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We have introduced a sampling distribution called Chi square distribution and then I 

showed that if we are doing from sampling from a normal distribution then, the 

distribution of the sample variance is a Chi square distribution. Therefore, Chi square 

distribution is a sampling distribution. We used a moment generating function technique 

to derive the distribution of s square. Firstly, we are proving that sample mean and 

sample variance are independently distributed then we are sampling from a normal 

population. Today, I will give an alternative derivation by the method of transformations 

for the sampling distribution of x bar and s square then, we are sampling from a normal 

population. 
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Let us consider that X 1, X 2, X n, is independently and identically distributed normal 

mu sigma square random variables. So, we want to derive the distribution of X bar that is 



sample mean 1 by n sigma X i i is equal to 1 to n and S square that is, 1 by n minus 1 

sigma X i minus X bar whole square. 

 

So, the method of proof will be through transformations. So, we will consider a 

transformation of the set X 1, X 2, X n, in the following fashion. So, let us consider 

Helmert’s orthogonal transformation. 

 

Now, this is a special transformation given in the following fashion that we define y is 

equal to Y 1, Y 2, Y n, as B X where B is the matrix of coefficients the first row is 1 by 

root n 1 by root n and. So, on 1 by root n the 2 row it is minus 1 by root 2 and 1 by root 2 

and remaining terms are 0 the third one is minus 1 by root 6 minus 1 by root 6 and 2 by 

root 6 and the remaining terms are 0. Likewise, if we continue in the last row we have 

minus 1 by square root n into n minus 1 and so on. 

 

Finally, the last term is n minus 1 by root n into n minus 1 multiplied by X 1, X 2, X n,. 

So, first of all let us observe this B matrix this B matrix is a special matrix which is 

called Helmert’s orthogonal matrix the terms of the first row are same and if you take 

every next row then it is define in such a way that if I multiply any 2 rows then the 

product will be 0 that is a scalar product of any two rows is 0 for example, if I take first 

and second then here it is minus 1 by root 1 here it is plus 1 by root 2. If I multiply the 

sum will give me 0 suppose I take this with this then again the same thing because these 

two terms are same; if I multiply here and then this will become 0. Similarly, if I take 

this and multiply by the first row then minus 1 by root 6 n minus 1 by root 6 n plus 2 by 

root 6 n. So, again the sum is equal to 0. So, this is special matrix which is constructed 

for this purpose. 

 

Now, let us see the effect of this. So, what we have done is that we have transform the X 

1, X 2, X n, variables to new variables called Y 1, Y 2, Y n, by means of this. 
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We have B is an orthogonal matrix and we have B B transpose is equal to identity 

matrix. So, if I consider Y transpose Y then that is equal to X transpose B transpose B X 

that is equal to X transpose. So, this is also B transpose B that is equal to X transpose X; 

that means, sigma of Y i square is equal to sigma of X i square i is equal to 1 to n; that 

means, the original sum of squares is equivalent to the new sum of squares. Also, we can 

see here by this transformation that Y 1 is equal to root n X bar because, if I consider the 

multiplication of the this matrix with this vector and look at the first term and the first 

term will be X 1 by root n plus X 2 by root n plus X n by root n. So, that is root n X bar. 

So, Y 1 is root n x bar. So, from here we get sigma Y i square i is equal to 2 to n is equal 

to sigma Y i square minus Y 1 square which is same as now sigma X i square this is i is 

equal to 1 to n sigma i is equal to 1 to n minus n X bar square that is equal to sigma X i 

minus X bar whole square which is the term which appears in the S square term that is 

the sample variance. 

 

Therefore, this new transformation is giving me Y 1 as well as sigma that is which is x 

bar which is a term of X bar and which is another term which is a term of S square. So, 

our desired objective was to get the distributions of X bar and S square and this 

particular transformation helps us in at least representing these two terms in terms of 

transformed variables. 



Now, let us look at the distribution. Firstly, we write down the joint density function of X 

1, X 2, X n,. So, each of this X i’s are normal new sigma square variables. So, that 

distribution we write as one by sigma root 2 pi to the power n e to the power minus 1 by 

2 sigma square sigma X i minus mu whole square now this we expand we can write as 1 

by sigma root 2 pi to the power n e to the power minus 1 by 2 sigma square. And, now 

we get sigma of X i square minus 2 mu sigma X I plus n mu square. 

