
Probability and Statistics 
Prof. Dr. Somesh Kumar 

Department of Mathematics 
Indian Institute of Technology, Kharagpur 

 
Module No. #01 
Lecture No. #23 

Sampling Distributions-I 

 

 (Refer Slide Time: 00:24) 

 

So, today we will introduce sampling distributions. So, first of all, we introduce, what we 

mean by a sample? What is a population? So, we introduce the term population. So, a 

population is a collection of measurements on certain characteristic. For example, if we 

are studying heights of people, then the measurements of the heights of our desired target 

population, that will be the statistical population. If we are interested in the lives of the 

people or longevity of the people, then, if we consider say, the total life, total age at 

death of a set of people, then that is our target population. 

 

If we are interested in, say the number of smokers in a population then the characteristic 

of recording, that is whether a person is a smoker or not a smoker for a certain set that, is 

our target population. So, statistical population is a collection of measurements whether 

it is numerical or a qualitative measurements. A sample is a a subset of population. So, 

since it may not be possible to have the complete enumeration of the population, in 

various studies it is enough if we consider a certain sample of the population. So, a 



general random sample which we consider in statistics, is taken in such a way that the 

probability of selecting each observation is same; however, this is the methods of doing 

sampling, it is a part of another topic called sampling theory or sampling techniques. 

 

In this particular course, we are assuming that we already have a random sample and 

then we proceed with that. So, what is a random sample in the context of distribution 

theory? So, we say that let x 1, x 2, x n be n independent and identically distributed; that 

is i i d  random variables, each having the same probability distribution f x. Then, we say 

that x 1, x 2, x n is a random sample from population with distribution f x. And the joint 

distribution of x 1, x 2, x n is defined as f of x 1, x 2, x n is equal to product of f of x 1, f 

of x 2, f of x n. 
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Any characteristic of the sample, we call it as a statistic. So, a function of random 

sample, let us say T; that is T of x 1, x 2, x n. This called a statistic. For example, we 

may consider x bar, that is 1 by n sigma x i, that is the sample mean. We may consider 

sample sum of squares from the deviation from the mean. We may consider 1 by n minus 

1 of this, which we usually note by s square; that is sample variance. We may be 

interested in say sample median. We have already talked about ordered statistics. So, that 

is also a statistics. Sample median, we may define to be the x of n plus 1 by 2; that is n 

plus 1 by 2, a third order statistics if n is odd; that means, the middle order statistics or if 



n is even, then, we may take the mean of the middle two; that is x n by 2 plus x n by 2 

plus 1 by 2. 

 

We may consider say sample range; that is the difference between the largest and the 

smallest. So, these are Examples of certain statistics. And when we are dealing with a 

sample, we are interested in the characteristics and therefore, we will be interested in 

their distributions. So, the distributions of the statistics they are known as sampling 

distribution. So, we may formally define, a sampling distribution is the probability 

distribution of a statistic is called a sampling distribution. Now, as such here the 

distribution of x 1, x 2, x n is known. So, the joint distribution of the sample is known to 

us. 

 

So, if we consider any function of that T of x 1, x 2, x n; the derivation of the distribution 

relates to the techniques which we have defined in the previous lecture, that is for 

transformation of random vectors; that means, we may consider say one variable as T of 

x 1, x 2, x n and we may define some other variables say u 1, u 2, u n minus 1. So, that 

we have a n to n transformation and we may determine using any techniques for 

determining the sampling distribution. 
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However, there are some particular characteristics such as sample mean or the sample 

variance which plays very important role and here we will consider the distributions of 

that. So, one of the first results which is related to the distribution of the sample mean is 

a quite important result, in the sense that, it applies to a very large number of situations, 

it is known as Central Limit Theorem. So, let x 1, x 2, and so on be a sequence of 

independent and identically distributed random variables. So, basically what we are 

saying is that, we are taking a sample with a large size. So, i i  d random variables with a 

mean mu and variance sigma square, we assume it to be finite. So, if we are assuming 

that say x n bar is the mean of the n observations. Then, the limiting distribution of root n 

x bar minus mu by sigma is normal 0 1 as n tends to infinity. 

