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So, we continue our discussion of the problem of Testing of Hypothesis. So, | framed it
in the following terminology, we should have a null hypothesis, we should have an
alternative hypothesis. And then, we take a random sample and we split the sample space
into two portions; one portion is called the rejection region and another is called the
acceptance region. As a consequence, we are likely to commit errors of two types; we
call them, type 1 error and type 2 error and we have the respective probabilities. |
mentioned that, in the case of composite hypothesis, the probabilities of type 1 error and

type 2 errors will be the functions of the parameters.

So, the most desirable would have been to have both the type 1 error and type 2 error
probabilities to be as small as possible, but as in a two-dimensional decision spaces or
you can say that, two-dimensional space is not ordered therefore, it is not possible to
minimize both of them. So, a practical approach is to keep the value alpha to a fixed
level and then find that, test procedure for which beta is minimized or 1 minus beta is

maximized.



(Refer Slide Time: 01:56)

Let me explain these through one example. We discuss the problem of say, checking the
unbiasedness or say certain probability related to a probability of head of in a coin
tossing experiment. So, we have a coin and we tossed it thrice and we want to test the
hypothesis, whether p is equal to 1 by 4 against p is equal to 3 by 4. So, | have given here
one region, that acceptance region is that, when either zero or one head is observed and
we reject H naught, when two or three heads are observed. Let us calculate the
probabilities of type 1 error and type 2 error for this problem.

(Refer Slide Time: 02:40)




So, coin tossing experiment, so here alpha that is the probability of type 1 error rejecting
H naught, when it is true. So, we can restrict attention to the random variable x that is the
number of heads. So, here x follows binomial 3, p. Because, in the three tosses of the
coin you may have at the most three heads, so, zero, one, two, three. So, it is a binomial

distribution, the head occurs with the probability p.

So, then it is true means p is equal to 1 by 4 under this we are rejecting, when X is either
2 or x is equal to 3. So, this is basically reducing to the probability of x equal to 2 or x
equal to 3, so now this probabilities can be evaluated because, we know the distribution
of x that is p x is 3 ¢ x p to the power x 1 minus p to the power 3 minus x. Now, under H
naught this p x function will be equal to 3 ¢ x 1 by 4 to the power x 3 by 4 to the power 3
minus X. So, when | substitute x is equal to 2 here, | get 3 1 by 4 square into 3 by 4 plus
when | put x equal to 3 here, this is simply reducing to 1 by 4 cube. So, that is equal to
10 by 64. Let us, look at beta that is a probability of accepting H naught, when it is false
that is probability of p is equal to 3 by 4, when x equal to 0 or x is equal to 1. Now, under
H 1 that is when p is equal to 3 by 4, p x is 3 ¢ X 3 by 4 to the power x 1 by 4 to the
power 3 minus X. So, when X is equal to 0, this value is simply 1 by 4 cube plus when x

equal to 1, itis 3 into 3 by 4 into 1 by 4 square. So, that is equal to 10 by 64.

So, in this particular situation you can see alpha is 10 by 64 and beta is equal to 10 by 64,
the probabilities is of. Now, you see we suppose we try to reduce alpha, we may try to

reduce alpha by taking another test.
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So, suppose | say reject H naught, if x is equal to 3, accept H naught, if x is equal to 0, 1
or 2. Now, let us see what is the value of alpha? Let me call it alpha star that is the
probability of x is equal to 3, when p is equal to 1 by 4; so, when p is equal to 1 by 4 we
noted down that, the distribution here 3 ¢ x 1 by 4 to the power x 3 by 4 to the power 3
minus X, if we substitute x is equal to 3 here, | get 1 by 4 cube, that is 1 by 64. So,
naturally you can see here, that this test is having alpha is equal to 10 by 64, this is
having 1 by 64; so, this is having a much smaller probability of type 1 error, but now let
us see what happens to the probability of type 2 error, beta star that is probability of x is
equal to 0 or x equal to 1 or x equal to 2 under p is equal to 3 by 4.

So, when p is equal to 3 by 4, the probability distribution of x is given by 3¢ x 3 by 4 to
the power x 1 by 4 to the power 3 minus x. So, this will be equal to 1 by 4 cube plus 3
into 3 by 4 into 1 by 4 square plus 3 ¢ 2 that is 3 into 3 by 4 square into 1 by 4. So, that is
equal to now you see here, this value turns out to be 9 and 2 7, 2 7 plus 9 is 36, this is
becoming 37 by 64, so compare this. Earlier, you had the probability of type 2 error as
10 by 64, but as a consequence of reducing the probability of type 1 error, the probability
of type 2 error has shouted up, it has become 37 by 64. So, this is the problem which |
was mentioning that, if we try to reduce 1 type of error, the other type of error increases

very much.



