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In the last two lectures we havediscussed the distributions of bivariate random variables. 

So, we looked at how to derive the marginal distributions and the conditional 

distributions, we also discussed various characteristics of the joint distribution such as 

the moments, product moments, covariance and the coefficient of correlation, and we 

alsolooked at some of the features of thesecharacteristics. Today, I will introduce a 

particular joint distribution it is known as bivariate normal distribution.  
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So, a continuous jointly distributed random variable XY is said to have bivariate normal 

distribution if it has the probability density function given by fxy equal to 1 by 2 pi 

sigma1 sigma2 root 1 minus rho square e to the power minus 1 by 2 1 minus rho square x 

minus mu1 by sigma1 square plus y minus mu2 by sigma2 square minus 2 rho x minus 



mu1 by sigma1 y minus mu2 by sigma2. Here the range of xy, mu1, mu2 is the whole 

real line and sigma1 sigma2 are positive and rho is between minus 1 and plus 1. So, first 

of all we look at that what are the marginal distributions and the conditional distributions 

and overall structure of this bivariate normal distribution, we will like to study. 

Suppose we want to find out the marginal distribution of x, in that case we need to 

integrate this joint distribution with respect to y.A closer examination of the density 

function reveals that in the exponent we have a term which is a term like which appears 

in theexponent of the normal distribution. So, if we want to integrate with respect to y, 

we can convert it into a density with respect to y, so, that suggests that we make a perfect 

square in y; so, we can factorize it as 1 by 2 pi sigma1 sigma2 root 1 minus rho square e 

to the power minus 1 by 2 1 minus rho square, so, here if we make a square in y, then we 

have y minus mu2 by sigma2 minus rho x minus mu1 by sigma1 whole square.Now, this 

square corresponds to this and the cross product term corresponds to this, so that means, 

I have added rho square into x minus mu1 by sigma1 whole square. So, if we subtract 

this, I will get the term as 1 minus rho square x minus mu1 by sigma1 square, which we 

can write as 1 by root 2pi sigma1 e to the power minus 1 by 2 x minus mu1 by sigma1 

square and 1 by root 2pi sigma2 root 1 minus rho square e to the power minus 1 by 2 

sigma2 square 1 minus rho square y minus mu2 minus rho sigma2 x minus mu1 by 

sigma1, so, this I can write as plus and arrange it in the bracket, square. 

 

You can see here that the first term is a normal density for x andthe second term is a 

normal density for y. So, if we want to find out the marginal distribution of x, we can 

integrate this with respect to y, and we notice here that this entire term denotes a 

distribution, which is normal, with mean mu2 plus rho sigma2 x minus mu1 by sigma1 

and variance sigma2 square into 1 minus rho square, so if we integrate with respect to y, 

this term will give us unity and we will get only this term.  
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So, integration with respect to y givesfxx equal to 1 by root 2pi sigma1 e to the power 

minus 1 by 2 x minus mu1 by sigma1 squarethat is, the marginal distribution of x is 

normal mu1, sigma1 square. In a similar way, we can split this term when we want to 

integrate with respect to x then I make it as a perfect square in x, so, we will write x 

minus mu1 by sigma1 minus rho y minus mu2 by sigma2. So, another way of writing is, 

another representation offxy can be 1 by 2pi sigma1 sigma2 root 1 minus rho square e to 

the power minus 1 by 2 1 minus rho square, and now I make a square with respect to x, s, 

x minus mu1 by sigmaminus rho y minus mu2 by sigma2 whole square- so, comparing 

with the joint density, we can see here that x minus mu1 by sigma1 whole square, that is 

coming here, and the cross product term is minus 2rho x minus mu1 by sigma1 into y 

minus mu2 by sigma2, which is a term appearing here, so we have added the term rho 

square y minus mu2 by sigma2 square- so, subtracting this we get, 1 minus rho square y 

minus mu2 by sigma2 whole square. So, we can write it as 1 by root 2pi sigma2 e to the 

power minus 1 by 2 y minus mu2 by sigma2 whole square 1 byroot 2pi sigma1 root 1 

minus rho square e to the power minus 1 by 2 sigma1 square 1 minus rho square and x 

minus mu1 plus rho sigma1 y minus mu 2 by sigma2 whole square. 

 

So, notice here that the second term is a density of normal random variable with mean 

mu1 plus rho sigma1 into y minus mu2 by sigma2 and variance sigma1 square into 1 

minus rho square. So, if we integrate this joint density with respect to x, the term, this 



term integrates to 1 and we are left with a normal density. So, the marginalpdf of y is 

fyy, that is equal to 1 by root 2pi sigma2 e to the power minus 1 by 2 y minus mu2 by 

sigma2 square that is, the marginal distribution of y is normal mu2 sigma2 square. 