 

When we consider the transformation Y is equal to B X and B is an orthogonal matrix 

then we know that the determinant of an orthogonal matrix is either plus 1 or minus 1. 

So, jacobian of the transformation that will be having absolute value one. So, this will be 

used for calculation of the transformed density. 

 

(Refer Slide Time: 08:07) 

 

 
 

If I consider the joint density of Y 1, Y 2, Y n, then it is obtained as, in the density of X 

1, X 2, X n, let us substitute the transformed values in terms of Yi’s. So, sigma X I 

square will become sigma Y i square and this sigma X i is nothing, but n X bar now X 

bar is Y 1 by root n. So, this also you can substitute and multiply by the Jacobean of the 

transformation that is unity. So, we get the transform density as 1 by sigma root 2 pi to 

the power n e to the power minus 1 by 2 sigma square sigma Y 1 square minus 2 mu root 

n Y 1 plus n mu square this is i is equal to 1 to n. 



Now, in this particular exponent if I consider this sigma Y i square I take I write this as 

Y 1 square plus sigma Y i square from 2 to n now this Y 1 square minus 2 mu root n Y 1 

plus n mu square becomes a perfect square. So, we can present it as 1 by sigma root 2 pi 

e to the power minus 1 by 2 sigma square Y 1 minus root n mu square and the other 

terms we write separately as product i is equal to 2 to n 1 by 2 pi sigma square to the 

power half e to the power minus Y i square by 2 sigma square. 

 

The range of the transformed variables each of this Y i’s are also from minus infinity to 

plus infinity now you see this representation we are able to express the joint density of Y 

1, Y 2, Y n, as product of the certain functions where each function is strictly dependent 

only on each Y i. So, these are n functions. So, this is a function which is dependent 

upon Y 1 alone and here we have n minus 1 function, each function is dependent upon Y 

2 Y 3 Y n respectively. 

 

So, if we integrate with respect to Y i’s we will get individual terms; that means, Y 1, Y 

2, Y n, are independent and you are also able to say that these Y i’s are independently 

normally distributed because of the form of the density. So, we conclude that we 

conclude from the above expression that Y 1, Y 2, Y n, are independently distributed and 

Y 1 follows normal root n mu and sigma square and remaining Y i’s follow normal 0 

sigma square for i is equal to 2 to n. 

 

So, this implies that since Y 1 is root n X bar that is X bar that is equal to Y 1 by root n 

that will follow normal mu and sigma square by n and the sum of the squares of this Y i 

is divided by sigma square that is sigma Y i square by sigma square i is equal to 2 to n 

that will follow Chi square on n minus 1 degrees of freedom. But this term is nothing, 

but n minus 1 S square by sigma square. So, that is following Chi square on n minus 1 

degree of freedom and further these two are independent. So, the result which we had 

proved using moment generating function we have proved using transformations of the 

variables also this Helmert’s orthogonal transformation is quite useful and that actually 

suggest that a procedure for obtaining the distributions of the sums of random variables 

and the squares of random variables. So, many times it is taken as quite useful. 
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Now, we move over to another sampling distribution called t-distribution. So, we call it 

students t-distribution there is a story behind that why it is called students t-distribution 

basically it was discovered by W H Gosset a statistician in England; however, he worked 

in a brewery and therefore, it was not permitted for him to give his affiliation as working 

in a brewery. So, he used a (( )) name student and therefore, the distribution became 

famous as students t-distribution. 

 

So, if I have let X and Y be two independent random variables let us assume that X 

follows normal 0 1 distribution and Y follows a Chi square distribution on n degrees of 

freedom if I consider the ratio X divided by Y by n and square root. So, let me write it as 

square root n X by square root of Y let me call it say T then this T is said to have a 

student’s t-distribution on n degrees of freedom now this degrees of freedom 

terminology is coming from the Chi square distribution where we express that what is a 

meaning of the terms degrees of freedom a Chi square distribution on n degrees of 

freedom was represented as the sum of squares of n independent standard normal random 

variables. 

 

So, in the definition of t-distribution I am using the degrees of freedom of Chi square and 

therefore, this t-distribution is said to have said to be on n degrees of freedom now since 

here X and Y are independently distributed random variables the variation of the density 



of T is an exercise of deriving distribution of a function of random variables. So, we can 

write down the joint distribution of X and Y and create a transformation in which one of 

the variable will be define by T and some other variable and we derive the distribution. 

