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Yesterday, we have introduced the criteria that among given estimators, which estimator 

should be preferred. For example, if T 1 and T 2 are two unbiased estimators for the 

same parameter g theta, then we will prefer T 1 over T 2 if variance of T 1 is less than or 

equal to variance of T 2. In general, if I am considering any two estimators; that means, 

they need not be unbiased; in that case, we will compare the mean squared errors and the 

estimator with smaller mean squared error will be preferred. 
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Let me give one example here. Suppose we have a random sample from a population 

with mean mu and variance sigma square. Now, let us consider estimators T 1 and T 2 

for mu. Let us see. So, what is expectation of T 1? Naturally, it is equal to mu. What is 

expectation of T 2? You can apply the linearity property of the expectation. So, this 

becomes twice divided by n into n plus 1 sigma i expectation of X i. Now, expectation of 



X i is mu. So, this reduces to 2 mu by n into n plus 1 sigma of i; i is equal to 1 to n. Now, 

this is nothing but n into n plus 1 by 2. So, this cancels out with this and you get that both 

T 1 and T 2 are unbiased estimators. So, T 1 and T 2 – both of them are unbiased. 
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Let us look at variances. So, what is variance of T 1? Variance of T 1 is sigma square by 

n. We have already shown that the variance of the sample mean is equal to sigma square 

by n. Let us consider the variance of T 2. Now, variance of T 2, because of the 

independence, becomes 4 by n square into n plus 1 square sigma i square variance of Xi. 

Now, variance of Xi is sigma square. And, this is sigma i square from 1 to n; that is, the 

sum of the squares of first n integers; that is, n into n plus 1 into 2 n plus 1 by 6. So, after 

simplification, this quantity turns out to be twice into 2 n plus 1 divided by 3 n into n 

plus 1 sigma square. So, now the question is that we can also check the consistency here. 

For example, both of them are unbiased and variance of T 1 goes to 0 as n tends to 

infinity; variance of T 2 also goes to 0 as n tends to infinity. 
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Since variance of T 1 goes to 0 as n tends to infinity and variance of T 2 goes to 0 as n 

tends to infinity, we conclude that T 1 and T 2 are consistent. So, we have two 

estimators; both of them are unbiased, both of them are consistent also. Again, which one 

we will prefer? So, we compare the variances. You can see easily that sigma square by n 

is less than or equal to 2 into 2 n plus 1 by 3 n into n plus 1 sigma square for all n greater 

than or equal to 1. Actually, for n is equal to 1, the two sides will be equal. So, this 

implies that T 1 is better than T 2. 

Now, the question comes that among a set of given estimators, we can find by comparing 

the variances or mean squared errors. But, in the first place, how to find the best among 

them? Because the total set of estimators is infinite, we need certain other methodology. 

There are two methods for finding out the unbiased – methods for finding UMVUE. One 

method is the method of lower bounds. Under certain given conditions, variance of an 

unbiased estimator is greater than or equal to a prescribed number. It is 1 by n times I 

theta. This is under certain conditions. This is called Fretchet-Cramer Rao lower bound. 

So, if there is an estimator, which will have this variance equal to this, (Refer Slide 

Time: 05:33) that will be naturally minimum variance and biased estimator. Then, later 

on, the generalizations of this Fretchet-Cramer Rao bound have been done. And, we have 

the bounds when we have multi-parameter situations, when we can use higher order 

derivatives, etcetera. But, for application of these lower bounds, certain conditions need 

to be satisfied and the bounds may not always be attained. 
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There is another approach that is called Rao-Blackwell Lehmann-Scheffe approach. We 

introduced two concepts; that is of sufficiency and completeness. Firstly, we define what 

sufficiency is. We have the regular model that X 1, X 2, X n be a random sample from a 

population say P theta, theta belonging to script theta. Then, a statistic T is said to be 

sufficient if the conditional distribution of X 1, X 2, X n given T is equal to t is 

independent of theta for almost all t. 

