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 So, we have seen the distributions of several random variables. Many times we are not 

interested in the original random variable itself, but certain function of it for example, 

sums of random variables, or say, difference, or any linear function of those random 

variables.  
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So, in general if I have a measurable function of random vector X1, X2, Xn, then it will 

also be a random variable. So, we state it in the form of following theorem: let f from say 

Rn to Rm be a measurable function, so, if X is equal to say X1, X2, Xn is a random 

vector, then let us call it say, Y, Y is equal to fX is also a random vector. This is so 

because random variable X is a measurable function from omega into Rm, and a 



measurable function of a measurable function is measurable function. So, Y becomes a 

measurable function from basically omega into Rm, so, this is measurable, and so this is 

a random vector.  

So, now, the methods of determining the distribution of Y. So, one is the mgf approach. 

We have already seen application of this approach in determining distributions of sums 

of certain random variables. So, if we are having certain independent random variables 

and we want the distribution of the sum, then it is the distribution, it is the product of the 

individual mgfs, and in many cases where the mgf, the product of the mgfs can be 

determined in an explicit form as an identifiable mgf then the distribution of the sum can 

be determined. It can also be used for the distribution of difference, etcetera, where the 

forms are well defined. In the case of discrete distributions, or in certain other cases 

where the cdf can be directly used then we can use directly the cdf or the probability 

mass function.  
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Let me give an example of this. Suppose X and Y are independent and identically 

distributed binomial n, p variables. Suppose we want the distribution of U, that is X plus 

Y then from mgf approach we are able to determine it as binomial 2n,p. Now, suppose 

we want the distribution of say V, that is X minus Y then, let us look at the set of values 

of V, this will vary from minus n, minus n minus 1,  minus 1, 0, 1, 2 up to n because 

each of X and Y can take value up to 0,1 to n. So, probability of V is equal to say small 



v, that is probability of X minus Y is equal to v, this we can write as X minus, is equal to 

v plus Y; now, Y can take values using a binomial distribution n p, so we can use the 

theorem of total probability here and write it as probability X is equal to say v plus y into 

probability of Y is equal to y- this is because of independence I can split- for y is equal to 

0 to n, now, this is subject to the condition that v plus y is also lying between 0 to n. 

So, this is equal to ncv plus y p to the power v plus y 1 minus p to the power n minus v 

minus y ncy p to the power y into 1 minus p to the power n minus y; so, this is equal to 

sigma ncv plus y ncy p to the power v plus 2y and 1  minus p to the power 2n minus v 

minus 2y, where y is equal to 0 to n subject to the condition that v plus y is also taking 

values 0, 1 to n because v plus y denotes a value of the random variable X here.  

So, this shows that in the case of discrete random variables, directly the probability mass 

function can be used to determine the distribution of a function.  
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Let us take another case here. Suppose I define say U is equal to X by Y plus 1 and V is 

equal to say Y plus 1, I want the joint distribution of U and V here, where X and Y 

follow independent binomials. So, here, you look at the set of values we will follow, 

since Y is binomial n, p, Y takes values 0, 1 to n, so v will take values 1, 2 up to n plus 1; 

whereas, the values of u will be, now, here X can take value 0, X can take value 1, in that 

case, Y plus 1 can take values all these, so, 1, 1 by 2, 1 by 3 and so on, 1 by n plus 1, X 

can take value say 2, so, this values can be 2, 2 by 2, 2 by 3 and so on up to 2 by n plus 1  



and so on, and n by 2 and so on, n by n plus one, so, these are the possible values taken 

by u.  

So, we look at probability of say U is equal to small u, V is equal to small v, where small 

u and small v take these values then, this can be expressed as probability X is equal to uv 

and Y is equal to v minus one. So, X and Y are independently distributed, so, this 

becomes product of, that is equal to ncuv P to the power uv 1  minus p to the power n 

minus uv then, ncv minus 1  p to the power v minus 1  one minus p to the power n minus 

v plus one. So, this is a joint distribution of U and V, where u and v take these values. 

Let us take another example here say, X and Y have the joint mass function, the 

probabilities are 1 by 6, 1 by 12, 1 by 6, 1 by 6, 1 by 12, 1 by 6, 1 by 12, 0 and 1 by 12. 