So, let us do it in the following way. 

 

Firstly, we look at the joint probability density function of X and Y. So, it is equal to the 

product of the individual distributions of X and Y now X is normal 0 1. So, the density is 

1 by root 2 pi e to the power minus x square by 2 and the density of Y is Chi square n 

that is 1 by 2 to the power n by 2 gamma n by 2 e to the power minus Y by 2 Y to the 

power n by 2 minus 1 here the range of the x variable is from minus infinity to infinity 

and range of Y variable is positive. 
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So, now, we are considering the transformation t is equal to root n X by root Y. So, let us 

consider this transformation ok. So, the second variable we can consider as say V is 

equal to or U is equal to say y because we have to consider a 1 to 1 transformation or at 

least a number of variables should be same. So, that we can find the joint density and 

then we can integrate out the not desire variable. So, the inverse transformation here will 

be. So, X is equal to root u by n t and Y is equal to U. So, we consider the jacobian del x 

by del t that is root u by n del x by del u that is t by 2 root n u del y by del t that is 0 and 

del y by del u that is 1. So, it is equal to root u by n. 



So, if we substitute this in the joint density of X Y and multiply by Jacobean we get the 

joint probability density function of t and u f t u. So, let us substitute the values here 1 by 

root 2 pi and all this thing is constant. So, we combine it together it becomes 1 by 2 to 

the power n plus 1 by 2 root pi n gamma n by 2 e to the power minus u by 2 1 plus t 

square by n u to the power n plus 1 by 2 minus 1. So, this is after combining the 

coefficients and another thing you observe here that if you are making this particular 

transformation the range of t remains from minus infinity to infinity and u is the Chi 

square variable. So, u is positive. So, t belongs to r and u is positive to get the density of t 

we integrate this joint density with respect to u. So, if you integrate with respect to u 

from 0 to infinity you observe this term it is e to the power minus u into something and 

then u to the power some power which is of the nature of a gamma integral or a gamma 

function. 
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So, it can be easily evaluated and we get the marginal probability density function of t is 

let me call it f U that is integral f t u d u from this is f T. So, I have written wrong this is f 

T from 0 to infinity. So, here the order of the gamma function is n plus 1 by 2. So, in the 

numerator I will get gamma n plus 1 by 2 divided by u as a multiply half 1 plus t square 

by n. So, in the denominator I will get half 1 plus t square by n to the power n plus 1 by 2 

now there is two to the power n plus 1 by 2 term that will cancel out. So, we are left with 

these density as gamma n plus 1 by 2 divided by gamma n by 2 root pi n 1 plus t square 



by n to the power minus n plus 1 by 2 and the range of the variable is from minus infinity 

to infinity. So, this is the density of the t-distribution on n degrees of freedom this 

particular coefficient we can write in slightly different way also because root pi if we 

observe it is gamma half. So, we can utilize the beta function notation and it becomes 

one by root n beta n by 2 1 by 2 and 1 plus t square by n to the power minus n plus 1 by 

2. 

 

Obviously, if you look at this one the density is a symmetric function in t around 0 

because if you replace t by minus t you get the same function another thing you observe 

that as t becomes large this will go towards 0 because the 1 plus t square by n term is in 

the denominator also you observe that higher the power of n higher the value of n the 

convergence to 0 will be faster. So, basically that determines the shape of the t-

distribution. So, we look at this thing the density is symmetric about t is equal to 0 hence 

all odd ordered moments vanish provided they exist even ordered moment can be 

calculated. Now, if you evaluate t to the power 2 k integral of this term then you can 

reduce it to a gamma function and do the calculation. So, the even ordered moments exist 

of order less than n. So, we have expectation of t to the power k for the even ordered 

moment as n to the power k by 2 gamma k plus 1 by 2 gamma n minus k by 2 divided by 

gamma half gamma n by 2. 
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So, in particular expectation of T is 0; expectation of T square is that is, variance of T 

that is n by n minus 2 which is existing for n greater than 2 you observe this is somewhat 

peculiar number n by n minus 2 as n becomes large this becomes close to 1. Mu 4 is 

expectation of T to the power 4 that is three n square by n minus 2 into n minus 4 which 

is valued for n greater than 4. So, we can calculated the measure of courtesies that is beta 

2 that is mu 4 by mu 2 square minus 3. So, you look at this term we divide by n square. 