 

So, we come across this interesting phenomenon that if xy follow a joint bivariate normal 

distribution, then the marginal distributions of x is normal mu1 sigma square and then 

marginal distribution of y is normal mu2 sigma2 square that means, given a joint 

bivariate distribution the marginal distributions are univariate normal.  

 

Now, we also calculate the conditional distributions of x given y and y given x. Now, if 

we look at the conditional distributions of X given Y, then we have to divide the joint 

distribution of x, y by the marginal distribution of y. Now, from this break up, we can see 

that this joint distribution if we divide by the marginal of y, this term gets cancelled out 

and we are left with this particular term, which is nothing but the normal 

distribution.This proves that the conditional distribution of X given Y is normal and the 

mean and the variance are specified here. 
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So, we have the conditional probability density function of X given Y is equal to y, that 

is obtained as the joint distribution divided by themarginal distribution of y. So, after 

simplification it is equal to 1 by root 2pi sigma1 root 1 minus rho square t to the power 



minus 1 by 2 sigma1 square 1 minus rho square x minus mu1 plus rho sigma1 y minus 

mu2 by sigma2 whole square.That is, we can say that X given Y is equal to y follows 

normal with mean mu1 plus rho sigma1 y minus mu2 by sigma2 and variance sigma1 

square into 1 minus rho square. 

 

In a similar way, notice here that the joint distribution of xy was earlier factorized like 

this and if we divide by the marginal distribution of x, then this term gets cancelled out 

and we are left with this term, which is again a normal distribution with a certain mean 

and a certain variance. So, this proves that the conditional distribution of, similarly, the 

conditional pdf of Y given X, that is obtained as 1 by root 2pi sigma2 root 1 minus rho 

square e to the power minus 1 by 2 sigma2 square 1 minus rho square y minus mu2 plus 

rho sigma2 x minus mu1 by sigma1 whole square.That is Y given X is equal to x follows 

normal with mean mu2 plus rho sigma2 x minus mu1 by sigma1 sigma2 square 1 minus 

rho square. So, we conclude that if the joint distribution is bivariate normal the 

marginal’s as well as the conditional distributions are univariate normal. 

 

Now, the converse of this is also true.If the conditionals and the marginal are univariate 

normal, the joint distribution will be bivariate normal. So, this is also a characterizing 

property of the bivariate normal distribution.  
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 We can state it as a theorem-if xy follows bivariate normal with some parameter say 

mu1 mu2 sigma1 square sigma2 square and rho, then the marginal and conditional 

distributions of XY, X given Y and Y given X are all univariate normal.Conversely, if 

the marginal and conditional distributions are univariate normal, then the joint 

distribution will be bivariate normal. 

 

So, this is quiteuseful inobtaining any probability related to marginal, or the conditional 

distributions of the X and Y because we can make use of the standard normal distribution 

by making a suitable transformation. Any joint probability statement about bivariate 

normal distribution will need the tables of a standard bivariate normal distribution; by a 

standard bivariate normal distribution we mean mu1 is equal to 0 mu2 is equal to 0 

sigma1 square and sigma2 square is equal to 1, but rho will still be there and therefore, 

several tables will berequired with respect, which will berelated to the joint probabilities 

of the bivariate normal distribution. 

 

So, since the marginal distributions are identified we have expectation of X is equal to 

mu1, variance of X is equal to sigma1 square, expectation of Y is equal to mu2 and 

variance of Y is equal to sigma2 square.Now, we also consider the covariance term 

between X and Y. So, the covariance term between X and Y is expectation of X minus 

mu1 into Y minus mu2.Now, this product, central product moment can be calculated 

bythe joint integration of the density function multiplied by this function however, at this 

stage we introduce some formula for evaluation of the joint moments. 
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IfX and Y have a joint distribution, then in general, expectation of a function can be 

calculated in stages.We may calculate firstly, the conditional and then with respect to 

marginal, or alternatively we may consider it as expectation of gXY given X, Y given X, 

provided of course, the expectations do exist. Let me give a rough sketch of the proof. 