So, X takes values minus 1, 0 and 1, and Y takes values minus 2, 1  and 2. Suppose I 

define U is equal to modulus of X and V as Y square then the possible values of U are 0 

and 1 and possible values of Y are, V are 1 and 4. So, the joint distribution that is, 

probability say U is equal to 0, V is equal to 1, that is simply probability of X, Y equal to 

0, 1, that is 1 by 12. If we look at what is a probability of U is equal to 0, V is equal to 4, 

it is the sum of X is equal to 0, Y is equal to minus 2 plus probability X equal to 0, Y is 

equal to plus 2. So, if we add these probabilities, we get 1 by 12.  

In a similar way, we can obtain probability of U is equal to 1, V is equal to 1, U is equal 

to 1, V is equal to 4 and the joint distribution turns out to be, we can express it as U, V, 

U can take value 0 and 1, V can take value 1 and 4. So, that distribution is- the 0, 1 is 1 

by 12; 0, 4 is 1 by 12; 1, 1 is 1 by 3; and this is half. And from here we can derive the 

marginal distributions of U and V. 

So, in the case of discrete distributions, etcetera, it is possible to derive the distribution of 

the function of random variables by directly considering the probability mass function. 

Sometime it is easy to use the direct cumulative distribution function also, I can give an 

example here. 
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Let us consider say let X and Y have joint probability density function say fXY given by 

1 plus XY by 4 where modulus X is less than 1 and modulus Y is less than 1, 0 

elsewhere. So, we want to say the distribution of U is equal to X square and V is equal to 

Y square. Let us consider say cdf of U and V that is, probability of U less than or equal 

to small u, V less than or equal to small v. Now, notice here that both X and Y lie 

between minus 1 to 1, so, here the valid region for U and V will be between 0 and 1, so, 

we consider that 0 less than u less than 1 and 0 less than v less than 1. So, for this case 

this is nothing but probability of X lying between minus root u to plus root u and Y lying 

between minus root v to plus root v. So, this is nothing but the integration of the joint 

density over this region. So, that is integral 1 plus xy by 4 dx dy over minus root u to  

plus root u, minus root v to plus root v, and we can evaluate it to be root u root v. So, the 

joint cdf can be obtained. 

 From here, we can determine the density of U and V. In general cases, when we have 

continuous random variables and we make a transformation of that, it may not be so easy 

to look at the joint cdf, etcetera, in that case like in the case of univariaterandom 

variables, we have an approach the so called Jacobean approach for determining the 

distributions of random variables.  
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So, we stated it in the form of the following theorem: let X1, X2, Xn be an n dimensional 

continuous random vector with joint probability density function say, fXX. So, here X is 

denoting the vector X1, X2, Xn, small x is denoting the vector x1, x2, xn. Let ui is equal 

to gi of x, i is equal to 1 to n be a one to one transformation of Rn to R n that is, if I am 

taking one to one, then there exist inverse transformations, let us call it say, x1 is equal to 

say h1 of u and so on, xn is equal to hn of u, where u is u1, u2, un defined over the range 

of transformation. 

Let us assume that the mapping and the inverse are both continuous. Further assume that 

the partial derivates delxi over deluj, for i , j is equal to 1 to n that is, all partial derivates, 

delx1 by delu1, delx1 by delu2, delxn by delu3 and so on, all the partial derivates exist 

and are continuous. Then, we define, assume that the Jacobean J of transformations. 
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Which is defined by J is equal to delx1 by delu1, delx1 by delu2 and say on, delx1 over 

delU n and so on, delx n over delu1 and so on, delx n over delun. Assume that this 

Jacobean does not vanish in the range of transformation then, the random vector U is 

equal to U1, U2, Un is continuous and has joint pdf given by- so, we write it as fU is 

equal to fX, now, in place of x1, x2, xn replace it by h1u, h2u, hnu multiplied by the 

absolute value of the Jacobean over the range of the transformation.  

If you see it carefully, it is a forward generalization of the result for one dimensional 

case. In the one dimensional cases we had considered a one to one transformation and we 

had looked at the dx by dy term, so, the density of the transformed variable was obtained 

as the density evaluated at the x equal to g inverse y multiplied by the absolute value of 

the dx by dy term. So, and we have n dimensional random vector and n dimensional 

transformation. So, if it is a one to one case, we look at exactly the inverse function and 

calculate the determinant of the partial derivates called as Jacobean, substitute the values 

of x1, x2, x n in terms of uis and multiplied by the Jacobean term, absolute value of the 

Jacobean, that yields the joint density function of the transformed random vector.  
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So, let us look few applications here. Let X1, X2, X3 follow exponential with lambda is 

equal to 1. Suppose they are independent and identically distributed random variables. 