So, this cancels out and we get 3 into n minus 2 by n minus 4 minus 3 which is simply 6 

by n minus 4. Obviously, this is positive because we are considering n to be greater than 

4 but, you can observe here that if n becomes sufficiently large then, this number 

becomes small and that means, the courtesies moves towards normality as n becomes 

large in general it is leptokurtic; density of t is leptokurtic. 

 

Now, let us consider this distribution as a sampling distribution because, right now I 

have given a distributional theoretic representation of this t variable because we are 

writing it as only ratio of two variables in a particular form. But, we can make use of the 

fact that Chi square itself is a sampling distribution. So, whether we can represent t also 

in the same fashion, let us see. If I consider a random sample from normal mu sigma 

square distribution then, X bar and S square are independent that we proved and what are 

the distributions X bar follows normal mu sigma square by n. This means that, I can 

consider root n X bar minus mu by sigma and this will follow normal 0 1 n minus 1 S 

square by sigma square follows Chi square on n minus 1 degrees of freedom and this 

variable and this variable is independent. 
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So, if I make use of this definition of the two variables of the t variable then I can write 

root n X bar minus mu by sigma divided by root n minus 1 S square by sigma square into 

n minus 1 this must follow Chi square distribution on n minus 1 sorry, this must follow t-

distribution on n minus 1 degrees of freedom now if you simply this term here n minus 1 

cancels out sigma cancels out. So, we are left with root n X bar minus mu by S this 

follows t-distribution on n minus 1 degrees of freedom. 

 

Therefore, t-distribution is a sampling distribution another interesting thing is you can 

observe when I consider root n X bar minus mu by sigma this is standard normal and 

here root n x bar minus mu by S is there. That means, sigma is replaced by S later on we 

will see in the inference portion that S is actually an estimate for sigma. So, when sigma 

is not known we have to work with S and the distribution of that is known. In fact, in the 

context of this only this distribution was derived. 

 

Now, regarding the probability points of t-distribution. So, the t-distribution is symmetric 

distribution about zero. So, if this point I call t alpha n then the probability beyond this 

must be alpha; that means, probability of T greater than or equal to t alpha n is equal to 

alpha; that means, t alpha n is upper 100 alpha percent point of t-distribution on n 

degrees of freedom because of the symmetry if you consider t 1 minus alpha n then that 



will be equal to t minus t alpha n; that means, if this value is alpha then this point is t 1 

minus alpha n by this definition, but because of symmetry this will be equal to minus t 

alpha n. 

 

Now, few things that we observed let us recollect that when I wrote the density I said it is 

symmetric about 0 the odd ordered moments vanish even ordered moments can be found 

mean is 0 the variance approaches 1 as n becomes large the peakedness approaches - 

normal peak as n becomes large. So, these things and another things I said that if you 

replace sigma by S then you have a t-distribution here you have a normal distribution 

these shows some sort of close similarity between t-distribution and t-distribution and a 

standard normal distribution. Actually it is true. In fact, we can prove that as n becomes 

large the t-distribution can be approximated by a standard normal distribution. So, we 

prove the following result. 
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We consider let T be a t random variable on n degrees of freedom then as n becomes 

large the pdf of converges to phi t phi t is the probability density function of a standard 

normal random variable. So, to prove this let us write down the density function of t as 

derived that is gamma n plus 1 by 2 divided by gamma n by 2 root pi n and 1 plus t 

square by n to the power minus n plus 1 by 2.  



Now, you observe this term as n becomes large or n tends to infinity this converges to e 

to the power minus T square by 2. So, as n tends to infinity 1 plus t square by n to the 

power minus n plus 1 by 2 converges to e to the power minus t square by 2. So, let us 

look at the remaining terms we must actually prove that this remaining term converges to 

1 by root 2 pi. So, if we look at this term n plus one by two gamma root pi n gamma n by 

2 now there is a formula called Stirling’s approximation. 
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So, Stirling’s approximation is let me write it here that gamma p plus 1 can be 

approximated by root 2 pi e to the power minus p p to the power p plus half for large p; 

that means, for large p gamma function can be approximated by an exponential and 

binomial type of (( )). These are mathematical formula we can use it here. So, if I am 

saying n is large than I can represent these things as root 2 pi e to the power minus n 

minus 1 by 2 n minus 1 by 2 to the power n plus 1 by 2 no n minus 1 by 2 by to the 

power n by 2 and in the denominator you have root pi n root 2 pi e to the power minus n 

minus 2 by 2 n minus 2 by 2 to the power n minus 1 by 2. So, we can do some 

simplification this root 2 pi etcetera will cancel out and here you have 1 by 2 to the 

power n by 2 and 1 by 2 to the power n minus 1 by 2. So, 1 root 2 will come here. So, 

this is giving rise to 1 by root 2 pi and then we get this e to the power half and here I can 

take common n in the numerator and denominator. 