Therefore, a compromise solution is that, we keep a maximum level for one type of
error; that means, we say we pre assign that, the probability of say type 1 error should
not go beyond a point and then, among all the other test procedures which have the same
maximum level of type 1 error we find we choose that one which has the smallest type 2

error. So, that gives us the concept of the most powerful test procedure.

So, there is a theory called. So, in the most general terms the theory would be
represented like this, that we have H naught theta belonging to say omega H. So, our
parameter space is omega, the full parameter space; you have the hypothesis testing
problem as theta belonging to omega H against theta belonging to omega. So, let me put
omega naught and omega 1. So, here omega naught union omega 1 may be omega or it is
not necessary, it may be actually a subset also, because in case we are dealing with a

simple hypothesis in that case the full parameter space need not be necessarily this one.
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So, the procedure that we are trying to tell here is that, we are devising a function phi x
based on the sample. So, we are saying phi x is equal to 1, if x belongs to say S R, it is
equal to O, if x belongs to S A. But, in some cases as | mention we may go for
randomization also, we may put some value p here for certain region. So, the probability
of type 1 error, that is probability that x belongs to S R, when theta belongs to omega
naught, so we take the maximum of this. So, supremum of alpha theta, that let us call it



say alpha naught or alpha star we choose that and then, we try to minimize beta theta,
that is probability of x belonging to S A, when theta belongs to omega 1.
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So, this optimization problem has been dealt with and the basic result in this regard is by
Neyman and Pearson and the result is known as popularly Neyman and Pearson
fundamental lemma also it is called NP lemma, this fundamental lemma which was
given in 1927 by statisticians (( )) and Ebony Pearson this initially dealt with the cases,

when we are having simple versus simple case.

So, the theorem is as follows: let p naught and p 1 be probability distributions possessing
densities p naught and p 1 respectively with respect to a measure mu; we may take say
mu is equal to p naught plus p 1 also. So, the first part is existence: For testing H naught,
that is p naught against the alternative H 1, that is p 1 there exists a test phi and a
constant k such that, expectation of phi x is equal to alpha and phi x is equal to 1, when p
1 x is greater than k p naught x; it is equal to 0, when p 1 x is less than k p naught x.
Second is sufficient condition for a most powerful test: if a test satisfies 1 and 2 for some
k, then it is the most powerful for testing H naught p naught against H 1 p 1 at level
alpha.
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The third is necessary condition for a most powerful test: if phi is most powerful at level
alpha for testing H naught p naught against H 1 p 1, then for some K it satisfies 2 or most
everywhere mu. It also satisfies 1 unless there exists a test of size less than alpha and
power 1. So, we see here first of all that, this lemma is very powerful in the sense that, if
I am having a simple hypothesis versus a simple hypothesis testing problem, then the
first thing it tells is that, there is a test with a given size, then secondly, if that test is of
that form and it has that given size, then it is the most powerful. Conversely, if there is a
most powerful test then, that must be of this particular form. So, in that sense it is a very
important result or you can say a very powerful result, which actually gives you the
optimal solution in the case of simple versus simple hypothesis testing problems.

So, let me look at the proof of this and then, we will look at certain applications here, for
alpha is equal to 0 and alpha is equal to 1, the theorem is easily seen to be true. When
alpha is equal to 0, the value Kk is equal to plus infinity has to be admitted in 2 and we
follow the convention that, O into infinity is equal to 0. When alpha is equal to 1, k equal
to 0 will be taken. Let us, look at this two choices; when alpha is equal to 0; that means, |
want the probability of type 1 error to be 0, when will that happens; that means,
probability of rejecting; that means we should never reject, if we do not reject then, this
value should be infinity otherwise, so if this is infinity, then right hand side is infinite;
that means, always this condition will be true, that is p 1 x is less than infinite and

therefore, you will always be accepting H naught.