Let us take an example here. Suppose I consider X 1, X 2, X n, follow say Poisson 

lambda distribution. Let us define T to be sigma of X i; i is equal to 1 to n. 
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Let us consider the conditional distribution of x 1, x 2, x n given T is equal to t. So, this 

is equal to probability of X 1 is equal to x 1 and so on, X n is equal to x n, T is equal to t 

divided by probability of T is equal to t. Now, here T is sigma X i and we know that it 

follows Poisson n lambda. So, the denominator quantity can be written. How to find out 

the numerator quantity? We simplify this; we can write it as probability of X 1 is equal to 

x 1 and so on. X n minus 1 is equal to x n minus 1. And, X n is equal to t minus sigma x 

i; i is equal to 1 to n minus 1. This is valid if sigma x i is equal to t; otherwise, it is 

defined to be 0. Because it is conditional on t, for every value of t, we have to determine 

this. Now, the numerator quantity can be determined, because X 1, X 2, X n are 

independent Poisson lambda variables. 
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So, we can substitute these values here. e to the power minus lambda into lambda to the 

power X 1 by x 1 factorial and so on. And, the last term will be e to the power minus 

lambda lambda to the power t minus sigma xi 1 to n minus 1 divided by t sigma xi, 1 to n 

minus 1 factorial and divided by e to the power minus n lambda n lambda to the power t 

divided by t factorial. You can easily see that e to the power minus lambda term cancels 

out, because we have n terms here; and in the denominator, we have e to the power 

minus n lambda. The powers of lambda, that is, lambda to the power t here; and, in the 

denominator, we have lambda to the power t. So, that also cancels out. 

(Refer Slide Time: 10:26) 

 



So, we are left with t factorial divided by x 1 factorial and so on x n minus 1 factorial t 

minus sigma xi; 1 to n minus 1 factorial and 1 by n to the power t when t is equal to 

sigma xi. And, it is equal to 0 if t is not equal to sigma xi. Now, you can see here this 

term does not depend upon lambda. This is independent of lambda. So, we conclude that 

T, that is, sigma Xi is a sufficient statistic. The role of sufficiency is quite important in 

statistical inference. In fact, it means that we can generate an alternative sample say x 1 

prime, x 2 prime, x n prime given T is equal to t. That means, whatever information 

about the parameter can be drawn from the sample x 1, x 2, x n, all of that is contained in 

sigma xi. That means, there is no additional information in x 1, x 2, x n, which is not 

there is sigma xi. This allows us to make the data compact, because we need not keep 

record of all the individual observations, rather we keep record of only the sufficient 

statistics. 

Now, this method of proving that sigma xi is sufficient involves finding out the 

conditional distribution and which may be quite cumbersome for various problems. And, 

another thing is that here we have to guess also that what would be a sufficient statistic. 

So, there is another result, which is known as Neyman-Fisher factorization theorem, 

which allows us to figure out what will be a sufficient statistic in a given problem. I will 

not state the theorem in a full form; rather we look at the practical aspect of it. We write 

down the joint density, that is, product of f x I, theta; i is equal to 1 to n. This is a joint 

probability density function (Refer Slide Time: 12:54) of x 1, x 2, x n. If this can be 

factorized as g t x, theta into h x, where the first term depends upon xi’s only through t 

and the second term is free from theta. Then, we say that this implies and implied by that 

T x is sufficient. The proof of this involves slightly major theoretic consideration. So, we 

skip the proof. But, this is a very practical way of obtaining sufficient statistics. 
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So, let us look at the applications of this. Let us consider say X 1, X 2, X n follows 

Bernoulli distribution. So, the joint distribution here, product i is equal to 1 to n p to the 

power xi 1 minus p to the power 1 minus xi; that is, p to the power sigma xi 1 minus p to 

the power n minus sigma xi. This we can write as p by 1 minus p to the power sigma xi 

multiplied by 1 minus p to the power n. Now, you can see here, this term is a function of 

sigma xi and p alone; and, h x we can take to be 1. So, this proves that sigma Xi is 

sufficient. 