Suppose X and Y are continuous with joint pdf sayfxy. So, expectation of g X, Y we can 

express as integral gxyfxyxy; suppose we keep the order of integration as d x d y then 

this we can express as gxyfxy divided by fy multiplied by fydy; so, this quantity, inner 

quantity is nothing but the expectation of gXY given Y is equal to y multiplied by the 

density of y, which is nothing but expectation of expectation gXYgiven Y. That means, 

the joint expectations can be calculated in stages firstly, with respect to a conditional 

distribution and then with respect to a marginal distribution in either order. 
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 So, if we make use of this, then expectation of X minus mu1 into Y minus mu2, we can 

write it as X minus mu1 into expectation of Y minus mu2 given X. So, inner expectation 

is the conditional expectationwith respect to the distribution of Y given X and the outer 

is with respect to X-the conditional distribution of Y given X was calculated to be a 

univariate normal distribution andthe mean was mu2 plus certain term, so expectation of 

Y given X will be mu2 plus rho sigma2 x minus mu1 by sigma1-therefore, expectation 

of Y minus mu2 given X will be equal to X minus mu 1rho sigma2 by sigma1 X minus 

mu1, which is nothing but rho sigma2 by sigma1 expectation of X minus mu 1 square, 

which is sigma 1 square, so, it is rho sigma1 sigma2. 
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So, we conclude that the covariance of the X Yin a bivariate normal distribution is given 

by rho sigma1 sigma2. Therefore, we can calculate the coefficient of correlation between 

X Y that is equal to rho sigma1 sigma2 by sigma1 sigma2 that is equal to rho. So, the 

parameter rho of a bivariate normal distribution denotes the correlation coefficient 

between the random variables X and Y.  
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Let us look at a problem here.The amount of rainfall recorded at a US weather station in 

January is a random variable X and the amount of rainfall recorded inFebruary at the 

same station is a random variable Y.Suppose the distribution of X and Y is observed to 

be a bivariate normal distribution with mean 6. So, the mean of random variable X is 6 

the mean of random variable Y is 4. So, suppose it is in measured in inches because it is 

amount of rainfall or centimeters, the variances are 1 and 0.25 and rho is equal to 0.1.We 

are interested to calculate what is the probability that X is less than or equal to 5, or what 

is the probability of Y being less than or equal to 5 giving that X is equal to 5. 

 

So, notice here probability of X less than or equal to 5 can be calculated from the 

marginal distribution of X, which is having mean 6 and variance unity; so, it is simply 

transform to the standard normal probability as z less than or equal to 5 minus 6 by 1, 

here z denotes the standard normal random variable; so, from 5we have subtracted the 

mean of X and divided by the standard deviation, which is equivalent to the cdf value of 

standard normal variate at minus 1, which we see from the tables of normal distribution 

as 0.1587. 

 

Suppose, we are interested in the probability of Y less than or minus to 5 given that in 

January the rainfall is 5. So, we need the conditional probability of Y less than or equal 

to 5 given X equal to 5.For this we firstly, calculate the conditional distribution of Y 

given X equal to 5.Now, making use of the conditional distribution of Y given X, which 

is given by normal with mean mu2 plus rho sigma2 x minus mu1 by sigma1, so, here mu 

2 is 4,rho is 0.1, sigma2 is 0.5, sigma1 is 1 and the point x is, smallx is 5, so x is 5 and 

mu1 is 6, so, this is the mean of the conditional distribution of Y given X, so, after 

simplification this turns out to be 3.975, the variance of the conditional distribution is 

sigma2 square into 1 minus rho square, which is 0.25 into 1 minus 0.01, so, it is 

evaluated to be 0. 2475. 

 

So, the conditional probability of Y X less than or equal to 5 given x equal to 5 can be 

calculated from this distribution. So, we transform it to the standard normal distribution. 

So, it isz less than or equal to 5 minus 3.975 divided by square root of this that is,0.4975. 

So, after simplification it turns out to be Phi of 2.06, which is 0.9803, which isquite high 

probability, but that is understandable because in January there is more rain, so, since the 



variables are correlated it is affecting the probability of Y also.Let us take up another 

example of a similar nature.  
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The life of a tube, which is measured as random variable X1 and the filament diameter, 

which is measured as a random variable X2, the life is measured in say, hours and the 

diameter is measured in inches, they are distributed as a bivariate normal distribution 

with mu1 is equal to 2000 hours, mu2 is 0.1 inches, the sigma1 square is 2500, sigma2 

square is 0.01 and the coefficient of correlation is 0. 87. So, themanufacturer may use 

thefilament diameter (()), which can be measured to estimate the life of the tube. So, if a 

filament diameter is 0.098, what is the probability that the tube will last 1950 hours? So, 

we are interested to calculate what is the probability of surviving till 1950 hours, given 

that the diameter is 0.098 inches. 

