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Today, I will introduce the problem of statistical inference. So, far we have concentrated 

on discussing the concepts of probability, the concepts of statistical distributions, various 

kind of discrete and continuous distributions, multivariate random variables and their 

distributions, and we also looked at the concept of sampling distributions. 
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Further, I described something called descriptive statistics; that means, when a data is 

given then, how do we plan to analyze it; that means, how to present that data 

graphically or we draw certain basic, say basic characteristics such as measures of 

central tendency, measures of dispersion or variability from that data; however, all of this 

is actually to be utilized for drawing inference on populations. So, what is the population 

problem of inference? So, for example, a government is interested that how much will be 

the average heat production in the coming year? How much will be, say the production 

of sugar in the country? How much will be the production of a particular commodity? 

How much will be the production of say cotton? How many farmers or what percentage 

of land is utilized for farming of a fruits? 



 

In atmospheric sciences scientists are worried about, what is the average temperature 

likely to be in the month of January or in the year 2010, is it going to be more than the 

2009?. In medical sciences, we are interested about the occurrences of diseases. So, what 

is a estimated number of people, who will be affected by a certain kind of disease and 

what will be the effect on the longevity of the people by that disease? In biology, in 

economics, in physics, in social sciences, in industry, trade and commerce, in almost 

every area of human activity, we come across such situations or such problems. 

 

Now, one may question that why do we have to use statistical methods here. For 

example, if I am looking at say occurrences of disease or say agricultural production, 

then where is the statistical thing coming into picture or suppose I am measuring the say 

diameter of a star in universe, in a far away galaxy, then where is statistics coming into 

picture. The statistics comes into picture that, although we may feel that the diameter of a 

star is deterministic and one should be able to get an exact figure of it, but we do not 

have methods of getting that value exactly. So, certain formula will be used and in that 

formula certain ingredients will be there, which will be measured by certain instruments 

repeatedly. Now, that measurements, the process of taking measurements introduces 

certain errors, which we assume are random or statistical in nature. And therefore, when 

we draw any inference based on those measurements, the inference becomes a statistical 

inference. And therefore, this entire topic or you can say the entire subject, the needs that 

we use correct methodology of a statistical inference. So that the conclusions drawn from 

that data are correct. So, that brings on to the focus the problem of a statistical inference. 

Primarily speaking, the problem of inference can be divided into two portions: one is 

called the problem of estimation and another is the problem of testing of hypothesis. For 

example, if we want to actually get a value that what is the average longevity of the 

people of India or people of a particular country, then we actually do not know the value 

of what we want? And therefore, we actually get a value based on a sample. So, this is 

called the problem of estimation; that means, to get the value. Now, that the estimation 

itself can be split into two parts: one is to get an actual value, suppose I say the value of 

average longevity is or average age is 65 years, then we are assigning a single value for 

the characteristic to be estimated. This is called the problem of point estimation.  

On the other hand, we may not give the exact value but we may give an interval of the 

values and say that, with a certain confidence or certain probability, the given value lies 



in that interval. For example, we may say that the average age of a person in India is 

from 62 to 68 years with 95 percent of confidence. This is called the problem of interval 

estimation or confidence intervals. 

 

On the other hand, sometimes we would like to test a fact. For example, a new drug has 

been introduced in the market for creating a certain disease. Now, the manufacturing 

company which has introduced the drug will certainly like to know, that whether the new 

medicine is more effective than the previous one. So, if I say p 1 is the proportion of 

people which were treated earlier and p 2 is the proportion of the persons which are 

treated now successfully, then whether p 2 is bigger than p 1. This type of judgment; that 

means, to tell on the basis of the sample whether p 2 is bigger than p 1 or p 2 is less than 

p 1, etcetera, this is called the problem of testing of hypothesis. So, broadly we divide the 

problem of statistical inference into three parts: one is the problem of point estimation, 

another is the problem of interval estimation and another is the problem of testing of 

hypothesis. There are various other facets of statistical inference like prediction, 

sequential inference and other things but they can be considered to be following up from 

here. So, these are the basic, you can say facts of the or basic points of statistical 

inference. 