Let me define Y1 is equal to say X1 plus X2 plus X3, Y2 is equal to say X1 plus X2  

divided by X1 plus X2 plus X3 and Y3 is equal to say X1 by X1 plus X2. We are 

interested in the joint and marginal distributions of Y1, Y2 and Y3.  

Of course, here if you are interested only in the distribution of Y1, then that is directly 

obtained because the sums of independent exponential is a gamma, so Y1 will follow a 

gamma distribution with parameters 3 and 1, so, that is directly known, however, that 

does not yield the distribution of Y2, or Y3. 

So, we observe here that it is a one to one transformation and inverse functions can be 

written as x1 is equal to y1, y2, y3; x2 can be written as then, y1, y2 into 1 minus y3; and 

x3 can be written as y1 into 1 minus y2. So, we can determine the Jacobean of the 

transformation, doux1 by douy1 is y2y3, doux1 by douy2 is y1y3 and so on, y2 into 1  

minus y3, y1 into 1 minus y3, minus y1y2, 1 minus y2, minus y1 and 0. So, if we 

evaluate this, it out to be minus y1 square y2. 

Firstly, we write down the joint density function of X1, X2, X3. So, the joint pdf of X1,  

X2, X3, so, since X1, X2, X3 are independently distributed the joint density is nothing 

but the product of the individual density functions of X1, X2, X 3. It is product of fxi, 

that is equal to e to the power minus sigma xi, each xi is positive. Therefore, the joint 



density of Y1, Y2, Y3 can be obtained from here by substituting the inverse functions of 

X1, X2, X3 and the corresponding range and multiply by the Jacobean. 
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So, the joint pdf of Y is equal to Y1, Y2, Y3 is f, e to the power minus y1 into y1  square 

y2; the range of the variables we can observe here- that each of the xi is positive random 

variable, so each of yi is also a positive random variable further, if x2 is positive then y3 

will be less than 1 and similarly, y2 will also be less than 1- so, the ranges are y1  greater 

than 0, y2 and y 3, they belong to the interval 0 to 1. 

So, we have been able to determine the joint distribution of Y1, Y2, Y3. In order to get 

the marginal distributions, we notice here that if we integrate with respect to Y 3 from 0 

to 1, we get the same term and therefore, if we integrate this with respect to Y1, Y2, it 

should give the density of Y3 as 1 on the interval 0 to 1. So, the marginal distributions, 

the marginal densities of Y1, Y2 and Y3 are obtained as fY1 as half y1 square e to the 

power minus y1, which is nothing but a gamma distribution with parameters 3 and 1; 

fY2  is 2 y2 for y2 between 0 and 1; and fY 3 is equal to 1, between 0 and 1. So, this is a 

uniform distribution. 

One interesting feature we can notice here that, if I look at the product of the marginal’s, 

it is equal to the joint. Note that f of y is equal to the product of... so, Y1, Y2, Y3 are 

independent. So, here we are able to obtain the distribution of a three dimensional 

function of three random variables here. The important thing to notice here is that apart 



from substitution in the density function and multiplying by the jacobian we are also 

judiciously determining the ranges of the variable like, one may simply say that Y1 is 

positive, Y2 is positive, Y3 is positive without noticing that Y2 and Y3 are less than 1  

also, in that case if we will evaluate the integrals of this density, it will not give us 1, so, 

that will be not determining the density correctly. 

(Refer Slide Time: 26:08) 

 

Let us take uniform distributions. Let X and Y be independent and identically distributed 

uniform random variables. Let us define say U is equal to X plus Y and V is equal to say 

X minus Y. Now clearly this is a one to one transformation; x is equal to u plus v by 2  

and y is equal to u minus v by 2. So, if we look at the Jacobean term douX by douU is 

half, half, half and minus half, which is equal to minus half. 

So, the joint pdf of say, X and Y that is, fxy, it is the product of the individual 

distributions of x and y, both are uniform 0, 1, so it is simply 1 for 0 less than x, y less 

than 1 and 0 elsewhere. So, the joint pdf of U and V is, it will become half for 0 less than 

u plus v less than 2, 0 less than u minus v less than 2. Now, the ranges of U and V, we 

can notice further here that since X and Y are between 0 to 1, U will be between 0 and 2 

and V will be between minus 1 and 1. This gives the joint density function of U and V. 