 

That means, the standardized  sample mean has a limiting standard normal distribution. 

Now, if we carefully look at the conditions of a theorem, this is pretty general. We are 

not making any assumption on the form of the distribution of x i’s. All that we are 

assuming that the mean is given and the variance is given. In that case, the limiting 

distribution of the sample mean after a certain change of location and scale is standard 

normal provided the sample size is large. In fact, this is the result which places the 

normal distribution in the center of statistical theory.  

 

What happens that in practice, when we are doing, when we are taking observations or 

measurements on certain thing, we are usually not taking one observation. For example, 

we may be measuring length of certain article. Suppose, if it is  a physical experiment. 

So, we in place of taking one measurement, there is some measuring device and we take 

say thirty measurements and we take average of those measurements to say that, this is 

the actual estimate of the length of that Equipment. 

 

So, in that case basically, what we are using is the x n bar, rather than individual x i. The 

same thing is used at various places. For example, if we are looking at the average crop 

per field, then we are not taking individual crops rather than we are taking a sample of 

the fields and then we take the average; that means, the crops of the individual fields and 

then we take the average of that. 

 

So, likewise in large number of practical situations, we are interested or we are actually 

using the mean rather than the individual observations. And therefore,  the distribution of 



the sample mean is what should be used. And this particular result, which is known as a 

central limit theorem, it says under very pretty general conditions, that the distribution is 

actually normal. Another thing that we should notice here is that, here we have assumed 

that the distributions; that means, the random variable x 1, x 2, Etcetera are from the 

same population; that means, it is the sample from the same population. In fact, this 

central limit theorem has been further generalized; that means, we may lose the condition 

of say identically distributed or we may lose the condition of independence also and even 

then, under certain conditions the central limit theorem holds. However that is part of 

another study. Right now, we are concerned with this, sampling distribution, in which 

case, we take x i’s to be independent and identically distributed random variables. 

  

Now, one question may arise that how large n should be such that this approximation is 

good. So, in practice n greater than or equal to 30 is considered to be large. If the original 

distribution is normal or it is close to normal, then for smaller n itself the approximation 

may be good. One more point, earlier we have seen that binomial distribution was 

approximated to normal or the poisson distribution was approximated to normal. So, that 

is actually a, special case of central limit theorem. Because, what is a binomial random 

variable? It is the sum of successes is individual trial. So, if you are taking x 1, x 2, x n, 

so basically, it becomes the distribution of the sample sum. So, actually you can write a 

equivalent form also. 

 

Suppose, I define S n equal sigma x i, i is equal to 1 to n. Then, an Equivalent form is 

that, if we write S n minus n mu by root n sigma. Then, this will be converging to a 

standard normal random variable as n tends to infinity. So, the binomial approximation 

to normal is actually a special case of the central limit theorem. Similarly, the poisson 

distributions approximation to the normal is also a special case here, because a poisson 

random variable is the number of arrivals. So, if we are looking at the arrivals in the 

individual instants, how is were small that instant we may choose? Then,  x is denoting 

the number of arrivals in the full length of the time which is becoming a sum and 

therefore, the sum of the observations must follow approximately normal distribution. 

 

Now, in case of one sample we have straight forwardly for sample mean. Suppose, we 

have two samples, then the second sample mean may also have normal. And therefore, if 



we use the linearity property of the normal distributions, then the differences etcetera 

may also follow a certain central limit theorem. 
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Let me give a generalization of this one. So, let say x 1 1, x 1 2, x 1 n 1 be Etcetera. So, 

let me take n only be i i d random variables, with say mean mu 1 and  variance sigma 1 

square and say x 2 1, x 2 2, x 2 n 2, be i i d random variables with mean mu 2 and 

variance sigma 2 square. So, you consider the random variables say x 1 bar which is 

actually the mean of the first sample. And x 2 bar is equal to say mean of the second 