Let us look at the practical aspect of it. If we have conducted n Bernoullian trials, we will 

be interested and we want to draw certain inference on the proportion of the success. 

Then, you can see that sigma Xi is actually the number of successes here. So, that gives 

the full information about p. We do not have to keep track of individual xi’s. Suppose we 

consider say uniform distribution. Then, the joint density is equal to 1 by theta to the 

power n. Now, one may say that if we write like this, then where is the variable coming 

in, which will be sufficient? But, this is not a complete description, because for complete 

description, we need to write down the range of the variables, which is each of the xi’s, 

is from 0 to theta. So, we can write it in the terms of indicator function that x n is from 0 

to theta. And, remaining xi’s – they are between 0 to x n product i is equal to 1 to n 

minus 1. So, this part we can consider as g of x n and theta. And, this part we can 

consider as h x. So, by factorization theorem, we conclude that X n is a sufficient 

statistic. 



Let us also correlate with the discussion that we had in the previous lecture about the 

maximum likelihood estimators. The derivation of the maximum likelihood estimator 

involved the full probability density function or probability mass function of x 1, x 2, x 

n, which we termed as the likelihood function. And, that function we maximized with 

respect to the parameter. Now, if you look at the factorization, then (Refer Slide Time: 

16:56) this term does not play a role, because if I take l n for example, then this term will 

be separated out and the maximization problem reduces only to the maximization of this 

function. So, naturally, theta will become a function of T x alone. 
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So, we conclude here that maximum likelihood estimators – if they exist – are functions 

of sufficient statistic. So, that brings us the importance of the sufficiency; that means, 

whatever inference we draw, finally, we can restrict attention to the sufficient statistic. 

We will look at further examples of this later. 

Let me introduce another concept called completeness. Let X follow a distribution say P 

theta; theta belonging to theta. So, we say that the family of distributions, P is equal to P 

theta is complete if for any function g, expectation of g x is equal to 0 for all theta, 

implies probability of g x is equal to 0 is equal to 1. 
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Further any statistic T will be called complete if the family of distributions of T is 

complete. So, let me give the example here and explain that what the meaning of this is. 

What we are saying is that whenever expectation of g x is 0, that function itself is 0. That 

means the only unbiased estimators of 0 are 0 itself. Now, this is a very important 

statement. And, let us see that why this is true for various distributions. 

(Refer Slide Time: 20:00) 

 

Let us take say x follows binomial (n, p), where n is known and p is the parameter. Let 

us look at expectation of g x is equal to 0. Now, this condition is equivalent to g x, n C x, 



p to the power x 1 minus p to the power n minus x is equal to 0 for x is equal to 0 to n. 

We may introduce a term called say phi is equal to p by 1 minus p. Then, this term I can 

write as sigma g star x phi to the power x is equal to 0 for x equal to 0 to n, where g star I 

have written as g x into n C x. Now, the left-hand side is a polynomial of degree n in phi 

and we are saying that it is vanishing for all phi. So, a polynomial will vanish identically 

on an interval provided all it is coefficient vanish; that means, g star x is 0 for all x is 

equal to 0, 1 to n, which implies that g x itself is 0 for all x is equal to 0, 1 to n. So, 

probability that g x is equal to 0 will be 1 for all p. So, this family of binomial 

distributions is a complete family of distributions. So, we have actually an important 

result, which is known as Rao-Blackwell and Rao-Blackwell-Lehmann-Scheffe theorem. 

Let me give that result. That will help us in obtaining the uniformly minimum variance 

unbiased estimators. 
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The Rao-Blackwell theorem says that let d x be unbiased for g theta and T be a sufficient 

statistic. Then, let us define say h T as expectation of d x given T, conditional 

expectation. Then, this is unbiased for g theta; and, variance of h T is less than or equal 

to variance of d x for all theta. Now, this means that if there is a estimator, which is not 

dependent upon the sufficient statistic, I can transform it by conditioning upon the 

sufficient statistic and get something, which is better; that means, it is always advisable 

to start with functions of sufficient statistic for making estimation. 