 

Let me give some historical facts about how the problem of statistical inference was 

initially studied. So, it seems out to have been have origins in the problems of astronomy 

and geodesy in the first of half of eighteen century, when many scientists where finding 

out like distances between the stars; that is interplanetary distances, the positions of the 

stars, their shapes, how do they move with the time; that means, for example, mercury 

take this much time to rotate around the sun or it takes this much time to rotate on its axis 

and all those kind of statements; that means, the problems in astronomy are in geodesy. 
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So, for example, some of the earliest measurements were made on to check whether the 

spherical shape of earth, to determine that thing. And so, it turned out that the data is of 

the form that we have observations x 1, x 2, x n and y 1, y 2, y n and they are related 

with the equation y i is equal to alpha plus beta x i, which today we know, as an equation 

of a simple linear aggression model. So, these are earliest occurrences of this model. So, 

the famous mathematicians Gauss and Legendary, they used the method of least squares 

for finding out the values of alpha and beta. So, you can say that the method of least 

squares is probably one of the oldest methods for finding out the estimates of parameters. 

Towards the end of nineteenth century, Karl Pearson introduced the method of moments 

and minimum chi square, for estimating parameters. In the beginning of the twentieth 

century, R A fisher, he introduced the method of maximum likelihood. In fact, as I have 

already mentioned, he is credited to be the, you can say initiator of most of the methods 

of modern statistical inference which we use today. So, he was the one who introduced 

the concept of maximum likelihood estimation. In the mid twentieth century Abraham 

Wald introduced the some decision theoretic methods and methodology such as 

admissibility, minimaxity and Bayesian techniques in a statistical inference. 

 

Now, let me introduce the basic terminology to be used in a statistical inference. The first 

term is a population. So, a statistical population is a collection of measurements in which 

we are interested. So, for example, we are interested in estimating the average per capita 



income of persons in a state, then there may be a household survey or there may be a 

survey of people in different organizations and the incomes of individuals are noted. So, 

in this particular case the statistical population is the measurements corresponding to the 

individual incomes. If we are interested in the average longevity of persons, then suppose 

we are considering a particular state or a particular country, then the total lifespan of 

each person of that country or that state will constitute the statistical population. 

 

If we are interested to study the yield of wheat in the state of Punjab, then corresponding 

to each plot of land where the wheat is grown, if we look at the total output or yield of 

the wheat from each of the plot, then those values will be considered the statistical 

population for this purpose. So, a statistical population is a collection of measurements 

with respect to certain characteristic, which we are interested to study. 

 

Here, one thing I would like to mention, that it is not necessary, that all the time we will 

have to look at only numerical value. Sometimes, it may be in the form of yes, no or 

some answers which we can call attribute data. For example, if we are looking at 

preferences of people for a certain opinion, whether they have a positive opinion about 

certain issue. So, they may answer is yes or no. So, corresponding to each person you 

will be noting down the data, yes or no and you may put it as values say 0 or 1. 

 

You may record the persons who are say possessing a certain characteristics say an IQ 

greater than hundred or below hundred persons, whose average incomes are above say a 

particular level or below a particular level or we may classify them in according to four 

different levels: very poor, lower middle class, upper middle class, and say higher 

income group. So, we may assign for each person or each household according to the 

level of income that the person is having the values say 1, 2, 3, 4 or 0, 1, 2, 3, etcetera. 

So, this is qualitative data or attributes data and in statistical population one also studies 

such data. 

 

Next is sample. So, what is a sample? The exact definition of sample is, that sample is a 

subset of population. So, in general when we want to study any characteristic about the 

population, it is requiring the entire measurement; that means, complete enumeration of 

the population. So, which is not feasible. So, for example, if you are studying say the 

household, per household expenditure on say medical expenses in a particular town, then 



it will require going to each household and get the monthly expenditure on the medical; 

however, this may not be feasible. So, the best solution for various such enumeration 

problems is to take a representative sample from the population and draw the inferences 

based on that. So, the concept of sampling techniques or sampling methodology is 

widely developed in statistics. So, here we assume that the sample has already been 

selected and we will draw the inferences based on that. So, sample, critically speaking is 

a subset of the population and we will assume that it has been randomly selected. 