sample. Let me put j here. And construct the random variable x 1 bar minus x 2 bar 

minus mu 1 minus mu 2 divided by square root sigma 1 square by n 1 plus sigma 2 

square by n 2. Then, this converges as n tends to infinity to a normal 0 1; that is here n 1 

tending to infinity and n 2 tending to infinity. So, this result is quite useful, the original 

central limit theorem and this results. To solve variety of probability problems where 

original probability distribution of the sum may be quite complicated and but using this, 

we can derive the probabilities. Let me give some example here. Let a random sample of 

size say 54 be taken from a discrete distribution with probability mass function say p x is 

equal to 1 by 3 for x equal to 246. Find the probability that, the sample mean will lie 

between say 4.1 to 4.4. 
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So, basically we are interested to get the probability of 4.1 less than or equal to x n. So, 

here x n is X 54 bar less than or equal to 4.4. Now, this is a discrete uniform distribution 

centered at 24  and 6. If we look at the mean of this one, mu is 1 by 3, 2 plus 4 plus 6 that 

is equal to 4. And if we look at the variance, so, we can check say expectation x square 

that is equal to 4 plus 16 plus 36 by 3, that is 56 by 3. So, variance of x that is equal to 56 

by 3 minus 16, that is 8 by 3. And n is here 54. So, we have the distribution of root 54 

into X 54 bar minus 4 divided by root 8 by 3. This will be approximately normal 0 1. So, 

if we use this property here, the probability of X 54 bar lying between 4.1 to 4.4 is 

approximately same as, so, root of we may take it to the numerator. So, it becomes root 

of 54 into 3 by 8 X 54 bar minus 4. So, this is the 4.1 minus 4 less than or equal to z; this 

is approximately root 54 by into 3 by 8 into 4.4 minus 4. 

 

So, if we simplify these terms, it is probability of z lying between 0.45 to 1.8 which is 

approximately. So, phi of 1.8 minus phi of 0.45. So, from the tables of the normal 

distribution, these values are 0.9641 minus 0.6736; that is equal to 0.2905; that is 

approximately 30 percent of the time the sample mean will lie between 4.1 to 4.14. Here, 

we notice that the original distribution is uniform. So, the distribution of X 54 bar will be 

very complicated. We have seen earlier, that the sum of two independent continuous 

uniform distributions is triangular distribution. If we take three of the independent 

continuous uniform distributions, the form is some sort of parabolic in nature. So, if we 



take 54 such observations and try to find out the actual distribution that is very 

complicated. And here using the central limit theorem, easily we are getting an 

approximate value for this. And 54 is in fact, a large sample size and therefore, this 

approximation will be almost quite good. 
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Let us take another example. The TV picture tubes of say manufacturer A have a mean 

life time of 6.5 years and standard deviation say 0.9 years. Those from manufacturer B 

have a mean life of 6 years and a standard deviation of 0.8 years. What is the probability 

that a random sample of say 36 tubes from A will have a mean life, that is at least one 

year more than the mean life of a sample of  49 tubes from B.  

 

So, here we will apply the extended version of the central limit theorem, because we are 

dealing with the two samples. So, we can consider that x 1 bar minus x 2 bar minus mu 1 

minus mu 2 divided by sigma 1 square by n 1 plus sigma 2 square by n 2 will be 

approximately standard normal distribution. So, here we see that, we are supposed to 

find out the probability of x 1 bar minus x 2 bar greater than 1. Now, we look at the 

parameters here mu 1 is 6.5 mu 2 is 4 sigma 1 is 0.9, sigma 2 is 0.8, n 1 is equal to 36 

and n 2 is equal to 49. So, if we calculate say mu 1 minus mu 2; that is 0.5. And square 

root of sigma 1 square by n 1 plus sigma 2 square by n 2 that is equal to 0.189. 