Now, further strengthening of this theorem is done if we use the concept of completeness 

also. Let T be a complete and sufficient statistic. Then, h T is UMVUE for its 

expectation. That is, g theta is equal to expectation of h T. Now, this is extremely 

significant result. It means that whenever I have a complete sufficient statistic and I have 

to find out UMVUE of any parametric function, then I consider an appropriate 

parametric function, which will be based on the complete sufficient statistic and it will be 

unbiased; that is all. So, that will become UMVUE automatically; we do not have to do 

any further proof that we have to compare its variance with any other unbiased estimator, 

etcetera. It will be automatically. The reason is that the property of the completeness that 

the only unbiased estimators of 0 is 0 itself; that means, for any given parametric 

function, based on the complete sufficient statistic, you cannot have two unbiased 

estimators. If there are two, then they will be same with probability 1. 

And, if there is any other estimator, which is not dependent upon the complete sufficient 

statistic, then that can again be improved by taking conditioning. So, you will get the 

same one. Therefore, it is advisable to restrict attention to functions of complete 

sufficient statistic. Now, this gives us a very convenient tool for deriving unbiased 

estimators in various problems. So, let us go back to the examples, which we have done 

earlier. 
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One of the first problems we considered was estimation of the parameter of a Poisson 

distribution. So, now, the question arises about the completeness and sufficiency. So, 

here T is sufficient; what about completeness? The distribution of T is Poisson n lambda. 

So, if we can prove that the family of Poisson distributions is complete, then T will also 

become a complete statistic. So, in place of Poisson n lambda, we can prove the 

completeness of Poisson lambda family. Let us write down expectation of say g x is 

equal to 0. This statement is equivalent to g x e to the power minus lambda lambda to the 

power x by x factorial. So, since lambda is positive, we can multiply on both the sides by 

e to the power lambda; and, g x by x factorial term I can combine as some g star x. 

Now, the left-hand side is a power series in lambda and we are saying that it is 

identically 0 on the positive half of the real line. That is possible only if g star itself is 0; 

that means, all the coefficients must be 0, which is equivalent to saying that g x is 0 for 

all x, which implies that probability that g x is 0 is 1 for all lambda. So, that means this 

family is complete. So, this means that sigma xi is sufficient as well as complete. Now, 

that makes our problem extremely simple. Now, based on T, whatever estimator we take, 

if we take its expectation, then that estimator will become UMVUE for that. 
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For example, expectation of T by n, that is, expectation of X bar; that is equal to lambda. 

So, X bar is UMVUE for lambda. Now, that answers a question for this, because in this 

particular case, we had written earlier X 1 as an estimator; X 1 plus X 2 by 2 as another 



estimator. We could have also considered say T 4 as 1 by n minus 1 sigma Xi minus X 

bar whole square. This is also unbiased, because this is a sample variance; and, in the 

Poisson distribution case, lambda is a population variance. So, sample variance is 

unbiased. But, this is UMVUE (Refer Slide Time: 29:28). So, we do not have to consider 

any other estimator and we restrict attention to X bar for this one. As far as the unbiased 

estimation is concerned, we can take help of the complete sufficiency and get the best 

unbiased estimator. 

This concept is also useful to estimate certain parametric functions, which are not 

straight away unbiasedly estimable. We had taken an example of the probability of 0 

occurrence. Now, we wrote that we can consider an estimator such as say I of X 1 is 

equal to 1 if X 1 is 0 and it is 0 if X 1 is not 0. Then, expectation of I X 1 is e to the 

power minus lambda. Naturally, this is not dependent upon the complete sufficient 

statistic. So, by Rao-Blackwell-Lehmann-Scheffe theorem, let me write it as d T is equal 

to expectation of I X 1 given T. This is UMVUE. So, now, the question comes of 

determination of d T. That can be determined by using the concept of conditional 

expectation. 