Suppose we are interested in the marginal distributions of U and V. So, in order to get 

the marginal distribution of U we need to integrate this with respect to the variable V.  
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So, the marginal density of U is obtained as, so, fU, integral of this join density, that is 

half dv, now, notice here the range of V, V’s absolute ranges from minus 1  to one, but 

here V lies between minus u to 2 minus u and V is less than u and V is also greater than 

u minus 2. So, if we determine the region, it is from minus u to u if u is between 0 to 1;  

it will be half u minus 2 to 2 minus u dv if v is between 1 and 2 and 0 elsewhere. So, 

after simplification this turns out to be u for 0 less than u less than or equal to 1,  it is 2  

minus u for 1  less than u less than 2 and 0 elsewhere. 

Notice here, this is a triangular distribution, 0 to 1 and 1 to 2. So, the distribution of the 

sums of two independent uniform random variables is actually a triangular distribution. 

In a similar way, we can obtain the marginal density of V also if we integrate with 

respect to U.  
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In a similar way, the marginal pdf of V is obtained as fVv, it is integral of half with 

respect to u from minus v to v plus 2 for minus 1 less than v less than or equal to 0; it is 

half from v to 2 minus v du for 0 less than v less than 1 and 0 elsewhere. So, after 

simplification this turns out to be 1 plus v for minus 1 less than v less than or equal to 0 

and 1 minus v for 0 less than v less than 1, 0 elsewhere. This is again a triangular 

distribution on the interval minus 1 to 1. So, minus 1 to 0 the density is 1 plus v and 

between 0 to 1 the density is 1 minus v. 

So, we noticed here that the sums and differences of independent uniform random 

variables are again, are triangular distributions, and obviously, they are not 

independently distributed here because the joint distribution of U and V is not equal to 

the product of marginal distributions of U and V here. Now, in many cases the function 

from Rn to Rn need not be one to one for example, we have considered the discrete case 

where U was modulus X and V was Y square, so, it is not a one to one transformation, 

rather it is a four to one transformation over the range of the variables. So, in that case, 

we have a result similar to the case of univariate. In the case of univariate when we had 

many to one transformation we split the domain into disjoint region such that from each 

region to the range, we have a one to one transformation. We consider the inverse 

transformation, using that we calculate the density function in each region of the domain, 

disjoint regions, and we add all of this, that gives the joint distribution. 
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So, generalization of this result is available for the n dimensional case also and we state 

in the form of the following theorem: let X is equal to X1, X2, Xn be a continuous 

random vector with joint pdf fX; and let U be a mapping from Rn into Rn, where U is 

equal to u1, u2, un, ui is equal to some gi of x for i is equal to 1 to n. So, we are not 

assuming that it is a 1,1 on 2 functions. Suppose that for each U the transformation g that 

is, g1, g2, g n has a finite number say, k of inverses. Suppose further that Rn can be 

partitioned into k disjoint sets say, a1, a2, ak such that transformation g from ai into Rn 

is one to one with inverse transformation say, x1 is equal to h1i u and so on xn is equal to 

hni u for i is equal to 1 to k. As in the case of pervious theorem, you have to assume that 

the mapping and the inverses are continuous, and these first partial derivatives are 

continuous. Suppose that first order partial derivatives are continuous and each Jacobean.  
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That is, Ji that is, delh1i by delu1 and so on, del h1i over delun and so on, delhni over 

delu1 and so on, delhni over delun, does not vanish in the range of transformations. 

Then, the joint pdf of U is equal to U1, U2 to Un is given by fU is equal to sigma f of X 

h1iu and so on, hniu multiplied by absolute value of the Jacobean, i is equal to 1 to k. 

So, note here, if we consider this term, it is the density determined by the one to one 

transformation from ai into Rn. So, we calculate this density for each region, a1, a2, a k 

and add, this gives the joint distribution of U1, U2, U n. 
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We consider an example. For example, we can consider distribution of order statistics, 

what are order statistics? Let X1, X2, Xn be iid with some cdf say, FX and pdf say f X; 

and let me assume it to be continuous. We define X1 to be the minimum of X1, X2, Xn; 

X2 to be second smallest of X1, X2, Xn; so, like that X3 will be third smallest and so on; 

Xn will be the maximum of X1, X2,Xn. Then, X1, X2, Xn these are called order 

statistics of X1, X2, Xn. In many practical aspects, the order statistics are quite important 

for example, the raw observations may be something and suppose the raw observations 

denote the marks by the students, but we may be interested in the order observations that 

who is getting the highest marks, who is the second highest, etcetera, if we are selecting 

certain candidates on the basis of certain scores, so, we will be interested in selecting the 

best ten, so, we will be interested in say, Xn, Xn minus 1 up to Xn minus 9 say- so, the 

top ten students. So, in general we are interested in order statistics and therefore, the 

distributions of the ordered statistics. 
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Suppose, you want to find out the distribution of X n. So, we may use a direct approach. 