 



So, x 1 bar minus x 2 bar minus 0.5 divided by 0.189. It is approximately normal 

distribution. So, if we are to calculate this probability, we can approximate it by 

probability z greater than 1 minus 0.5 divided by  0.189; that is equal to probability z 

greater than  plus 2.65. If we see from the tables of the normal distribution, this  

probability is only be 0.004. So, the probability that a random sample of size 36 from A 

will have a mean life at least one year more than the mean life of another sample of 49 

from B is extremely small. So, here you see that, actually the mean life difference is only 

0.5 here. So, we are expecting in the sample means to have difference of 1. So, the 

probability of that is going to be very small now. Another point, that we notice here is 

that if the original distribution itself is normal, then square root and x bar minus mu by 

sigma has exactly a standard normal distribution. So, approximation is exact when we 

have normal distribution. Central limit theorems are widely used in statistical theory. 
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Now, we discuss another sampling distribution which is known as  chi square 

distribution. And it is used as chi, Greek letter chi, so, chi square distribution. So, a 

continuous random variable say W is said to have a chi square distribution with n 

degrees of freedom, if it has probability density function given by say f w equal to 1 by 2 

to the power n by 2 gamma n by 2 e to the power minus w by 2, w to the power n by 2 

minus 1 where w is positive and of course, n has to be positive. 



If we see carefully it is actually nothing,, but a gamma distribution with parameters n by 

two and 1 by 2. So, this is only a special case of gamma distribution. So, why we are 

calling it as a sampling distribution. So, we will show that this distribution arises in 

sampling from a particular population; that means, we have certain characteristic for 

which this will be the distribution. Before, doing those things let us look at the usual 

characteristics like mean variance and other things. So, since it is a gamma distribution, 

we already know the mean. It will be n by 2 by 1 by 2, that is equal to n. So, the term 

which we are calling as a degrees of freedom is actually the mean of the chi square 

distribution. Similarly, if we look at the variance in gamma or lambda distribution the 

variance was r by lambda square. So, it becomes n by 2 divided by 1 by 2 square that is 

equal to twice n. So, that is two times degrees of freedom. We may write a general term, 

like mu k prime that is equal to expectation of w to the power k; that is n into n plus 2 

and so on up to n plus 2 into k minus 1. We may look at the moment generating function 

that is equal to 1 minus 2 t to the power minus n by 2, this is valid for t less than half. 
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In particular, we may look at the third central moment that is 8 n. So, obviously, it is a 

positively skewed distribution, since gamma distribution is positively skewed. So, of 

course, depending upon different values of n, you will have different shapes for the chi 

square variable. So, mu 4, but of course, if we look at the major of symmetry, that is beta 

1 that is 8 n divided by 2 n to the power 3 by 2. So, it is becoming root 8 by n and as n 



becomes large. This is approximately 0. Similarly, if we look at mu 4, that is 12 n into n 

plus 4 and the major of the kurtosis is mu 4 by mu 2 square minus 3 which is equal to 12 

by n So, it is positive. So, that means, the peak is higher than the normal but as n 

becomes large, this is approximately normal.  

 

So, in fact as n becomes large, this is tending towards normality. That fact, we can see 

from here also because, it is 1 minus 2 t to the power minus n by 2.  Here, if i take limit 

as n tends to infinity, so, we can after certain adjustments show that, this will tend to the 

moment generating function of a normal variable. We will come to that later, after 

representation of chi square is known.  

 

Now, depending upon the different values of n, the shape of this will be different. And 

since, it is a special case of gamma distribution, the tables of gamma distribution can be 

used to determine the probabilities. However, tables of chi square distribution are 

available for specific probabilities. So, if this probability say alpha, then the point on the 

axis is called chi square n alpha; that is upper 100 alpha 1 minus alpha percent point  of 

chi square n distribution; that means, probability of W greater than chi square n alpha is 

equal to alpha. 