So, the probability of type 1 error will become 0. So, this condition is also satisfied and
the whole thing is true basically, because in this case when you will look at the
probability of type 2 error that is probability of accepting H naught that will become 1,
because you are always accepting, so the power is 1. So, naturally it is the most powerful
test, also we see the case of alpha is equal to 1, alpha is equal to 1 will happen when |
take k equal to 0. So, if | take k equal to O this side is O; that means, p 1 x is greater than
0 is always satisfied therefore, you are always rejecting H naught; when you are always
rejecting H naught, then the probability of type 1 error is 1. Now, in this case what is
happening to the probability of type 2 error, if you are always rejecting H naught, then
the probability of accepting H naught will become 0 because, you are never accepting

that, because you are always rejecting, so you are never accepting.

So, this gives you beta is equal to 0. So, these are the trivial cases. Now, let us look at the
conventional cases. So, let us define a function alpha c is equal to p naught, that is the
probability under H naught, when p 1 x is greater than ¢ p naught x.
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Since the probability is computed under p naught, the inequality need to be considered
only for the set, where p naught x is strictly positive, so that alpha c is the probability
that the random variable p 1 x by p naught x exceeds c. Thus, 1 minus alpha c is a
cumulative distribution function and we have the following properties; that is alpha c is
non increasing and continuous on the right, that is the properties of the c d f. So, if 1



minus alpha c is non decreasing, then alpha ¢ will be non increasing. Secondly alpha of
minus infinity will be 1 that is the limit of alpha ¢ as ¢ tends to minus infinity, because 1
minus alpha c is ¢ d f and alpha plus infinity will become equal to 0. The third is that,
alpha ¢ minus minus alpha c that is the left hand limit at ¢ minus alpha c that is the
probability that, p 1 x by p naught x is equal to c. So, given any alpha such that, alpha is
between 0 and 1, let ¢ naught be such that, alpha ¢ naught is less than or equal to alpha
less than or equal to alpha ¢ naught minus. Consider the test phi defined by: so, we
define phi x is equal to 1, if p 1 x is greater than ¢ naught p naught x and we define alpha
minus alpha ¢ naught divided by alpha ¢ naught minus minus alpha ¢ naught, this
denotes the left hand limit at ¢ naught, when p 1 x is equal to ¢ naught p naught x. So,
this is the randomization as | was mentioning earlier that, when there is equality we put
some value, because finally, we want to achieve the power alpha, the size alpha and it is

0, if p 1 x is strictly less than ¢ naught p naught x.

Now, you compare this conditions with the original function we defined here the phi S
equal to 1, when p 1 x is greater than k p naught and it is equal to O, when p 1 X is less
than k p naught. So, if you compare this greater and less conditions are exactly matching
here. So, only we have introduce one quantity for equality that is the randomization
point, which may be required in the case of discrete distributions. So, and of course as |
mentioned this is meaningful only, when alpha ¢ naught is not equal to alpha ¢ naught
minus, because if it is a continuous distribution this will be 0. So, you do not need to
define this thing; that means, this is not useful because, the probability of this event will
be actually 0 only in the case of discrete distribution, when the ¢ naught is having a
positive probability for the function p 1 x by p naught x then this value will be of use.
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Let me write that comment here, here the middle expression is meaningful if alpha c

naught minus is not equal to alpha ¢ naught; however, alpha ¢ naught minus is equal to
alpha c naught implies that, p naught phi 1 p 1 x is equal to ¢ naught p naught x is equal
to 0, so that phi is defined almost everywhere. Now, let us look at the size of phi that is
the probability of rejecting, when H naught is true; that is probability of p 1 x by p
naught X greater than ¢ naught plus alpha minus alpha ¢ naught divided by alpha c
naught minus minus alpha ¢ naught into probability of p 1 x by p naught x is equal to ¢
naught. So, by the definition here this is alpha ¢ naught plus alpha minus alpha ¢ naught
divided by alpha ¢ naught minus minus alpha ¢ naught and this value is again alpha c
naught minus minus alpha ¢ naught. So, this term cancels with this and this cancels with

this, so this is actually reducing to alpha.

