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Characteristics of Distributions 
 

In the last lecture, I have introduced certain characteristics of the Probability 

Distributions such as, its expected valuethat is the mean, variance and also some higher 

order moments. So, the mean of the variance distribution denotes the measure of central 

tendency or the measure of location for a distribution, the variance or the standard 

deviation denotea tell the about the variability of the values of the distribution. 

We may also be interested in some further characteristics of the probability distribution 

such as its skewness. 
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Let us define what skewness is, so consider a distribution ofthis type. Let us consider 

another distribution and let us consider... Now, if we compare the shape of the curves the 

first reactionafter looking at the first curve is that, it is symmetric about a certain axis say 

mu, if we look at the second curvethen, there is lot of concentration of probability on the 



left hand side and there is a long tail on the right side. That means, there is a long tail to 

the right of the mean of the distribution whereas, if we look at thethird curve here, then, 

there is a long tail to the left andthat means there are more concentrationof values on the 

right side, and there is a large variation towards theleft of the mean, so we will call this 

as a symmetric curve. We considered the definition of symmetricdistribution earlier, that 

is probability, that x is less than or equal to x is equal to probability x greater than or 

equal to x for a certain. Suppose, if it is asymmetric about 0 then we should have this 

kind of thing, so if it not symmetric we will call it skewed, so this one will be called 

positively skewed and this one we will call as negatively skewed distribution. A measure 

for this can be defined in terms of say, let me call it beta 1 that is equal to mu 3 divided 

by mu 2 to the power 3 by 2, we are considering this revision by mu 2 to the power 3 by 

2 that is sigma cube, where sigma denotes the standard deviation of a distribution, this is 

to make it free from the units of measurement. So, if beta 1 is 0 we have symmetry, if it 

is greater than 0 it is positively skewed, if it is less than 0 it is negatively skewed. 
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We also define another characteristic called peakedness of a distribution. Compare the 

curves, so if we look at itthis has a high peak, this is somewhat in the middle or average 

or normal and this is more a flat curve, we consider this property as the kurtosis. So, this 

we call as a normalpeak, this is called leptokurtic, that is high peak and this is called 

platikurtic, that is the flat peak, a measure of kurtosis or peakedness is defined to be beta 

2 is equal to mu 4 by mu 2 square minus 3; so, if it is 0 we have a normal peak, if it is 



greater than 0 it is leptokurtic, and if it is less than 0 we call it platikurtic. The peak of a 

normal distribution which will be defined later on, that, will have the coefficient beta 2 is 

equal to 0, so peak of any distribution is actually compared with the peak of a normal 

distribution. 

Now, we have already seen thatsometimes moments of the distributions may not exist or 

a lower order moment may exist, but higher order moments may not exist. We have a 

general result in this direction. 
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If the moment of order say t, where t is greater than 0 exists, then the moment of order s 

where 0 is less than s is less than t exists fora given random variable x. So, if a positive 

order moment exists, then all lower ordered positive moments will exist for the given 

random variable. 

Let us look at the proof of this one. For convenience, let me take x to be a continuous 

random variable, let x be a continuous random variable with say probability density 

function f x. Let us write down expectation of modulus x to the power s, this is equal to 

integral minus infinity to infinity modulus x to the power s f x d x; this one we split into 

two regions, modulus x less than or equal to 1 andmodulus x greater than 1. In this 

region where modulus x is less than or equal to 1, I can replace this by 1, so this is less 

than or equal to integral of modulus x less than or equal to 1 f x d xwhich is nothing but, 

the probability that modulus x is less than or equal to 1. Then modulus x is greater than 



1, if I replace this power s by power t I will get a bigger quantity, so this becomes 

modulus x to the power t f x d x, now this is less than the expectation of modulus. So, the 

first term itself this is less than or equal to 1, and this is less than expectation of modulus 

x to the power t. 

Since we are assuming that the momentof order t exists, this is finite and therefore, 

expectation of modulus x to the power s is finite that meansthe moment of order s exists, 

this is the condition for existence of the moment of order s. 

Now, sometimes when the moment do not exist, then it may be difficult to find out the 

measures of central tendency or measure of location or measure of variability or say, 

measure of symmetry or kurtosis, etcetera. So, we may look at the points on the 

distribution itself, which divide the curve into certain regions with certain proportions, 

these are called quantiles of the distribution. 
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To explain the concept, let us consider some distribution with a particular shape. 