 

Now, we see that, why this is a particular case of a sampling distribution. So, we will try 

to derive. So, since it is a special case of gamma distribution, we have already seen that 

in the gamma distribution, if the scale parameter is kept fixed, a certain additive property 

is satisfied. Therefore, if we consider, if say w 1, w 2, w k are independent chi square 

random variables, with say w i following  chi square n I, for i is equal to 1 to k. Then, say 

sigma of w 1, i is equal to 1 to k, that will follow chi square sigma of n i. The proof is 

extremely simple because, if we apply the property that the moment generating function 

of the sum is the product of the individual moment generating functions, if the random 

variables are independent, then the distribution of the MGF of U will be product of the 

MGF’s of w y, which will be 1 minus 2 t to the power minus n i by 2. So, if we multiply 

out this will become sigma n i by 2. So, the distribution of the sum of the chi squares is 

again a chi square and the degrees of freedom are added. 
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Next, we look at the following result. Let x follow normal 0 1. Let us define say Y is 

equal to x square. We want the distribution of Y. So, we look at the inverse 

transformation, it is a 2 to 1 transformation. The joint, the density of x is given to be 1 by 

root 2 pi e to the power minus x square by 2 where x lies between minus infinity to 

infinity x is equal to minus root y and x is equal to plus root y are two inverse images for 

any y positive. So, if we look at dx by dy term, that is minus 1 by 2 root y or plus 1 by 2 

root y. 

 

So, when we take absolute value of d x by d y in both the reasons,  it is 1 by 2 root y. So, 

the density function of y is obtained as 1 by root 2 pi e to the power minus y by 2, 1 by 2 

root y. And second time, again the same term will come. So, we will write two times. 

This is for y positive and 0 for y less than or equal to 0. So, this is Equal to 1 by 2 to the 

power half root pi. We can write as gamma half e to the power minus y by 2 y to the 

power minus 1 by 2 which, we can write as 1 by 2 minus 1 for y positive. So, if we look 

at the density of a general chi square distribution, here if we substitute n is equal to 1, 

then we get these density function. This proves that the square of a standard normal  

variable is a chi square variable with one degree of freedom; that is y follows chi square 

on one degree of freedom. 
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So, let us consider say x 1, x 2, x n independent and identically distributed, say standard 

normal random variables. Then, y is equal to sigma x i square, i is equal to 1 to n. This 

will follow chi square n. Since, we have already proved each of the x i square that will be 

chi square 1, if x 1, x 2 and x n are independent, then x 1 square, x 2 square, x n square 

are also independent. Therefore, the distribution of the sum will be the chi squares added 

and since chi squares are satisfying an additive property,  this becomes chi square n 

distribution. 

 

Now, you see if x 1, x 2, and x n is a random sample from a standard normal variable 

then sigma x i square is a statistic. And therefore, chi square becomes a sampling 

distribution. We will consider a further elaborate description of chi square in the next 

section. So, now, let us consider say x 1, x 2, x n be a random sample from say normal 

mu sigma square. So, in place of normal 0 1, now let us consider normal mu sigma 

square. So, if we define x bar as the mean, then by the linearity property, this will follow 

normal mu sigma square by n. Therefore, the moment generating function of x bar will 

be e to the power mu t plus half sigma square t square by n. So, we prove the following 

result. Let us denote by say y 1 is equal to x bar, y 2 and so, let us put say y is equal to x 

bar and or let me change the notation, let say Y is equal to x bar and say U i is equal to x 

i minus x bar for i is equal to 1 to n.  Let us use the vector notation U for u 1, u 2, u n.  
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Then, we have the following theorem. Let x 1, x 2, x n be a random sample from normal 

mu sigma square distribution. Then Y and U are statistically independent; that means, x 

bar is independent of x 1 minus x bar x 2 minus x bar x n minus x bar. Now, to prove this 

result, we will use a moment generating function approach. We will show that the joint 

MGF of Y and U at the point say s and t is equal to the moment generating function of Y 

at s into the moment generating function of U at t, where t is equal to t 1, t 2, t n. So, this 

is true for all s and all t. So, we need to evaluate the moment generating function of Y U 

and the individual moment generating functions. So, already the moment generating 

function of Y, that is x bar is given to us. So, M y s is e to the power mu s plus half 

sigma square s square by n. Now, we calculate the moment generating function of U 

also, that is expectation of e to the power sigma t i mu I; that is equal to expectation of e 

to the power sigma t i x i minus x bar. At this stage, I will introduce some notation. So, 

this becomes expectation t i e to the power sigma t i x i. Now, the second term here is 

minus x bar into sigma t i. So, we use a notation say t bar as the mean of t i’s. So, sigma t 

i becomes n t bar. So, n t bar x bar. 