The terms are getting cancelled out that is n to the power n by 2 in the denominator I 

have n to the power half here and n to the power n minus 1 by 2. So, these all terms get 

cancelled out and you are left with 1 minus 1 by n to the power n by 2 divided by 1 

minus 2 by n to the power n minus 1 by 2. 

 

So, if I take the limit as n tends to infinity this goes to e to the power half and this goes to 

e. Therefore, the limit is simply 1 by root 2 pi because this e to the power half e to the 

power half and e they get cancelled out. So, this proves that this f T converges to f T 

converges to 1 by root 2 pi e to the power minus T square by 2; that is the density 

function of the standard normal variables. 

 

The question arises that for what sufficiently large value of n is this approximation good 

the answer is that for n greater than or equal to 30 the approximation is extremely good 

and the tables of t-distribution most of the times they show. So, if we look at a standard 

table of t-distribution unfortunately, this cannot be seen here but, I will just write here. 

The t value say at point 25 and 30 is point 683. If I look at the same value for normal 

distribution then the point where the probability is point 25 above the given point, it is 

point 67 that is the if I consider that is z point z point 05 is equal to point 68 and since 

this tables is given only up to two places. I cannot predict here, but it is pretty close as 

you can see from here. 

 

In fact, the tables are not given beyond thirty in most of the cases because the 

approximation is extremely good. In fact, at one twenty the value is almost equal to the 

next sampling distribution which is important and it is use quite frequently is f-

distribution. 
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So, now, I introduce the f-distribution here let Y 1 and Y 2 be independently distributed 

random variables and Y 1 follows say Chi square distribution on m degrees of freedom 

and Y 2 follows say a Chi square distribution on n degrees of freedom then if we define a 

variables called U as the ratio of this Y 1 and Y 2, but divided by their degrees of 

freedom that is Y 1 by m divided by Y 2 by n that is basically becoming n by m Y 1 by 

Y 2 then this is said to have an f-distribution on m n degrees of freedom. 

 

Now, here one has to notice that two degrees of freedom terms are coming and therefore, 

this order is important. If I am having a numerator Chi square variable as m and the 

denominator Chi square as n then we will write the ordered pair m n. That means, if I 

write n m it will denote a different f-distribution now by our theory of transformation of 

random variables u is a function of Y 1 Y 2. Therefore, I can use a new dummy variable 

V and find out the joint density of U and V to derive the probability density function of 

U. So, for that propose we write the joint distribution of Y 1 and Y 2 the joint density of 

Y 1 and Y 2 is f of Y 1 Y 2. Basically, we multiply the individual densities of Y 1 and Y 

2 which are basically Chi square densities on m and n degrees of freedom. So, if we 

combine the coefficients 1 by 2 to the power m plus n by 2 gamma m by two gamma n 

by 2 e to the power minus Y 1 plus Y 2 by 2 Y 1 to the power m by 2 minus 1 Y 2 to the 

power n by 2 minus one where both Y 1 and Y 2 are positive. 
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So, we consider the transformation in which U is this variable. Consider the 

transformation u is equal to n by m Y 1 by Y 2 and V is equal to say Y 2. So, the inverse 

transformation is y one is equal to m by n u v Y 2 is equal to V. So, the Jacobean of the 

transformation can be calculated as m by n v m by n v u 0 1 which is basically m by n v 

and since the terms are positive. So, absolute value of j will also be the same. So, the 

joint density of U and V is now you can observe we are having here this constant term 

and we will be replacing Y 1 by m by n u v and Y 2 by V. Here, V by 2 term will come 

out and this will give additional powers of V for power of U will be this one only. 