Suppose, I have a point here let us call it saya, andif I say probability that x is less than 

or equal to a, is equal to p, that means this ((w8age)) is p and this ((w8age)) is 1 minus p 

then, this is called the pthquantile, it is easy to explain the concept of median.For 

example, that it divides the distribution into two parts, the probability is half in this 

portion, the probability is half in this portion, so roughly speaking((a p the ))quantile is 

the point upto which the probability of random variable taking a value is p, and the 



probability beyond that is 1 minus p. However, to take care of the discrete distributions 

we give the formal definition of a quantile as follows: A number, let me call it Q 

psatisfying probability x less than or equal to Q p greater than or equal to p, and 

probability x greater than or equal to Q p greater than or equal to 1 minus p, for 0 less 

than p less than 1 is called pthquantile or quantile of order p of the distribution of x. 

So, obviouslyif F is absolutely continuous distribution function, then you will have F of 

Q p is equal to p, that is there will be a unique quantile, so Q half is called median of x 

we use a notation malso,Q1 by 4Q half and Q3 by 4, these are called quartiles of x. 
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We also definesay,Q 1 by 10 andQ2 by 10 and so on Q9 by 10 etcetera, these are called 

deciles. You can write Q1 by 100and Q2 by 100 and so on, these are called percentiles 

that means, if we want to divide the distribution into ten parts, the distribution into four 

parts, the distribution into hundred parts etcetera, so they are having different notations. 

In various problems, we are interested in different kind of quantiles.For example, in 

various studies we may be interested in percentage of the people living below poverty 

line etcetera, so this is some particular percentile; but, suppose we say 25 percent people 

lie below a certain thing or 75 percent of the items are above something, then it becomes 

quantiles. 

Let us explain through certain examples. Let us consider f x is equal to 1 by pi 1 by 1 



plus x square, minus infinity less than x less than infinity. We have seen that for this 

distributionthe mean does not exist;therefore, there is no question of higher order 

moments also existing. However, if we look at F x then it is equal to 1 by pi tan inverse x 

minus pi by 2and if we calculate, no this is plus pi by 2. So, if we calculatesay the point 

F x m is equal to half, then this is corresponding to simply x or m is equal to halfm is 

equal to 0, which is clear if we plot this distribution, so it is symmetric about the point 0. 

So, if the distribution is symmetric about a given point, then that point will be the 

actually the median of the distribution. 

Now, we can also calculate the quantiles here. Suppose, we look at F x Q1 is equal to 1 

by 4 then, this gives 1 by pi tan inverse x plus pi by 2 is equal to 1 by 4, this means tan 

inverse x is equal to minus pi by 4, that means x is equal to minus 1.Similarly, if I 

calculate, so this is Q1 that is the first quantile in this distribution is minus 1, second 

quantile that is median is 0, and a similar way if I look at F x Q3 is equal to 1 by 4 3 by 4 

then, this will give me Q3 is equal to plus 1. 

So, we are able to determine the measures on the curve, so it roughly tells that 25 percent 

of the observations lie below minus 1 and 25 percent of the observations lie between 

minus 1 and 0,25 percent of the observations lie between 0 and 1, and 25 percent of the 

observations lie beyond 1. So, it has a very long tail because, infact 50 percent of the 

probability is between minus 1 to 1 and rest 50 percent is dispersed over minus infinity 

to minus 1 and 1 to infinity. 
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Let us consider say, probability x is equal to minus 2 and probability x is equal to 0 is 

say 1 by 4. Probabilitysay,x is equal to 1 is equal to say 1 by 3, and probability x is equal 

to 2 is suppose 1 by 6, so thisis the discrete distribution concentrated on 4 points minus 2 

and0 and1 and 2, so if we apply the definition of the median, probability x less than or 

equal to m is greater than or equal to half, and probability x greater than or equal to m is 

also greater than or equal to half, so median must satisfy this condition. 