(Refer Slide Time: 31:13) 

 

So, expectation of I X 1 given T is equal to small t; that is equal to probability of X 1 is 

equal to 0 given T is equal to t; that is, probability of X 1 is equal to 0, sigma Xi is equal 

to t divided by probability T is equal to t. We know the distribution of T; that is, Poisson 



n lambda. So, the denominator is determined. The numerator is determined if we make 

use of the condition that X 1 is 0. Then, this summation reduces to sigma X i, i is equal 

to 2 to n to be equal to t, because the first one is 0. The advantage of writing like this is 

that the first one is independent of the second term, because this is X 1 and this is X 2 to 

X n. So, we can write it as a product X 1 is equal to 0 into product of sigma X i, i is equal 

to 2 to n is equal to t divided by probability of T is equal to t. 

Once again, we make use of the fact that some of the independent Poisson random 

variable is again Poisson. So, this will be Poisson n minus 1 lambda; that is, T follows 

Poisson n lambda; sigma X i, 2 to n follows Poisson n minus 1 lambda and X 1 follows 

Poisson lambda. So, we can substitute these values here. This is e to the power minus 

lambda, e to the power minus n minus 1 lambda, n minus 1 lambda to the power t 

divided by t factorial; then, e to the power minus n lambda n lambda to the power t by t 

factorial. So, these terms obviously cancel out and we are left with n minus 1 by n to the 

power t, which we can write as 1 minus 1 by n to the power t. So, d T, that is, 1 minus 1 

by n to the power T is UMVUE for g lambda. 

This concept of completeness and sufficiency is extremely useful for determination of 

the minimum variance unbiased estimators for given problems. Of course, one may 

wonder that this estimator looks somewhat different, because we are estimating e to the 

power minus lambda and what type of term we have got. But, if you see here fully, if I 

take the limit of this as n tends to infinity, it is actually e to the power minus X bar, 

because this is nothing but n times X bar. So, this becomes e to the power minus X bar, 

which was actually the maximum likelihood estimator. So, this is another important 

point that in most of the practical situations, asymptotically, the minimum variance 

unbiased estimator and the maximum likelihood estimator will be same. There have 

some results in this direction. 
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Let us take some other practical problems; say X 1, X 2, X n follows normal mu sigma 

square distribution. Now, let us determine a complete sufficient statistics here; write 

down the joint distribution of X 1, X 2, X n. So, that is 1 by sigma to the power n root 2 

pi to the power n into e to the power minus 1 by 2 sigma square sigma Xi minus mu 

square. Now, if we write the term like this, it is not easy to understand that what will be a 

sufficient statistic, because here all the observations are coming into picture. So, we do 

slight algebraic simplification. We can write it as 1 by sigma to the power n root 2 pi to 

the power n into e to the power minus sigma X i minus X bar whole square by twice 

sigma square minus n X bar minus mu by 2 sigma square; that means, we have added 

and subtracted sigma X i minus X bar plus X bar minus mu square. That becomes sigma 

X i minus X bar whole square plus n times X bar minus mu square. And, the cross 

product term vanishes. 

Now, you can see here that this is a function of sigma X i minus X bar whole square 

(Refer Slide Time 36:21). This is a function of X bar. So, we can say that X bar and 

sigma X i minus X bar whole square is sufficient. Any one-to-one function of a sufficient 

statistics will also be sufficient. In fact, we can write the general thing that if T is 

sufficient and T is a function of U, then U is also sufficient. On the other hand, if T is 

complete and V is a function of T, then V is also complete. So, this implies that we can 

also write this as (Refer Slide Time: 37:30) sigma X i sigma, X i square. Now, the 

question comes about checking the completeness of this. That will involve the joint 



distribution of X bar and sigma X i minus X bar whole square, which we already know, 

the distribution of X bar is normal and the distribution of n minus 1 S square by sigma 

square is chi square; and, they are independent. So, we can write a proof based on this. 