 

So, after adjustment of the terms we can write it as m by n to the power m by 2 divided 

by 2 to the power m plus n by 2 gamma m by 2 gamma n by 2 e to the power minus v by 

2 1 plus m by n u u to the power m by 2 minus 1 v to the power m plus n by 2 minus 1 

where u and v are positive variables. So, we can integrate with respect to v from 0 to 

infinity to get the desire density of f random variable. Again, if we observe the integral 

of this with respect to u is nothing, but a gamma function where the order is m by 2 and 

the coefficient is one plus half into one plus m by n u. 
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So, using the standard argument the marginal density will turn out to be the marginal 

density of U is then f U is equal to m by n to the power m by 2 and after the cancellation 

of the terms we will get it as 1 by beta m by 2 n by 2 u to the power m by 2 minus 1 

divided by 1 plus m by n u m plus n by 2, for u positive. Obviously, this is a distribution 

of a positive valued random variable and it is positively skewed; however, the shape will 

vary depending upon the values of m and n. 

 

I can just give one example here; if I consider say m and n is equal to 5 then form of the 

density is somewhat like this if I consider say m is equal to 5 and n is say 15 then the 

form is something like this. So, likewise for different values of m and n you get different 

shapes of the curves. Here calculation of the moments will make use of different beta 

functions; however, I will write mean and variance the mean of this is n by n minus 2 

you may be little bit surprised here that it is dependent only upon second variable 

because m is not appearing here variance of U is equal to here you need n greater than 2 

and variance term is twice n square m plus n minus 2 divided by m into n minus 2 square 

into n minus 4 this is valid for n greater than 4 this positively skewed distribution. 
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We concentrate on the points here. So, if I have this probability equal to alpha then this 

point is termed as f alpha m n that is the probability of u greater than or equal to f alpha 

m n is equal to alpha that is this is upper hundred alpha percent point of F m n 

distributions. 
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Now, by the definition of this F variable it is clear that if I have U following f m n then 

one by u will follow F n m because 1 by U remains ratio of Chi square variables divided 

by their degrees of freedom. However, the numerator degrees of freedom have gone to 

the denominator and the denominator degrees of freedom have gone to the numerator. 

So, this becomes f-distribution on n m degrees of freedom. 

 

So, we can derive a formula for the points of f-distribution. So, we define that f alpha m 

n is the upper hundred alpha percent point of the f-distribution on m n degrees of 

freedom. So, probability of U greater than or equal to this is equal to alpha. So, if I write 

it as probability of 1 by U less than or equal to 1 by f alpha m n then this 1 by U is a F n 

m variable that is this is probability of some V less than or equal to f alpha m n that is 

this V is F n m variable. So, if I am saying that V greater than 1 by f alpha m n this 

equality or inequality does not play any role here because of this continuous 

distributions. So, I am saying probability v greater than or equal than to 1 by f alpha m n 

is equal to 1 minus alpha, but V is F n m distribution this implies that F 1 minus alpha n 

m is equal to 1 by f alpha m n this relationship is used for calculasing calculation of the 

percentage points of the f-distribution and generally the tables are because here it is a 

two dimensional table you have m and n both varying and therefore, only for selected 

values of alpha the tables are given. 

 

Now, if they are given for say alpha is equal to point 05 or alpha is equal to point 1 then 

1 minus alpha becomes point 95 and point 9 respectively. So, those tables can be 

automatically derived from the tables of point 05 and point 01 value, etcetera. Now, we 

look at that how in the sampling it arises. 
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If we consider say a random sample say x one x two x m following normal mu 1 sigma 1 

square and say Y 1, Y 2, Y n, be a random sample from normal say mu 2 sigma 2 square 

and also I assume that this samples are taken independently. Let us define the quantities 

say S X square as m minus 1 1 by m minus 1 sigma X i minus X bar square i is equal to 

1 to m and say S Y square as 1 by n minus 1 sigma Y j minus Y bar square then by the 

theory of Chi square m minus 1 S X square by sigma 1 square follows Chi square 

distribution on m minus one degrees of freedom and n minus 1 S Y square by sigma 2 

square follows Chi square distribution on n minus 1 degrees of freedom. 