So, you look at which points satisfy this condition. Now, here the probability of x being 

less than or equal to 0 is half because, probability of x equal to minus 2 and probability x 

equal to 0 both are 1 by 4.So, as soon as we approach 0 if we look at the up to at minus 2 

you have 1 by 4 at 0, you have 1 by 4 at 1, you have 1 by 3, and at 2 you have 1 by 6. So, 

any point after 0 this will have the condition probability x less than or equal to m greater 

than or equal to half satisfied. 

If we look at the second conditionhere, the probability is 1 by 3. Here, the probability is 

1 by 1 by 6 and 1 by 3, so if you addthis becomes half. So, if I consider m to be any point 

before 1 then, probability that x greater than or equal to m is greater than or equal to half 

is satisfied. 

In fact, if I consider probability x greater than or equal to 1 then, it is equal to probability 

x plusx equal to 1 plus probability x equal to 2, which is equal to half. So, any point 

which is less than or equal to 1 will satisfy the second condition. Any point which is 



greater than or equal to 0 will satisfy the first condition. So any m, such that 0 less than 

or equal to m less than or equal to 1 satisfies the two conditions. Hence,m belonging to 0 

to 1 is amedian, sothis is a case where the median is not unique. So, in particular, in 

discrete distributions, we may not have a unique quantile; in the continuous random 

variable case there will be a unique quantile. 

There is another function called moment generating function, which tells something 

about the distribution. So, let us consider that, let x be a random variable, the function m 

xat t is defined to be expectation of e to the power tx is called moment generating 

function of the random variable x provided it exists; provided the right hand side exists 

for some t, not equal to 0. 

As you can see here, at t is equal to 0 this will always exist. So, for t not equal to 0 it 

should exist, that means in a neighborhood ofthe origin, if it exist, then we say that the 

moment generating function is well defined. We may have a case that moment 

generating function may not exist. 
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Let us consider, suppose you takef x is equal to 1 by pi 1 by 1 plus x square. So, if I look 

at expectation of e to the power t x, then it is equal to minus infinity to infinity 1 by pi 1 

by 1 plus x square e to the power t x d x. So, if you look at this one then, this does not 

always exist, because in the numerator you have anexponential term, and in the 

denominatoryou have only polynomial. Infact, we have seen that, the mean itself does 



not exist, that means if I put here x in place of e to the power t x, that itself does not 

exist, for t not equal to 0. 

Let us take another example say, f x is equal to half e to the power minus x by 2, for x 

greater than 0 and 0 for x less than or equal to 0. Let us consider m x t, so it is equal to 

integral 0 to infinity half e to the power t x e to the power minus x by 2 d x. Now, this 

you can combine, so it becomes 0 to infinity half e to the power minus half 1 minus 2 t x 

d x that is equal to 1 by 1 minus 2 t,for t less thanhalf, so here the moment generating 

function exists in a neighborhood of 0. 

The point that why we are interested in a function called moment generating function is 

thatit givesfirst of all, it uniquely determines a distribution also, it gives lot of 

information about the moments, that is why the name moment generating function is 

there, let us look at that thing. 
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So, we have the following result. The moment generating function uniquely determines a 

c d f and conversely, if the moment generating function exists, it is unique. If the 

moment generating function m x t exists for modulus t less than t naught, that means in a 

neighborhood of 0, the derivatives of all orders exist at t equal to 0 and can be evaluated 

under the integral sign,integral sign or you can say, summation sign depending upon 

whether the discreteor continuous distribution is there. 



So, derivative of the moment generating function of order k, at t equal to 0 gives you the 

kth non central moment, that is why it is known as a moment generating function. You 

can see this fact, if I say that the moment generating function exists, then I can consider 

the expansion of e to the power t x in a maclaurinseries as 1 plus t x by 1 factorial t x 

square by 2 factorial and so on, this is equal to 1 plus t by 1 factorial mu 1 prime t square 

by 2 factorial mu 2 prime, etcetera. That means, coefficient oft to the power k by k 

factorial is the kth order non central moment for k equal to 1,2 and so on. 