Therefore ¢ naught can be taken to be k of the theorem. So, this proves the existence part
of the theorem, because we have exhibited that, there exists a test which has size equal to
alpha of a given type, because we fix the type also here in the existence part, that there
exists a test of this type. So, of course, this was not complete because, this not take care
of the equality part. So, we defined that part here and it is having this power alpha. So,
this k value is well defined here. This proves the existence. Let me pay some attention to

this value ¢ naught here.
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Now, it is of interest to note that, ¢ naught is essentially unique. The only exception is
the case that an interval of ¢ exists for which alpha ¢ may be equal to alpha. So, if ¢
prime to ¢ double prime is such an interval, and c is equal to x such that, p naught x is
greater than 0 and ¢ prime is less than p 1 x by p naught x is less than ¢ double prime,
then p naught c is equal to alpha ¢ prime minus alpha ¢ double prime minus 0 is actually
equal to 0. This implies that mu c is equal to 0 and hence p 1 c is equal to 0. Thus the sets
corresponding to two different values of c differ only in a set of points which has
probability 0 under both distributions, that is points that could be excluded from the

sample space.
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Now, let us pay attention to the sufficiency part. So, suppose that phi is a test satisfying 1
and 2 and suppose that phi star is any other test with say expectation of phi star less than

or equal to alpha.

Let us use the S plus notation for the set of those points for which phi minus phi star is
greater than 0 and S minus is the set of those points for which phi x minus phi star is less
than 0. Now this two are test functions. So, both phi and phi star take values 0 or 1 or
between 0 and 1. So, if x belongs to S plus, then what we are getting that phi x is strictly
greater than phi star, then phi x must be positive. Now, if it is positive then, the way we
have defined our test function here if you remember here the definition of the test
function that, it is positive if it is 0 then only it is less; that means, in other cases it has to
be greater than or equal to. So, we will have this then phi x must be strictly positive and

so we will have p 1 x greater than or equal to k p naught x.

Let me repeat this argument, if x belongs to S plus then phi x is strictly greater than phi
star x. Now, phi star x is a non negative function therefore, this phi x has to be strictly
greater than O, if phi x is strictly greater than 0, then by our definition of the test function
p 1 x has to be greater than or equal to k p naught x. In the same way, if x belongs to S
minus then here phi x will be strictly less than phi star x phi star x can take values
between 0 and 1 therefore, phi x is less than 1 and so now less than 1 condition by the
definition here is satisfied for phi function for p 1 x less than or equal to k p naught x.



So, let us look at this we are having phi x minus phi star x greater than 0, when x belongs
S plus and for that x p 1 x minus k p naught x is greater than or equal to 0. So, if I
multiply these two terms, | will get non negative quantity on the other hand, if x belongs
to S minus, then this is negative and this is also p 1 x minus k p naught x is also less than
or equal to 0. So, the product will become greater than or equal to 0. So, what we are
getting is that, phi x minus phi star x into p 1 x minus k p naught x is greater than or

equal to 0, for all x belonging to S plus union S minus.
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Now, let us use this, if we consider phi minus phi star p 1 minus k p naught d mu. So,
this is a generalized term; that means, if we are dealing with the discrete distribution this
will be summation otherwise, it is a integral; So, this integral will be equal to integral
over the region. So, we have exhausted all the regions, because over S plus this term was
positive and over S minus, it is negative. So, if we go out of S plus and S minus, then this
will be equal to 0. So, in that case this integral value integrant will become 0. So, we can
ignore that. So, we are looking at only the portion where it is non-negative and this is

greater than or equal to 0.

So, this we can simplify we can write it as, phi minus phi star into p 1 d mu is greater
than or equal to k times phi minus phi star p naught d mu. Now, you look at the right
hand side just phi minus phi star p naught, this value is nothing but, the expectation of
phi under H naught and expectation of phi star under H naught, that is we can write it as



k times expectation naught phi x minus expectation naught phi star x. Now, expectation
naught phi x is alpha and this value we have chosen to be less than or equal to alpha. So,
this is greater than or equal to 0. Now, what is the right hand side sorry what the left
hand side is? This value is the probability of rejecting, when H 1 is true; that means it is
the power function. So, we use the notation say, beta star for the power. So, let me say
beta star denotes the power function, then this is beta phi minus beta phi star this is

greater than or equal to 0 this means that, phi is more powerful than phi star.

Now, in this one what we did; we started with a test function phi, which satisfies the
conditions 1 and 2 that means it has size alpha and phi star we took to be any other test
function, which is having size less than or equal to alpha; that means, equal to alpha case
is also covered and then, we are able to prove that the power of phi is more than or equal
to the power of phi star; now, this phi star is any arbitrarily chosen test for which the size
is less than or equal to alpha; that means, among all the test functions which have size
less than or equal to alpha, the power of phi is the maximum; that means, phi is the most

powerful test.
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So, phi is the most powerful test among all test functions of size less than or equal to
alpha. So, this theorem is very powerful in that sense that, for a simple versus simple
situation it gives you a test procedure with a pre assigned size, which is the most
powerful. So, you have actually an optimal solution in this situation, but there is



something more to this here, if there is a test which is most powerful, then it will satisfy
conditions 1 and 2. So, this is another important thing that, there will not be any other

test also. So, in that sense it is a necessary and sufficient condition.