 

Let me call it say U variable and this as a V variable then if I take the ratio U divided by 

m minus 1 divided by V divided by n minus 1 then this is nothing, but sigma 2 square by 

sigma 1 square S X square by S Y square that follows f-distributions on m minus 1 n 

minus one degrees of freedom. So, these relationships are these result is used quite 

frequently in drawing inferences on ratios of the variances because ratios of the 

population variances and ratios of the sample variances is occurring here. 
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Another relationship which is coming here is that if say T follows t-distribution on n 

degrees of freedom then t square follows f-distribution on 1 and n degrees of freedom 

one can prove it by direct transformation by writing down the density of t and making 

the transformation u is equal to t square there and write and compare with the forms of 

the densities; however, one can look at an easy representation see we can write t as x 

divided by root y by n where X is a standard normal and Y is a Chi square variable. So, 

if I look at T square that is X square by Y by n now this x square will be Chi square on 1 

degrees of freedom and Y be Chi square on n degrees of freedom. So, this is nothing, but 

the definition f variable on 1 and n degrees of freedom. Sampling distributions are 

extremely useful in statistical inference and they are used all the time I will give a couple 

of applications here. 
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Assume that the time to failure of a bulb is a random variable with say, mean mu and 

standard deviation say hundred hours if failure times of n bulbs are to be recorded how 

large n must be. So, that the probability of the average of those observed differs from mu 

by less than 50 hours is at least point 95; that means, how much should be my sample 

size such that the sample average and the population mean should differ by less than 50 

percent and this probability should be at least point 95. 

 

So, we can make use of the central limit theorem here because the only information 

about the distribution that we are having is that it is a particular distribution with certain 

mean and certain variance. So, the conditions for application of the central limit theory 

are valid here. So, we will have root n X bar minus mu by sigma that is hundred this will 

be approximately normal 0 1 as n becomes large. 
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By this statement we have the condition here that probability of modulus X bar minus 

mu less than or equal to 50 we want to put this to be greater than or equal to point 95. So, 

we approximate this probability by converting to by making use of the central limit 

theorem. So, this is less than or equal to 50 root n by 100. So, this is approximately a 

standard normal random variable then this probability is I can replace this variable by z 

where z is a standard normal variable. So, this can be written in terms of cdf that is twice 

phi root n by 2 minus 1 greater than or equal to point 95. 

 

I have made use of the central limit theorem here and this gives us phi of root n by 2 

greater than or equal to point 975. So, from the tables of the normal distribution root n by 

2 must be greater than or equal to 1 point 96 or n must be greater than or equal to 16. So, 

we need minimum sample size 16. So, that the sample average and the population 

average do not differ by more than 50 and the probability of that should be at least point 

95 let me give one more problem here. So, we consider independent random samples of 

size 5 from two normal populations and they have the same variance. 

 

So, what is the probability that the ratio of the larger to the smaller variance exceeds 3? 

This problem is important in the following sense see we have taken two sample from the 

same population now we want to check whether the there is too much variability in the 

sampling process. So, we look at the variances of the two samples and one of them will 



be naturally larger and one will be smaller. So, we are saying that the ratio of the larger 

to the smaller exceeds three what is the probability of this event. 
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So, if we write in terms of S 1 square and S 2 square basically we are requiring here what 

is the probability that S 1 square by S 2 square is either greater than 3 or S 1 square by S 

2 square is less than 1 by 3 what is a probability of this? Now, if we have taken the 

samples of size 5 each then by the formula that n minus 1 by m minus 1 S 1 square by 

this one we get that S 1 square by S 2 square follows f-distribution on 4 and 4 degrees of 

freedom; that means, for calculation of this we have to look at the either the tables of F 

44 or write down the density of F 44 here fortunately the density of F 44 become a quite 

simple form. So, we can write this as 1 minus probability one by 3 less than or equal to S 

1 square by S 2 square less than or equal to 3 and this turns out to be 1 minus 1 by 3 to 3 

and the density function of F 44 is 6 x divided by 1 plus X to the power 4. So, this 

integration can be done easily and the value turns out to be point 3125. 

 

Various problems which relate to the sample means or the sample variances or the 

comparison of the means or comparison of the variances can be solved using sampling 

distributions in the portion of point distribution confidence interval estimation and 

testing of hypothesis we will have frequent uses of these sampling distributions. So, in 

particular we have consider normal distribution itself as a sampling distribution because, 



for the large samples any sample mean will be approximately normal - normally 

distributed under certain condition. Of course, and then when we are sampling from 

normal distributions then certain functions which are related to the means and the 

variances they are having Chi square t and f-distribution. So, these are in particular 4 

important sampling distributions; there are many more sampling distributions, but they 

are not as frequently used in practice. 