Let us consider this example, where m x t is equal to 1, 1 divided by 1 minus 2 t, for t 

less than half. 
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Let us consider derivative of this, so that is equal to minus 1 by 1 minus 2 t square then 

minus, so it becomes plus and then you are multiplying 2 you put t equal to 0 here, that is 

equal to 1 by 4 and 2, so it is half. Let us check here directly from the distribution if I 

calculate expectation of x, this is equal tointegral x by 2 e to the power minus x by 2 d x 

0 to infinity. So, if we integrate this by parts or if we use the gamma function, then it is 

gamma 2 divided by 2 here, so you will get 2 that is equal to 1 by 2 square and then,this 

is((this will be 2 here))1 by 1 minus 2 t whole square and then you have 2 here. 

Let mu k prime be the moment sequence of random variable x. If the series sigma mu k 

prime by k factorial t to the power k converges absolutely for some t greater than 0, then 

mu k prime uniquely determines the c d f F of the random variable x. 



Sometimes, we have partial information about the probability distribution of a random 

variable. So, we may not havesubstantial knowledge about probabilities of 

variousintervals or random variable taking value less than something or greater than 

something. So, in such cases, we have certain probability inequalities which are useful if 

weknow only a certain moment say, mean or variance or one particular moment. So, 

these are known as one of the first onein this direction is called chebyshev’s inequality. 
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Let x be arandom variable with mean mu, and variance sigma square then, for any k 

positive probability of modulus x minus mu greater than or equal to k is less than or 

equal to sigma square by k square, soyou can see this denotes the probability of x lying 

in certain interval or lying outside a certain interval, we do not have full information 

about the random variableexcept its mean and variance. Nevertheless, we are able to give 

certain bound for this probability to prove this, let us consider, x to be continuouswith 

certain p d f f x. So, let us consider the expression for variance this is equal to 

expectation of x minus mu square, which is equal to integral x minus mu square f x d x. 

Now, this particular integral is greater than or equal to modulus x minus mu greater than 

or equal to k, this is because the integrant is non negative. So, if you reduce the reason of 

integration, the value will become smaller. Now, on this reasonx minus mu whole square 

is greater than or equal to k square, so we can replace by thatthis is nothing but, 

probability of modulus x minus mu greater than or equal to k. 



So, as a consequence, probability of modulus x minus mu greater than or equal to k is 

less than or equal to sigma square by k square or you can write down the alternative 

forms of this inequality by taking the complementary event here.  
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So, you will have 1 minusprobability of modulus x minus mu greater than or equal to k is 

greater than or equal to 1 minus sigma square by k square, or you can write probability 

of modulus x minus mu less than k is greater than or equal to 1 minus sigma square by k 

square. Sometimes, the form is written in this fashion; probability of modulus x minus 

mu less than k sigma is greater than or equal to 1 minus 1 by k square or probabilityof 

modulus x minus mu greater than or equal to k sigma is less than or equal to 1 by k 

square. 

A more general inequality of the same type is called markov’s inequality. Let x be a 

random variable and g a non negative, even and non decreasing function of modulus x, 

then the probability of modulus x greater than or equal to k is less than or equal to 

expectation ofg x divided by g of k. You can see that, if I replace x by x minus mu and 

take g as the squared function that is x square, thenthis markov inequality gives the 

chebyshev’s inequality. In this one, if we replace x by x minus mu and g x is equal to x 

square, and then we get exactly this one, so this is a more general inequality of the same 

type. 
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Let us takesome example to explain this, the number of customers who visit a 

storeeveryday is a random variable x with mean say 18 and standard deviation is equal to 

2.5. With what probability can we assert that there will be between 8 to 28 customers? 

That means we are interested in an estimate of the probability that the number of 

customers is between 8 to 28. If we want to utilize the chebyshev’s inequality here, the 

mean is given to be 18, so this becomes probability of x minus 18 lying between minus 

10 to 10; that means probability of modulus x minus 18 less than or equal to 10. So, by 

chebyshev’s inequality it is greater than or equal to 1 minus sigma square by 100 that is 

equal to 1 minus 6.25 by 100 or 15 by 16. You can see that this is very high probability 

for this particular event to be true. So, although, here we do not have full information 

about the probability distribution of the random variable, but we can tell about certain 

probability. 

Show that for 40,000 flips of a fair coin, the probability is at least 0.99 that the 

proportion of heads will be between 0.475 to 0.525. So, here if we consider x to be the 

number of heads, then x follows binomial 40000 and half, we are interested in 

probability of x by nlying between 0.475 to 0.525, now n is here 40000, so this is equal 

to probability that x lie between 19000to21000. 