 

A parameter of a population is the characteristic in which we may be interested in. So, 

for example, when we talk about the population of say incomes, then we may be 

interested to know the range, for example, what is the difference between the maximum 

salaried imply and lowest salaried imply. If we are interested in the say yields of 

different states, for say wheat, then per hector wheat production may be in a particular 

state is much higher corresponding as compared with the other one. So, we may be 

looking at the averages, the maximum value, the minimum value, the variability, the 

median value. So, these characteristics of the population, they are termed as parameters. 
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So, since we are interested to know about the characteristics of the parameter 

populations; that means, parameters, the statistical inference problem relates to either 



finding out an estimate or you can say point estimator or an interval estimator for the 

parameter or to test about those parameter values.  

 

Now, at our disposal, we have a random sample say x 1, x 2, x n. Now, whatever we 

want to draw our inference from x 1, x 2, x n, we will be using certain function of that. 

So, for example, if I say, I wanted to use find out the average height and from the sample 

I take the average and I use it as an estimate. So, that means, I have used a function of 

the sample observations. So, these sample observations if we make a function out of that, 

that is called statistic. So, the statistic will have different uses. For example, like I can 

use them to make a point estimator, I can use them to make a confidence interval, we can 

use them to create a test. So, we may use it as a test statistic. So, when I use it as, to 

estimate certain parametric function, then it is called an estimator and the realized value 

of that is known as an estimate. 

 

So, now let me introduce the basic features of estimation. So, let me concentrate on the 

problem of point estimation. Now, to begin with, I mentioned that there are several 

mathematicians or statisticians who gave some methods of the estimation. For example, I 

mentioned the word least squares estimates, the method of maximum likelihood, the 

method of moments, the minimum chi square method, etcetera. So, each of these 

methods is based on certain concept or you can say certain theory that why this is 

desirable method. Now, the question is that they may give different values of the 

estimators or they may give the same values of the estimators, then the question comes 

that how do you distinguish that which one should be used? So, for that purpose we 

introduce certain criteria of estimation. So, before going to give the actual methods of 

estimation, let me introduce certain criteria. 

 

So, in any statistical inference problem, the model is like this. That we have x 1, x 2, x n 

is a random sample, from a population with distribution say P theta, theta belonging to 

say script theta. Let me explain this. Normally, we will be talking about sentences such 

as x 1, x 2, x n is a random sample from poisson lambda distribution. x 1, x 2, x n is a 

random sample from normal mu sigma square distribution. So, what is the meaning of 

this? The meaning of this, is that in the inference problem, we assume that the 

determination of the statistical model has already been done; that means, the problem is 

already specified. For example, if I am saying it is estimation of say average longevity, 



the estimation of average temperatures, etcetera, the problem has already been identified 

by the person who is going to use it. It may be a government agency, it may be a 

commercial organization, etcetera and then the statistician has already determined the 

parametric model for that; that means, if we are talking about average heights, then the 

statistician has determined that this population follows a normal distribution; that means, 

if we have a large data set from the, our target group and we have taken the heights and 

then we make a histogram and a frequency curve, and we find that it looks like a 

normally distributed random variable. 

 

Therefore, the problem to, for inference is now to draw certain inference on the 

parameters of the population; that means, what could be the value of mu, whether mu is 

equal to 0 or mu is less than or equal to certain value, whether sigma square is known 

value or unknown value, etcetera; that means, we are going to do a testing or confidence 

interval or point estimation about the parameters of the population; that means, when I 

am saying point estimation or testing, etcetera, we are talking about parametric inference. 

 

So, there are two types of inferences: we have parametric inference and non-parametric 

inference. So, where the non-parametric inference will arise? When we are unable to 

determine the model from which the data has come from; that means, we may not be able 

to say that, it is normally distributed. So, this could be in several ways. For example, the 

data is too haphazard or the data is too less or we are not having sufficient experience to 

determine, the data is coming from which population. Then, there are certain methods 

which we call distribution free methods or non-parametric inference. 

 

In this particular topic, we will be restricting our attention to parametric inference; that 

means, we assume that the model is coming from a certain population P theta. So, P we 

already know, that what distribution it could be. Only thing to be determined is that 

parameters we may not know. So, the statements such as x 1, x 2, x n is a random sample 

from normal mu sigma square. So, we go back to our terminology which we used in the 

distribution theory, that we write that x 1, x 2, x n are independent and identically 

distributed random variables with normal mu sigma square distribution. So, here what is 

theta, theta is equal to mu sigma square. Now, what is this script theta? It is the set of all 

possible values of the parameter. 