For example, we look at F of Xn. Let me use a notation here say, Yi is equal to Xi, where 

i is equal to 1 to n. So, the distribution of the largest that is, probability of Xn less than or 

equal to yn, now, notice here this is maximum being less than or equal to yn, this event is 

equivalent to that each of the Xis is less than or equal to yn- now, we make use of the 

fact that the random variables are independent and identically distributed, all of them 



have the cdf Fx- so, each of these values is f of yn and therefore, we get this as f of yn to 

the power n.  

If we are assuming the distributions to be continuous, then we can differentiate it and get 

the pdf of Xn as n times Fyn to the power n minus 1 f of y n. So, using a direct a cdf 

approach the distributions of the largest can be determined. In a similar way, we can 

obtain the distribution of the minimum also. That is, probability of X1 less than or equal 

to say y1, this we can note as 1 minus probability of X1 greater than y1. Once again, if 

you are saying that the minimum is greater than y1, it means that each of the 

observations is greater than y1. At this stage you can use the independence, 1 minus 

product Xi greater than y1- and since each of this is identically same- so, it is 1 minus 1 

minus F of y1 to the power n. So, the cdf of the smallest can be determined. And the pdf 

of the smallest can be determined by differentiating this with respect to y1, that gives n 

times 1 minus Fy1 to the power n minus 1 f of y1.  

So, the distribution of the largest and the smallest order statistics can be determined 

using the cdf approach. However, this approach will be complicated suppose we want to 

determined the distribution of third order statistics, or say the joint distribution of fourth 

and seventh order statistics, so, in that case, if you are assuming the continuous random 

variables, we make use of the Jacobean method.  
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So, let us consider the joint distribution of Y1, Y2, Yn. So, here the function Y1 is equal 

to X1, Yn is equal to Xn. Now, this is a transformation from Rn to Rn, but it is a many 

one transformation in fact, n factorial combinations of X1, X2, Xn give the same values 

of Y1, Y2, Y n. 

Let us consider say n is equal to 2. Suppose I say X1 is equal 1, X2 is equal to 1.5 then 

Y1 will be 1, Y2 will be 1.5, we can take X1 is equal to 1.5 and X2 is equal 1 once again, 

Y1 and Y2 will remain the same that means, two sets of X1 and X2 give the same value 

of minimum and maximum. In a similar way, suppose we have three values X1, X2, X3 

then six different combinations of X1, X2, X3 will give the same values of Y1, Y2 and 

Y3. So, in general Y is Rn to Rn- this is n to, n factorial to one transformation. So, we 

can partition Rn into n factorial different regions, so that in each region it is a one to one 

transformation. In the region one for example, you may have x1 is equal to y1, x2 is 

equal to y2 and so on, xn is equal to yn; in the region two, we may have x1 is equal to 

say y2, x2 is equal to y1, x3 is equal to y3 and so on, xn is equal to yn; in the region 

three, it may be x1 is equal to say y3, x2 is equal to y2, x3 is equal to y1 and so on, xn is 

equal to yn and so on; in the n factorialth region, we may have x1 is equal to say, yn, x2  

is equal yn minus 1 and so on, xn is equal y1. 

Let us look at the Jacobean in each case. The Jacobean here is the determinant of the 

identity matrix 1, 0, 0, 0, 0, 1, 0 and so on, 0, 0, 1, which is simply equal to 1; if we look 

at the Jacobean in the second case, this is 0, 1, 0 and so on, 1, 0, 0 and so on, 0, 0, 1  and 

so on- note here that this is obtained from J1 by interchanging the first and second row or 

first and second column- so, the value of this will be minus 1. So, likewise the Jacobean 

in each case will be either plus 1 or minus 1 because it is obtained by permuting rows of 

identity matrix. So, Jacobean absolute values for each of them will be 1 only.  
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Now the joint distribution of X1, X2, Xn is product of fxi, i is equal to 1 to n. So, in 

general the regions are... So, the joint pdf of Y1, Y2, Yn that is, order statistics fy, now, 

in the first region, we will substitute xi is equal yi multiplied by 1, in the second region, 

we will multiply by 1 and substitute x1 is equal to y2, x2 is equal to y n and etcetera; 

notice here that in each of the cases it is only a permutation of y1, y2, y n, since it is the 

product of all these terms it will always give total product of f of y1, f of y2, f of yn.  