However, it may be quite complicated. Fortunately, there is another result that if the 

distributions are in exponential family, then a form of complete statistic can be 

determined. 
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A general result in this direction is that consider a k-parameter exponential family; that 

means, the distribution is of the form e to the power sigma theta i T i x; i is equal to 1 to 

k multiplied by some C theta h x. This is called a k-parameter exponential family. This 

belongs to certain parametric space, theta. If theta contains a k-dimensional rectangle, 

then T 1, T 2, T k is complete. Sufficiency is of course obvious because of the 

factorization theorem, but this will also be complete. 
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If we utilize this one, then obviously, here (Refer Slide Time: 39:32) X bar and sigma X i 

minus X bar whole square will be complete also, because this can be considered as a two 

parameter exponential family; one of the parameters can be written as minus 1 by 2 

sigma square and another parameter can be written as minus n by 2 sigma square. So, the 

range of the parameters is minus infinity to infinity and minus infinity to 0. And 

therefore, this can be written in this following fashion. 

(Refer slide Time: 40:24) 

 



1 by sigma to the power n root 2 pi to the power n into e to the power minus 1 by 2 

sigma square sigma x i square minus 2 mu xi plus mu square. Now, this we write down 1 

by sigma to the power n root 2 pi to the power n into e to the power minus n mu square 

by 2 sigma square into e to the power minus sigma x i square by twice sigma square plus 

mu by sigma square into sigma xi. So, if you write in this particular fashion, you can see 

that we can consider it as a two dimensional parameter; theta 1 – we can take to be minus 

1 by 2 sigma square; theta 2 – we can take to be mu by sigma square; T 1 we can take to 

be sigma x i square; and, T 2 we can take to be sigma x i. So, the range of theta 1 is from 

minus infinity to 0 and the range of theta 2 is from minus infinity to infinity. So, 

obviously, this contains two-dimensional rectangles. Therefore, sigma x i square, sigma 

x i is a complete statistic. 

The sufficiency is already established through factorization theorem. Therefore, we 

conclude that (Refer Slide Time: 41:35) sigma X i, sigma X i square is sufficient and 

complete; or, X bar and sigma X i minus X bar whole square is a complete and sufficient 

statistic. This is a one-to-one function of this. Now, the estimation problem for finding 

out the minimum variance unbiased estimators becomes very simple. For example, 

expectation of X bar is mu. Therefore, X bar will be minimum variance unbiased 

estimator for mu. We have also proved that expectation of S square is sigma square; that 

is, sigma X i minus X bar whole square by n minus 1, which is a function of this (Refer 

Slide Time: 42:07). Therefore, that is also a UMVUE. 
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So, we conclude that X bar is UMVUE for mu; and, S square is UMVUE for sigma 

square. So, we can see here that once the determination of a complete sufficient statistic 

is done in a problem, then finding out the UMVUE is simply a problem of finding certain 

expectations. 

Let us take another familiar example that is of a uniform distribution. Here we have seen 

the method of moment estimator was 2 X bar, which was unbiased MLE was X n. So, we 

write down the joint distribution. We have seen X n is actually sufficient, but what about 

its completeness? So, let us write T is equal to X n; what is a distribution of this? It is n t 

to the power n minus 1 by theta to the power n; 0 less than or equal to t less than or equal 

to theta; 0 otherwise. If we want to prove the completeness of t, then let us take 

expectation of g T; that is equal to g t n t to the power n minus 1 by theta to the power n 

d t from 0 to theta equal to 0 for all theta. 