 

Now, once again since x bar is 1 by n sigma x i n x bar becomes sigma x i. So, we can 

again use it here. So, this becomes expectation of e to the power sigma t i x i minus t bar 

sigma x i, which is equal to expectation of e to the power sigma x i into t i minus t bar. 

Since, the random variables are independent x 1, x 2, x n are independent random 



variables expectation of a product becomes the product of the expectations. However, we 

notice that, this expectations are nothing but the moment generating functions of x i at 

the point t i minus t bar. 
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So, this is equal to product of the moment generating functions of x i at t i minus t bar. 

Since, x i’s are normal, we know this values. So, we substitute it here. This is product of 

i is equal to 1 to n, e to the power mu i t i minus t bar plus half. This is not mu I, this is 

only mu sigma square t i minus t bar whole square. So, now we apply this product here. 

So, the first term vanishes and the second term becomes e to the power half sigma square 

sigma t i minus t bar whole square.  

 

So, we have calculated the right hand side here. That is M y s is calculated here. M u t is 

also now calculated. Now, we calculate the joint MGF of Y and U at a point s and t. So, 

M y u at s t. So, by definition of the joint MGF, it is equal to the expectation of e to the 

power s y plus sigma t i u i. The second term has already been simplified; that is e to the 

power sigma t i u i has already been simplified as e to the power sigma x i t i minus t bar. 

So, we will use that here. It becomes expectation of e to the power s sigma x i by n; that 

is y is the mean. So, sigma x i by n plus the second term sigma t i u i, we are using the 

simplification that we did just now; that is sigma t i u i is equal to sigma x i t i minus t 

bar. We again, combine these terms here. So, this becomes expectation of e to the power 



sigma x i t i minus t bar plus s by n. So, this we Express as product i is equal to 1 to n e 

to the power x i t i minus t bar plus s by n. And once again since x i’s are independent 

random variables, expectation of the product becomes the product of the expectations. 

Product i is equal to 1 to n expectation of e to the power x i t i minus t bar plus s by n. 

So, notice here that now, this has become MGF of x i at the point t i minus t bar plus s by 

n. So, it is product of the MGF’s at the point t i minus t bar plus s by n. So, once again 

making use of the fact that the x i have a normal mu sigma square distribution, we know 

the form of the MGF. So, we substitute it here. 
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That is equal to product i is equal to 1 to n e to the power mu into t i minus t bar plus s by 

n plus half sigma square t i minus t bar plus s by n whole square. So, now this is, if we 

apply this product here, e to the power sigma mu t i minus t bar becomes 0. And the 

second term, we will get e to the power mu s. Here, if we expand one term is t i minus t 

bar whole square and another term is s square by n. So, this we write here as half sigma 

square  s square by n plus 1 by 2 sigma square sigma t i minus t bar whole square. The 

second term actually vanishes, because cross product term will give s by n into t i minus 

t bar. So, sigma of that will be 0. So, if we utilize the relations one, so, the first term here 

is nothing but the MGF of y at the point s and the second term from the equation number 

two is M u t. So, we have proved that the joint MGF of Y and U is equal to the product 

of the MGF’s of Y and U respectively. So, Y and U are independent. 



