of this least square 

estimators and it can be proved that, these are the best linear unbiased estimators using 

Gauss Markov theorems. 

Thank you. 