Now, you see here; this is a function of T and we are saying the integral over every 

interval of the form 0 to theta is 0. Now, through the intervals of the form 0 to theta, we 

can generate all the levy measurable sets on the positive real line; that means, we can say 

the integral of g star t, where g star t denotes this thing, (Refer Slide Time: 44:21) is 

equal to 0 for all measurable sets A on R plus, which is implying that g star t itself must 

be 0 almost everywhere on R plus. This implies g t is 0 almost everywhere on R plus. So, 

this implies that probability that g T is equal to 0 is 1. This proves that T is actually 

complete; we have already proved that it is sufficient. 
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Now, let us look at expectation of T. Expectation of T is equal to n t to the power n by 

theta to the power n; 0 to theta d t; that is equal to n by n plus 1 into theta, which shows 

that the maximum likelihood estimator is actually a biased estimator. But, we can adjust 

this coefficient. So, we get n plus 1 by n into T; that is, n plus 1 by n into X n. This will 

become minimum variance unbiased estimator for theta. So, you can see here that this 

settles the issue of which estimator among the unbiased estimators must be chosen. The 

concept of completeness and sufficiency is quite significant in statistical inference. Here 

we have given examples for the estimation problems. Later on we will see when we do 

the testing or confidence interval. There also the same statistic plays a role. Here we give 

some more examples of estimation problems. 

Suppose in place of mu, the mean of a normal distribution is given to be 0. Let us see 

how this modifies the given problem. Let us write down the joint density, because all the 

information will be derived from the distribution itself. So, product of individual 

densities becomes 1 by sigma root 2 pi to the power n into e to the power minus sigma x 

i square by 2 sigma square. Now, here you do not have to do anything; you just observe 

that the distribution belongs to one parameter exponential family; the parameter is minus 

1 by 2 sigma square. And, it is from minus infinity to 0, the range of minus 1 by 2 sigma 

square, which obviously contains one-dimensional intervals. Therefore, sigma x i square 

is complete statistic. The sufficiency is clear from here. So, we conclude that sigma X i 

square is a complete and sufficient statistic. 



Now, we look at the distribution of sigma X i square. The distribution of sigma X i 

square by sigma square is chi square on n degrees of freedom. This means that 

expectation of sigma X i square by sigma square is n; that is, expectation of 1 by n sigma 

X i square is sigma square. That settles the issue here. In fact, for this problem, if we find 

the maximum likelihood estimator, that will be this (Refer Slide Time: 48:13). The 

method of moment estimators will be this. And, this is also minimum variance unbiased 

estimator. 
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So, 1 by n sigma X i square is UMVUE for sigma square. Let us compare it with the 

previous work. When we considered normal mu sigma square distribution, we (Refer 

Slide Time: 48:42) concluded that one by n sigma X i minus X bar whole square is 

UMVUE. Now, here you see, that if the information about mu is there, then the UMVUE 

is changing; that means, making use of the given information about the parameter 

changes our inference. A layman will blindly without knowing the concept of sufficiency 

may just say that once we know that for mu, we have X bar and for sigma square, we 

have S square. Then, he can always use in any given problem the estimators as X bar and 

1 by n minus 1 sigma X i minus X bar whole square; whereas, here you see that if we 

know that mu is equal to 0, then first of all for mu, there is no estimation problem, 

because we know that the value is 0; and, for sigma square also, a more efficient 

estimator is 1 by n sigma X i square. In fact, it is better than 1 by n minus 1 sigma X i 

minus X bar whole square, because of the UMVUE thing that we have considered here. 



This also shows that whatever information is coming in the form of the likelihood 

function, that means the data and the parameter space, that should play full role in 

deriving any inference in particular for estimation. Suppose here we have another 

restriction say sigma square is greater than or equal to sigma naught square. Obviously, 

this 1 by n sigma X i square, which was the MLE as well as UMVUE becomes slightly 

unreasonable estimator if it is observed that this value is less than sigma naught square. 

Let us see how to modify the maximum likelihood estimator. We consider the log of the 

likelihood function that is equal to minus n by 2 log sigma square minus sigma x i square 

by 2 sigma square. So, if we differentiate this dl by d sigma square, we get minus n by 2 

sigma square plus sigma xi square by 2 sigma to the power 4, which is nothing but sigma 

x i square minus n sigma square by 2 sigma to the power 4. 