Now, here mean of this distribution here is n p that is equal to 20000, and the standard 

deviation is square root n p qwhich is 100, so this probability is then modulus of x minus 



20000 less than or equal to 1000, which is greater than or equal to 1 minus sigma 

squareby k square, which is 1 minus 1 by 100 that is equal to 99 by 100. So, if it is a fair 

coin the probability that the proportion of heads is between 0.475, that is 47.5 percent to 

52.5 percent heads are there in 40000 tosses of a fair coin, the probability is at least 0.99. 

Here, we can even get an appropriateexact value of this, but that is too complicated, so it 

is a simple solution for a complex looking situation. 
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Independent observations are availablefrom a population with mean mu and variance 1. 

How many observations are needed in order that probability is at least 0.9 that the mean 

of observations differs from mu by not more than 1? So, if we are looking at expectation 

of x bar that is equal to 1 by n expectation of x 1 plus x 2 plus x n that is equal to mu. If 

we are looking at variance of x bar that is variance of x 1 plus x 2 plus x n by n then, it is 

equal to 1 by n square sigma variance of x I each of this is 1, so it becomes 1 by n. 

So, probability of modulus x bar minus mu should be less than 1, that is the mean of 

observations differs from mu by not more than 1, that is probability of modulus x bar 

minus mu less than 1, so by chebyshev’s inequality it is greater than or equal to 1 minus 

1 by n. Now, we want it to be more than 0.9, so this means n should be greater than 10, 

so we need at least 10 observations that probability that mean of observations differs 

from mu by not more than 1. Let us look at some examples of calculation of certain 

distributions and the moments and other characteristics that we have discussed so far. So, 



let us consider one example. 
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Let x be a continuous random variable with the cumulativewith the probability density 

function given by 1 by beta 1 minus, we will analyze various properties of this 

distribution. So, if we look at say, what are the values of alpha and beta for which this is 

a valid probability distribution, let us consider, so first thing we observe that in order that 

this is a non negative functionbeta should be positive and 1 minus modulus of x minus 

alpha by beta. So, here if you look at modulus of x minus alpha by beta is less than 

1therefore, this quantity is always positive, therefore beta has to bepositive in order that 

thisthis is a density. 

Now, we look at the integral of the density over the region, in order to resolve this in a 

simple way, we can consider the transformation y is equal to x minus alpha by beta. 

Now, this is a symmetric function, so it becomes integral 0 to 11 minus y d y and it is 

equal to twice 1 minus y whole square by 2 from 0 to 1 and this is simply equal to 

1.Therefore, there is no restriction on the range of alpha,alpha can be any real numberand 

beta should be positive real number in order that, this is a valid probability density 

function. If we want to look at the shape of this distribution, in fact we can see from here, 

for y positive, this is 1 minus y and for y negative it becomes 1 plus y, so the value at y is 

equal to plus 1 and minus 1 is 0 and at y is equal to 0 it is 1. 

 So, if we consider this point as alpha this has alpha minus beta, this has alpha plus beta, 



and then the shape of the distribution is triangular, so this is basically triangular 

distribution.Therefore, easily you can see that, mean and medianof this distribution must 

be alpha, expectation of x must be alpha, the median of x must be alpha. Therefore, we 

can consider higher order central moments, let us considersay variance. So, variance of x 

is equal to expectation of x minus mu square that is equal to expectation of x minus alpha 

Square. 
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So, this is equal to integral alpha minus beta to alpha plus beta x minus alpha square 1 by 

beta 1 minus modulus x minus alpha by beta d x. So, in order to evaluate this, we can 

consider the same transformationy is equal to x minus alpha by beta, so after substitution 

this turns out to be integral from minus 1 to 1 beta square y square into 1 minus modulus 

y d y, as this is a even function this becomes 2 beta square integral 0 to 1 y square into 1 

minus y d y. 

So, the integral of this is equal to twice beta square 1 by 3 minus 1 by 4. So, that is equal 

toafter simplificationbeta square by 6, so the variance of this distribution is beta square 

by 6. You can see here that, if beta is a small value then, the variability little highis little 

low and if beta is a bigger value, then the variability will be more which is obvious 

herebecause, this is concentrated from alpha minus beta to alpha plus beta; so beta is 

large, this curve will increase further that means variability is increasingif beta is 

becoming smaller, then the variability is becoming less. 