 

So, as a consequence, we have the following corollary. That is, let x 1, x 2, x n be a 

random sample from normal mu sigma square distribution. Then, x bar and S square are 

independent. That is, in a random sampling from a normal distribution the sample mean 

and the sample variance are independently distributed. So, the proof follow the 

immediately, if we notice that S square is a function of U. So, since x bar and U are 

independent, therefore, x bar and S square are independent. 
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Now, we will show that, this is helpful to derive the distribution of S square. So, now we 

look at the following quantities. Consider say sigma of x i minus mu square. So, here if 

we add and subtract x bar, this becomes sigma x i minus x bar whole square plus n times 

x bar minus mu square. So, if we divide it by sigma square here, then we have this 

relationship. So, let us name these variables as say W is equal to W 1 plus W 2 say. So, 

this is W variable, this is W 1 variable, this is W 2 variable. So, now, if I have x i’s 

following normal mu sigma square, then x i minus mu by sigma follows normal 0 1. So, 

This implies at x i minus mu by sigma square follows chi square 1. And therefore, the 

sum of these, that is sigma x i minus mu by sigma whole square, that is W; this will 

follow chi square distribution on n degrees of freedom. 

 



Further, the distribution of x bar is normal mu sigma square by n. So, from here we 

conclude that, x bar minus mu root n by sigma, this will follow normal 0 1 distribution. 

So, if i take the square n x bar minus mu by sigma whole square, so, this will follow chi 

square distribution on one degree of freedom. This is W 2 variable.  Also W 1 and W 2 

are independent. Because, W 1 is a function of s square and W 2 is a function of x bar. 

We have already proved that x bar and s square are independent. So, here we have 

written W 1, a chi square n variable as a sum of two independent random variables of 

which, one of them is already a chi square. 
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So, now if we use the moment generating function property that is M w t will be equal to 

M w 1 t into M w 2 t. So, this means that M w 1 t is the ratio of M w t divided by M w 2 

t. Since, the MGF of a chi square variable is known, there is 1 minus 2 t to the power 

minus n by 2 divided by 1 minus 2 t to the power minus 1 by 2, because W 2 is a chi 

square is 1. So, this becomes 1 minus 2 t to the power minus n minus 1 by 2 for t less 

than half; that means, W 1, that is sigma x i minus x bar whole square by sigma square 

which we can also write as n minus 1 S square by sigma square. This follows a chi 

square distribution on n minus one degree of freedom.  

 

So, this means that chi square is a distribution of the sample variance after certain 

scaling. So, this shows that chi square is a sampling distribution. Either, we consider a 



standard normal random variable, so, sum of squares of n independent random variables 

normal random variables is chi square on degrees of freedom or if we are considering 

arbitrary normal random variables, then if we consider the scaled distribution of the 

sample sum of squares from the deviation, that is n minus 1 S square by sigma square, 

then that is chi square on n minus one degrees of freedom. 

 

Here, we want to clarify one question that, although this is sum of n variables, in fact, 

each of x i minus x bar is a normal random variable. In fact x i minus x bar will follow a 

normal distribution with mean 0, because x i has mean 0 and x bar has mean 0. And 

variance will become sigma square 1 plus 1 by n. So, it is a sum of n squares of random 

normal random variables, but this is not independent. Because, sigma x i minus x bar is 

0. So, only n minus 1 of these are dependent; that is why, the degrees of freedom are here 

n minus 1. So, in some sense these degrees of freedom can be related to the fact that, a 

general chi square random variable is sum of squares of n independent squares of 

standard normal variables. So, if when we consider any other, then it need not be.  

 

So, we have established here chi square as a sampling distribution. And in particular, if 

we are interested to find out certain statement about S square, then we can answer that. 

For example, if we look at expectation of W 1, then it is equal to n minus 1. So, 

expectation of n minus 1 S square by sigma square follows, so, that is equal to n minus 1. 

So, this means expectation of S square is equal to sigma square. So, this means that on 

the average, that is S square that is the sigma x i minus x square bar square divided by n 

minus one is unbiased for sigma square not divided by n. And that is why, in particular, 

we consider sample variance as where the divisor is 1 by n minus, not 1 by n because this 

is coming as an unbiased estimator for sigma square. In the inference course, we will 

deal in detail about the criteria of unbiasness for… 

 

In the next lectures, we will take up other sampling distribution such as t and f 

distributions. So, today we will stop here. 

 