You can easily see that if n sigma square is less than sigma x i square, this is positive; 

that is, if sigma square is less than 1 by n sigma x i square. And, it is less than 0 if sigma 

square is greater than this; that means, the form of the likelihood function is that it 

increases up to a certain value, then decreases. Now, if sigma naught square is here 

(Refer Slide Time: 51:51) and 1 by n sigma x i square is here, then this solution is 

alright; whereas, if this value is in this side, then the maximum is occurring at this point. 

Therefore, the maximum likelihood estimator for sigma head square becomes 1 by n 

sigma X i square if sigma X i square by n is greater than or equal to sigma naught square; 

and, it is equal to sigma naught square if it is less. So, here you can see the unbiased 

estimator does not belong to the given parametric space. Therefore, we have to discard 

some portion of it and get a modified estimator. 



(Refer Slide Time: 52:43) 

 

Suppose in the same problem, X 1, X 2, X n follows normal mu sigma square and we are 

interested in the estimation of sigma. Now, if maximum likelihood estimation is to be 

done, then immediately we can take the square root of the estimator of sigma square. 

But, that will not preserve the unbiasedness. So, we can then make use of the concept of 

completeness and sufficiency. Here we know that S square by sigma square follows chi 

square on n minus 1 degrees of freedom. So, we take expectation of square root of this 

quantity and we obtain a multiple of a constant here. Now, we adjust that constant here. 

So, we get here square root n minus 1 by k S as unbiased estimator for sigma. That is a 

standard deviation. This quantity, which I have written here is actually 1 by root 2 

gamma n minus 1 by 2 divided by gamma n by 2, which can be done after certain 

calculations, because expectation of this will involve evaluation of a gamma function, 

which can be easily done and this term will come. So, what we will get that this is 

UMVUE for sigma. 

Now, suppose we are interested in a parametric function say mu plus eta sigma, which is 

nothing but a quantile; quantiles are locations on the distribution; we have defined it 

earlier (Refer Slide Time: 54:43). Suppose this is a normal distribution mu. So, mu plus 

eta sigma may be a particular quantile, mu minus eta sigma may be another quantile, 

etcetera. And, we may be interested to find a UMVUE of this (Refer Slide Time: 54:56). 

Then, easily we can see, because of the linearity, we can put X bar plus eta; and this 

particular term – let us denote it say C n minus 1 – C n minus 1 sigma; then, this will 



become UMVUE. C n minus 1 S. This will be UMVUE for this parametric function, 

(Refer Slide Time: 55:18) which we call say theta. So, you can see that for various kind 

of parametric functions, the UMVUE’s can be derived once we have the complete 

sufficient statistic with us. The only disadvantage is that sometimes the complete 

sufficient statistic may not exist; that means, a statistic, which we are considering 

sufficient may not be complete. 

(Refer Slide Time: 55:48) 

 

An example for this situation is suppose I say X 1, X 2, X m follows normal mu sigma 1 

square; Y 1, Y 2, Y n follows normal mu sigma 2 square. Then, expectation of X bar is 

mu; expectation of Y bar is also mu. So, expectation of X bar minus Y bar is 0 for all 

parametric functions. However, probability that X bar minus Y bar is 0 is not 1. In fact, 

this probability is actually equal to 0. So, X bar, Y bar, S 1 square, S 2 square, is not 

complete. In this case, we cannot make use of the Rao-Blackwell-Lehmann-Scheffe 

theorem. In fact, there is another result here, which says that the UMVUE for mu does 

not exist. So, that may happen sometimes. However, this concept is extremely useful as 

we have seen. 

In the next lecture, we will be discussing the interval estimation; that means, in place of a 

single value as an estimate for certain parametric function, we will give a range of values 

and we will say that with a certain confidence, the parameter lies into that range. 