We may also look at say, quantiles of order 1 by 4 and 3 by 4. So, if we consider the 

point, we can also consider the cumulative distribution function of this. So, if we 

calculate F x naturally for x less than alpha minus betait should be 0 and for x greater 

than alpha plus beta this should be 1. So, we need to concentrate on the integral alpha 

minus beta to say x 1 by beta 1 minus modulus t minus alpha by beta d t,for t lying 

between alpha minus beta to alpha plus beta. So, by considering the transformation, this 

becomes minus 1 to x minus alpha by beta 1 minus modulus y d y that is why 

considering the transformation t minus alpha by beta is equal to y. 

Now, here there are two cases. If x minus alpha by beta is less than 0 in that case is less 

than alpha that means, x is less than alpha. So, since we are looking at this 1 less than 0 

means, x is less than alpha. Yeah, so we should consider x minus alpha by beta less than 

0, which is basically x is less than alpha, that means it is before the point of 

thesymmetry. If that is so, then this is equal to integral minus 1 to x minus alpha by beta 

1 minus y d y, which is equal to 1 plus y d ywhich is simply equal to 1 plus y square by 2 

minus 1 to x minus alpha by beta. 
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So, this is evaluated to 1 plusx minus alpha by beta square 1 by 21 plus x minus alpha by 

betawhole square by 2, so this is for alpha minus beta less than x less than or equal to 

alpha. If you look at this value at x is equal to alpha this is becoming 0, so this value will 

becomeexactly equal to half. So, if I am choosing a point x to be greater than or equal to 

alpha but less than alpha plus beta, then this will be integral half plus 0 to, sorry, alpha 



plus 1 by beta 1 minus t minus alpha by beta d tthat is equal to half plus, so this becomes 

0 x minus alpha by beta 1 minus modulus of y d y, that is equal to half plus integral 0 to 

x minus alpha by beta 1 minus y d y, that is equal to half plus 1 minus y whole square by 

2 with a minus sign integral from 0 to x minus alpha by beta, that is equal to 1 minus, so 

it is half andat 0 this value is becoming half and 1 minus x minus alpha by beta whole 

square, that is equal to 1 minus 1 by 21 minus x minus alpha by beta square. 
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Therefore, we can write the complete description of the c d f as it is 0, for x less than or 

equal to alpha minus beta. It is equal to half 1 plus x minus alpha by beta whole square 

alpha minus beta less than x less than or equal to alpha, it is equal to 1 minus half 1 

minusx minus alpha by beta square. 

As a check, we can see that the value at the end points of each intervals match, because 

the function is continuous. Infact, the function is absolutely continuous, so if we look at 

the value at x equal to alpha minus beta here, this is becoming alpha minus beta, so 

minus 1 will come here. So,1 minus 1 becomes 0, which is same as the value at x equal 

to alpha minus beta from the left hand side.If we look at the value at x equal to alpha 

here, this value is becoming 0, so you are getting half here, if we put x equal to alpha 

here this is half, so 1 minus half is half, so the values are matching. If we look at the 

value at x equal to alpha plus beta of this expression, thenthis value is 0; that means, this 

is equal to 1 and the value here at x equal to alpha plus beta is also 1. So, this is 

satisfying the conditions for the c d f. 



If we look at the point, where the value becomes say 1 by 4, thenwe need to look at this 

one, because the probability at x equal to alpha is equal to half.So,1 by 4 will be 

naturally in this interval alone. So, this means that half 1 plus Q 1 minus alpha by beta 

whole square is equal to 1 by 4. So, we can do the simplification here,1 plus Q1 minus 

alpha by beta is equal to 1 by root 2 that means Q1 minus alpha by beta is equal to 1 

minus 1 by root 2 so Q1 becomes alpha plus beta into 1 minus 1 by root 2. In a similar 

way, we can calculate Q3also,Q2 is of course alpha that is the median of this 

distribution. 

That is all in today’s lecture, we will be considering special discrete and continuous 

distributions in the upcoming classes. 