Let me prove that also. So, let phi star be the most powerful test at level alpha for testing
H naught p naught against H 1 p 1 and let phi satisfy 1 and 2. Let us take say, S is equal
to S plus union S minus intersection the set of the values for which p 1 x is not equal to k
p naught x. Let mu of S is positive. Now, we have already seen that, on S plus and S
minus the quantity phi minus phi star and p 1 minus k p naught will be greater than 0. So,
as already observed that, phi minus phi star into p 1 minus k p naught is greater than 0 on
S, it follows that S plus union S minus phi minus phi star p 1 minus k p naught d mu that
is equal to phi minus phi star p 1 minus k p naught d mu this is strictly greater than 0. So,
this means that, phi is more powerful than phi star. So, this is a contradiction because |

started with phi star to be the most powerful.
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This is a contradiction, so mu S must be equal to O; that means, the set where you have
this phi minus phi star p 1 minus k p naught is actually greater than O that set must have
measure 0. This proves that, phi and phi star are same almost everywhere. So, in this
third part what we have done is that, if there is a most powerful test it must be the same
as a test which satisfies the conditions 1 and 2; that means, and that is almost
everywhere; that means, over a set of measure 0 you may modify the things here.



So, in essence this Neyman Pearson fundamental lemma gives you entire conditions
under which you can derive a most powerful test uniquely up to almost everywhere. Let
me give a few remarks here; if phi star were of size say less than alpha and power less
than 1, it would be possible to include in the critical region some points to increase the
power until the power is 1 or size is 1, either of the things will happen. Thus, either you
will have expectation of phi star x is equal to alpha or expectation 1 phi star x is equal to
1; that means, either the size will become 1 or the sorry this is size is alpha either the size
will become alpha or the power will become 1. The proof of necessity part shows that,
the most powerful test is uniquely determined by 1 and 2 except on the set, where p 1 x
is actually equal to k p naught x; that means on this portion we can define it arbitrarily,

but the size has to remain alpha.
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So, on this set phi can be defined arbitrarily provided the resulting test has size alpha.
Actually we have shown that, it is always possible to define phi to be constant over this
boundary set. In the trivial case, that there exists a test of power 1, the constant k of 2
will be 0 and 1 will accept H naught for all points for which p 1 x is equal to k p naught

X, even though the test may have size less than alpha.

Third remark is that, the most powerful test is determined uniquely up to sets of measure

0 by 1 and 2 whenever the set on which p 1 x is equal to k p naught x has measure 0.
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We have a corollary here then, let beta denote the most the power of the most powerful
level alpha test for testing H naught p naught against H 1 p 1. Then alpha is less than or

equal to beta and alpha is equal to beta only if p naught is equal to p 1.

Let me see a proof of this since the level alpha test given by phi x is equal to alpha; that
means, throughout this has power alpha, it is seen that alpha has to be less than or equal
to beta. If alpha is equal to beta is less than 1, the test phi x is equal to alpha everywhere
is MP and by necessity part of the NP lemma it must satisfy 2. If it satisfies 2, then p
naught x is equal to p 1 x almost everywhere mu and hence you must have a p naught is
equal to p 1; that means, basically there is no testing problem if the null and alternative
hypothesizes are same, then the testing problem is dissolved actually; that means, there is

no inference problem left here.

So, today we have seen a powerful tool to derive the most powerful test for simple versus
simple hypothesis testing problems. So, we will see some applications in the next
lectures this entire theory for the testing of hypothesis, because in most of the other cases
we will have a composite hypothesis, a simple versus composite or a composite versus
composite hypothesis, there have been extensions of this Neyman Pearson fundamental
lemma, the whole theory was developed in 1930s by Neyman and Pearson. So, that will
be the part of the course on statistical inference in this particular course in the remaining
portion, | will be taking up the applications of the Neyman Pearson lemma for looking at



the simple versus simple problems as well as, applications to specific parameter testing
problems in the normal distributions, the test for the proportions in both in 1 sample and
2 sample problems and we will also look at the chi square for test for goodness of it. So,

that will be the coverage for the next lectures.