For example, if I am saying normal mu sigma square, then mu varies from minus infinity 

to infinity and sigma square is positive; that means, here theta is your R, that is the real 

line cross R plus, that is the positive half of the real line. We may say x 1, x 2, x n follow 

poisson lambda distribution. So, here lambda is a positive parameter. Therefore, my 

parameter space is R plus. If I say, x follows say binomial n p distribution, I know what 

is N because, I know in how many trials, I am looking at for the number of successes. 

So, the parameter could be P and we may say that P belongs to the interval say 0 to 1. So, 

this is the parameter space in this situation. So, depending upon the different parametric 

model the distribution and the parameter space will be specified.  

 

So, in any inference problem, we start with this model, that we have a random sample 

from a given population. So, the meaning of that is, that we have identically and 

independently distributed random variables from a given population. And our objective 

is to make certain inference about the parameters of the population in the form of point 

estimation, interval estimation or confidence interval. So, now, for the time being, we 

restrict attention to the problem of point estimation. 

 

Now, one of the first concepts in the point estimation can be as a layman, that when I 

specify that for using, for estimating average heights of say persons of a community, I 

take a sample and I make use of the sample mean. Then, the question arises, is it alright 

to do that? That means, we are actually giving a value based on the sample. So, it may be 

less than the true value or it may be more than the true value. Then, is on the average this 

value equal to the true value. So, that means, on the average the kind of errors that we 

will be making plus and minus, they cancel out each other. This is the criteria of 

unbiasness. 
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So, we have unbiased estimation. So, now, we have already mentioned that we will be 

making use of the functions of x 1, x 2, x n. So, T of x1, x 2, x n or you can say T x. So, 

we will use this notation for statistic and therefore, we will use it as an estimator. So, a 

statistic T x is said to be an unbiased estimator of g theta, now I am writing a parametric 

function because if I have certain parameter, then some function of that we will be 

interested in. For example, I may be interested in mu, I may be interested in sigma 

square, I may be interested in sigma or I may be interested in a linear function of mu and 

sigma, here I may be interested in lambda, here I may be interested in n p, etcetera. So, in 

general, I am interested in any parametric function. If the average value of T x is equal to 

g theta, for all theta. So, if it is not equal then it may be equal to some value, say g theta 

plus some b theta, then we say that T x is biased for g theta and b theta is called the bias 

of T x. 

 

So, let us consider certain examples. So, let me take x follows binomial say n p. here, n is 

known and p is a parameter. So, I may be interested to estimate p because what is p? p is 

the probability of success or p is the proportion. So, if I consider say T x is equal to x by 

n, we know in binomial distribution, expectation of x is equal to n p. So, expectation of x 

by n is equal to p. So, x by n is unbiased for the population proportion. Of course, it may 

not be, that we are interested only in p. I may be interested in the variance term. For 



example, variance in binomial is n p q, that is n p into 1 minus p. I may be interested in p 

square. 
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So, let us see that whether we can do that. If I consider say, expectation of say x into x 

minus 1, then in binomial distribution, we know it is equal to n into n minus 1 p square; 

that means, I have an estimate of p square here. So, expectation of x into x minus 1 

divided by n into n minus 1 is equal to p square. So, I have an unbiased estimate of p 

square. 

 

Now, suppose I want to estimate say variance that is n p into 1 minus p, I can write it as 

n p minus p square. Now, for p, I can write x by n and for p square, I write x into x minus 

1 by n into n minus 1. And let me multiply by n here. So, this becomes expectation, x 

minus x into x minus 1 by n minus 1. So, this implies expectation of x into n minus x by 

n minus 1. This is equal to n p into 1 minus p. So, x into n minus x by n minus 1 is an 

unbiased estimator for variable T, because in the population I may be interested in 

estimating the variable T also. So, here we are able to derive an unbiased estimator for 

that. 
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Let us take another problem. Let x 1, x 2, x n follow poisson lambda distribution. So, 

here lambda is the parameter. Suppose, I want to estimate lambda itself, then I may use 

say x 1. So, expectation of x 1 is lambda. One may suggest using x bar, that is 1 by n, 

sigma x i, then expectation of x bar is also lambda. So, we can have several unbiased 

estimators for the same parameter. We may be interested to estimate say g lambda, that is 

equal to e to the power minus lambda. What is this term? It is actually the probability of 

observation being equal to 0. In poisson case, this is important. For example, if we are 

looking at say arrivals at certain service point of customers, then it is important to know 

the time or proportion of the time for which there will be no customer. So, the service 

company or the service provider can actually plan in such a way that, for the time when 

there are no customers, the service personnel may not be employed. So, that, they can 

make some savings. 