So, this becomes product of f of yi, i is equal 1 to n and we have n factorial regions, so it 

is n factorial times and the region is y1 is less than y2 less than yn less than... We may 

have the cases where y1 is equal y2, or say ys is equal to ys plus 1 for certain s, since we 

are assuming the continuous distributions the probability of two variables being equal is 

0 and we can ignore this. So, you can see here that the joint distribution of Y1, Y2, Yn 

can be written. Now, suppose we are interested in the distribution of say Rth order 

statistics say, what is fYr? Then, we need to integrate y1, y2, yr minus 1 and yr plus 1,  

yr plus 2 up to yn. So, we can devise a scheme for integration, it will be integral f of y1,  

y2, f of yn. 

So, we can integrate with respect to y1 from minus infinity to y2, with respect to y2  

from minus infinity to y3 and so on, up to yr minus 1, minus infinity to yr. Then, we can 

integrate yn from yn minus 1 to infinity, yn minus 1 from yn minus 2 to infinity and so 

on; dyr plus 1 will be from yr to infinity. So, let us look at the evaluation here, if we 



integrate with respect to y1, f of small f of y1 gives capital F of y1, and when we 

substitute the limits here, at minus infinity, it is 0 and at y2, it is capital F of y2.  
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So, this gives us capital F of y2 into small f of y2 in the next step. This will be integrated 

from minus infinity to y3, now, notice here is that if we integrate this we will get half   F 

square y2, and again, if we substitute the limits, I will get it as half F square y3 and at 

minus infinity this will be 0, so at the next stage the integrant will be this term from 

minus infinity to y4. So, next stage it will give F cube of y4 and here it will be 1 by 2 

into 3.  
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Now, this step will continue up to F of y r minus on, so, the last step will give us up to r 

minus 1 factorial F of y r to the power r minus 1 because in the first stage, it is capital F 

of y2, in the second stage, it is F square by 2, in the next stage it is F cube y4 by 3 

factorial, so, at the r minus 1th stage, this will give F of yr to the power r minus 1 by r 

minus 1 factorial. 
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Now, let us look at the other set of variables to be integrated. Then we integrate f of yn 

then, that will gives us capital F of yn, now, the region of integration is from y n minus 1  



to infinity, now, at infinity this is 1, so it is 1 minus F of y n minus 1. So, at the next 

stage, the integrant is F of, 1 minus F of y n minus 1 into f of y n minus 1. This we are 

integrating from y n minus 2 to infinity. Again, we notice here is that the integral will be 

1 minus F of y n minus 1 square by 2 with a minus sign. So, at infinity this will become 0 

and at yn minus 2 this will become this term. So, at the next stage again, and this will 

give us cube divided by 3 into 2.  

(Refer Slide Time: 54:14) 

 

Like that, we have to continue up to dy r plus 1, so this will give us n minus r factorial 1 

minus F of yr to the power n minus r multiplied by f of yr. So, we are able to determine 

the distribution of the rth order statistics here. 

The particular case we can see, suppose the random variables are uniformly distributed 

on the interval 0, 1 then this will become yr, this will become 1 minus yr to the power n 

minus r, which is nothing but a beta distribution. So, that is one of the origins of, or you 

can say applications of beta distribution.  
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Likewise, if we want to integrate leaving variables say yr and ys, so, the joint pfd of say, 

two order statistics say, Yr and Ys, so, that is determined as f of Yr, Ys, yr, ys, that is 

equal to n factorial divided by r minus 1 factorial s minus r minus 1 factorial n minus s 

factorial F of yr to the power r minus 1 F of ys minus f of yr to the power s minus r 

minus 1 1 minus F of ys to the power n minus s f or yr f of ys; here I am taking r to be 

less than s, so, yr will be less than ys. In particular, we may write the joint distribution of 

the smallest and the largest, from there we can determine the distribution of the range 

that is Yn minus Y1 etcetera. So, in the next lecture, we will be considering various 

applications of the transformations here. Thank you.  