 

So, the 0 probability is of interest. So, we may create an estimator like this T x 1 is equal 

to 1, if x 1 is equal to 0. It is equal to 0, if x 1 is equal to 1. Then, if I look at expectation 

of T x 1, then it will be equal to 1 into probability of x 1 is equal to 0 plus 0 into 

probability of x 1 is equal to 1 or we may put x 1 not equal to 0, rather than 1. So, x 1 not 

equal to 0. So, that is equal to e to the power minus lambda. So, we are able to create an 

unbiased estimator. Of course, one may say that T x 2 or T x i, in general unbiased. So, 

which one should be used? So, we will come to this question a little later. 



Let me take say x 1, x 2, x n a random sample from say normal mu sigma square 

population. If I am interested to estimate mu, I may use say x bar. So, expectation of x 

bar is equal to mu. Now, we know here that variance is sigma square and suppose, I am 

interested to estimate that, then I may make use of say S square; that is 1 by n minus 1 

sigma x i minus x bar whole square. I have already proved that n minus 1 S square by 

sigma square follows chi square distribution on n minus 1 degrees of freedom. 
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So, if I look at expectation of n minus 1 S square by sigma square, that is equal to n 

minus 1; this means expectation of S square is equal to sigma square. So, x bar and S 

square are unbiased estimators for mu and sigma square respectively. One may even be 

interested in certain different parametric function. In this particular case, we may be 

interested say in mu square say. So, suppose my g theta, where theta is mu sigma square 

and I am interested to estimate say mu square, then I may consider something like this. 

You make use of the distributional properties, x bar follows normal mu sigma by n. So, 

expectation of x bar square that is equal to mu square plus sigma square by n. So, I can 

subtract the estimate of sigma square by n from here. So, mu square becomes expectation 

of x bar square minus S square by n. So, x bar square minus S square by n is unbiased for 

mu square. 
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Let x 1, x 2, x n follow say exponential distribution, I may be interested to estimate the 

mean here, I may be interested to estimate say lambda here. So, if I am interested to 

estimate say mean, I may consider expectation of x i, that is equal to 1 by lambda. So, I 

may consider expectation of x 1 plus x 2 by 2, that is also 1 by lambda, expectation of x 

bar is also lambda. So, we will come to the question that, which one we should choose 

among these. 

 

If I am interested to estimate say lambda itself, then I may consider, for example, here I 

may define say Y is equal to sigma x i and that will follow gamma n lambda. So, then we 

know expectation of Y is equal to n by lambda. This implies expectation of x bar is equal 

to 1 by lambda. I may consider the reverse, what is the expectation of say 1 by Y? Then, 

one can show that actually, it is equal to n minus, it is equal to, so, one may look at the 

distribution 1 by Y. Now, this is gamma and lambda. So, we can write it lambda to the 

power n by gamma n e to the power minus lambda Y to the power n minus 1 dy, 0 to 

infinity; which is equal to gamma n minus 1 lambda to the power n by gamma n divided 

by lambda to the power n minus 1; that is equal to lambda by n minus 1. 

 

So, we get that expectation of n minus 1 by Y is equal to lambda. So, n minus 1 by Y is 

unbiased. Exponential distribution, you may remember that I had introduced this lambda 

as the arrival rate in the poisson process or I had introduced a term called instantaneous 



failure rate or the hazard rate. So, lambda was the hazard rate. So, if we want to estimate 

the hazard rate, we have an estimator for that here. 

 

So, this unbiased estimation can be done and one can actually look for the desirable 

estimates which are unbiased. So, they satisfy the property that their average value is 

equal to the true value of the parameter. Statistically speaking, which is a very nice 

concept because, if we are repeating the process several times then the errors which we 

make in the actual estimation are even doubt in the long run. 
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However, it is not necessary that all the time the concept of unbiased estimation may be 

useful. Sometimes, unbiased estimators may be absurd. Let me give an example. So, let x 

follow poisson lambda. I am interested in the parametric function say e to the power 

minus 3 lambda. Since, lambda is positive, you can see that 0 less than e to the power 

minus 3 lambda is less than 1. Let me define T x is equal to as y minus 2 to the power x. 

So, what is expectation of T x? It is equal to minus 2 to the power x e to the power minus 

lambda, lambda to the power x by x factorial, x equal to 0 to infinity. So, that is e to the 

power minus lambda minus 2 lambda to the power x by x factorial; that is equal to e to 

the power minus 2 lambda; that is equal to e to the power minus 3 lambda. 

 



So, minus 2 to the power x is unbiased for e to the power minus 3 lambda. But let us see, 

e to the power minus 3 lambda, as we have seen it lies between 0 to 1, but what are the 

values of minus 2 to the power x can take values 0 1 2 and so on, because x is a poisson 

random variable. So, it will take non-negative integral values, if I take x equal to 0, this 

is 1. If I take equal to 1, I get minus 2. If I take x equal to 2, it is 4. If I take x equal to 3, 

it is minus 8, 16 and so on. 

 

Now, you notice here the values of the estimator are never in the interval 0 to 1. In fact, 

you can see for as x becomes large. The values are actually progressively increasing on 

the positive and the negative side whereas, my estiman is between 0 to1. So, this is an 

absurd type of situation. You look at another situation for mu square, I gave an estimate 

x bar square minus S square by n, but there may be a situation where x bar is may be 

close to say 0 and S square may be a little larger value. In that case this may become 

negative whereas, mu square is always positive. So, this may again give an absurd 

estimator. 
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Sometimes, unbiased estimates do not exist. Let us take this binomial situation and I may 

be interested to estimate say 1 by p; that is the reciprocal of the probability of success. I 

may be interested to estimate say p to the power n plus 1 or I may be interested to 

estimate say sin of p. Let us see. Let, I say T x be unbiased for g 1 p, then expectation of 



T x must be equal to 1 by p, for all p in the interval 0 to 1. Now, you see this. This left 

hand side term is equivalent to T x n c x p to the power x 1 minus p to the power n minus 

x is equal to 1 by p, for all p in the interval 0 to 1. Now, left hand side, this is a 

polynomial of degree utmost n in p and this is not a polynomial term at all. Actually, it 

comes in the Laurent series. This is the reciprocal term. So, this can never be equal to 

this, because this has to agree for all the points on an open interval. So, this is not 

possible.  

 

Similarly, if I put say p to the power n plus 1 on the right hand side, again it is not 

possible. Because, left hand side is a polynomial of degree utmost and on the right hand 

side, you have a term of degree n plus 1. Similarly, sin p has an infinite expansion. So, 

that can never be equal to this finite polynomial expansion. So, in a given problem, it is 

not necessary that we will always be able to find an unbiased estimator. 
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We may take another example say x follows binomial poisson lambda and again I want 

to estimate say g 1 lambda is equal to say 1 by lambda, then sigma T x e to the power 

minus lambda, lambda to the power x by x factorial. If you look at this term, the left 

hand side term, even if I take this to the other side, this will imply sigma T x lambda to 

the power x by x factorial is equal to 1 by lambda into e to the power lambda, which I 

can write as 1 by lambda plus, I can expand this 1 plus lambda plus lambda square by 2 



factorial and so on. Now, the left hand side, this is a power series in lambda and the right 

hand side is a Taylor series plus Laurent series. So, they can never be equal. So, no 

unbiased estimator exists. 
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Now, let me introduce another concept that is called consistency. So, an estimator, I will 

use a notation now T n, T x. Now, x is x 1, x 2, x n. I am putting here n to denote the 

dependence that there are n observations used here. So, an estimator T n is said to be 

consistent for say g theta, if for every epsilon greater than 0, probability that modulus T n 

minus g theta is greater than epsilon, goes to 0 as n tends to infinity. So, this means that 

the distance between T n and g theta becomes close as n becomes large; that means, the 

probability that the distance is larger than prescribed quantity, this probability must go to 

0 as n tends to infinity. 

 

In convergence concept, this is called T n converges to g theta in probability. So, this is 

the so called large sample property of the estimators, because what we are trying to say 

here is, that in the long run the estimator and the estiman becomes close. So, in the 

unbiasness, we said that the errors, the positive errors and the negative errors cancel out 

each other. Here, we say that in the long run the estimator and the estiman becomes 

close. 



So, let us see some example. Let me take say x 1, x 2, x n follow uniform 0 theta 

estimation. Now, I may be interested to estimate the parameter theta which is upper 

bound for the uniform distribution. So, let me take say x n, T n is equal to x n. We know 

the distribution of x n. So, if I have to calculate probability of modulus x n minus theta 

greater than epsilon, then what is this probability equal to? If I am saving uniform 0 theta 

distribution, then each of the x i’s lies between 0 to theta. So, this x n also lies between 0 

to theta. So, this x n minus theta, modulus value is actually theta minus x n. So, this is 

equal to probability that x n is less than theta minus epsilon. We have already worked out 

the distribution of this largest order statistic. It is theta minus epsilon by theta whole to 

the power n. If epsilon is a positive number, then theta minus epsilon by theta will be less 

than 1. So, this power n will go to 0 as n tends to infinity. So, T n that is equal to x n is 

consistent for theta. 

 

Now, in general, who win the consistency may be slightly more difficult than the 

unbiasness. In the sense that, in proving consistency we need to look at the actual 

probability distribution and look at the probability of a certain event whereas, in the 

expectation you look at the full range. So, for certain distribution, this may not be very 

convenient. And therefore, some sufficient conditions are helpful. We have the following 

result. 
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If expectation of T n, that is equal to theta n, converges to theta and variance of T n is 

equal to say sigma n square, that goes to 0 as n tends to infinity, then T n is consistent for 

theta. Let us look at the proof of this. So, we can write this T n minus theta as equal to T 

n minus theta n plus theta n minus theta. So, it will be less than or equal to, so, if I look 

at probability of modulus T n minus theta greater than epsilon, then this is less than or 

equal to probability of modulus T n minus theta n, which is equal to probability of 

modulus T n minus theta n greater than epsilon minus. If I use Chebyshev’s inequality, it 

is less than or equal to sigma n square by epsilon minus theta n minus theta whole 

square. Now, as n tends to infinity, modulus of theta n minus theta becomes very small. 

So, you have a non negative quantity in the denominator. In fact, a positive quantity and 

sigma n square goes to 0. So, this goes to 0. So, T n converges to theta n probability. 

This result is extremely useful. 

 

(Refer Slide Time: 54:10) 

 

 
 

In the sense that if I am considering say let x 1, x 2, x n be a i i d random variables with 

say expectation of x i is equal to mu and variance x i is equal to sigma square. Then, 

expectation of x bar is mu, what is variance of x bar? It is sigma square by n which 

actually goes to 0 as n tends to infinity. So, x bar is consistent for mu; that means, that if 

the mean and variance that is the first two moments are existing, then the sample mean is 

always consistent, always consistent for the population mean if the second moment 

exists. 



Notice that, this result will not be applicable if say variance does not exist or even if the 

expectation does not exist. For example, in a distribution like a Cauchy distribution, this 

result will not be valid. On the other hand, I can multiply by say if T n is consistent and a 

n is a sequence of numbers which converges to 1, b n is a sequence of numbers which 

converges to 0, then a n T n plus b n is also consistent. So, unlike unbiasness whereas 

any change in the value of the estimator will actually describe the unbiasness property 

the consistency is a more you can say relaxed kind of property that in the long run, if I 

modify my estimator little bit, it does not make any difference, because it will be simply 

a that coefficient or the constant will actually converge to 1. So, in the long run both the 

things become almost the same. 
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Let me give an example here. In the sampling from normal population, if I have 

considered say n minus 1 S square by sigma square, the distribution is chi square n minus 

1. So, we know variance of n minus 1 S square by sigma square is twice n minus 1. So, 

variance of S square is actually equal to twice sigma to the power 4 by n minus 1. 

Because, I can take out these terms here, n minus 1 square by sigma to the power 4 and I 

can adjust on the other side. We have already seen that expectation of S square is sigma 

square. So, this is unbiased and its variance goes to 0 as n tends to infinity. So, S square 

is consistent for sigma square. Now, in place of S square I consider 1 by n sigma x i 



minus x bar whole square. Then, this is nothing but n minus 1 by n S square, then this is 

also consistent for sigma square because in the long run n minus 1 and n are the same; 

that means, n minus 1 by n goes to 1. So, we will look at various other properties and the 

methods of deriving the estimators in the next lecture. 

 