 

For this we need the conditional distribution of X1 given X2 is equal to 0.098. So, we 

make use of the formula for the conditional distribution of X given Y here. So, that is 

mu1 that is, 2000 plus rho,0. 87, sigma1 is 50 divided by sigma2 is 0.1, y minus mu2, so 

y is the point at which we are conditioning, that is 0.098 minus mu2 that is,0. 1. So, after 

simplification this turns out to be 2000.87 and the variance here is sigma1 square into 1 

minus rho square, which is equal to 607.25 So, the conditional probability of X1 greater 

than 1950, given that X2 is equal to 0.098 can be calculated using this univariate normal 



distribution. So, after transformation to standard normal we get it as probability of z 

greater than minus 2.06, which is evaluated as 0. 9803. 

 

So, likewise any probability statement related to the marginal distributions, or the 

conditional distributions of X or Y, or X given Y or Y given X can be calculated using 

the univariate normal properties.We also look at the moment generating function ofa 

bivariate normal distribution.  
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 So, the moment generating function of a bivariate normal distribution. So, it is defined 

as MXYst, that is equal to expectation of E to the power sXplus tY. Now, again, you can 

see that this is some function g of xy. So, the joint expectation we can calculate easily in 

terms of conditional and the marginal expectations. So, we will use that, we can write 

their expectation of expectation E to the powersX plus tY, given say- in the previous one 

we have done the calculation usingconditional distribution of X, so we can use the 

conditional distribution of Y here- now, given Y this e to the powertY terms is fixed, so 

we can separate it out and we are left with expectation of e to the powersX given Y; now, 

notice here that this inner expectation is nothing but the moment generating function of 

the conditional distribution of X given Y; so, this is equal to expectation of e to the 

power tY into the moment generating function of the conditional distribution of X given 

Y at the point s; now, here the conditional distribution of X given Y is univariate normal, 

we already know the form of the moment generating function of a univariate normal 



distribution, suppose the normal mu sigma square distribution is there then we have seen 

that the mgf is represented as e to the power mu t plus half sigma square t square; so, 

here the point is s in place of t and X given Y, the distribution has the parameters mu1 

plus rho sigma1 y minus mu2 by sigma2 and sigma1 square 1 minus rho square, so, we 

make use of this.  
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So, this can be expressed as expectation of Y e to the power tY e to the power mu1 plus 

rho sigma1 Y minus mu2 by sigma2 into s plus half sigma1 square 1 minus rho square s 

square- so, this is the value coming after substituting the value of themoment generating 

function of the conditional distribution of X given Y, which is univariate normal and 

therefore, the form is known to us; so, now, here, there are certain constant terms and we 

can separate it out, e to the power mu1 s minus rho sigma1 mu2 by sigma2 s plus half 

sigma1 square 1 minus rho square s square, we have expectation of e to the power Y t 

plus rho sigma1 by sigma2 s; so, we notice here that this is nothing but the moment 

generating function of Y at the point t plus rho sigma1 by sigma2 s. So, this term is there. 

So, notice here that the distribution of Y is again univariate normal with parameters mu2 

and sigma2 square therefore, the moment generating function has an own form, in place 

of the point t we substitute t plus rho sigma1 by sigma2 s; so, we get it as e to the power 

mu1 s minus rho sigma1 mu2 by sigma2 s plus halfsigma1 square 1 minus rho square s 

square e to the power mu2 t plus rho sigma1 by sigma2 s plus, so, I will write it as e to 



the power half sigma2 square t plus rho sigma1 by sigma2 s whole square; so, we have e 

to the power mu1 s plus mu2 t, that is this term- now, we note here minus rho by rho 

sigma1 sigma by sigma2 mu 2 s this term is coming here also as a plus sign plus rho 

sigma1 by sigma2 mu 2 s, so this term gets cancelled with this term- then, we have half 

sigma1 square s square andhalf sigma2 square t square- now, when we take square here, 

it is becoming twice rho sigma1 by sigma2 s t, so, sigma2 and sigma2 square- so you 

will get it as plus rho sigma1 sigma2 s t- and the square term here,rho square sigma1 

square s square with a half here will get cancelled with minus half sigma1 square rho 

square s square- so, we are left with this term as the mgf of the bivariate normal 

distribution. 

 

So, notice here that e to the power mu1 s plus half sigma1 s square denotes the mgf of 

the normal distribution with parameter mu1 andsigma1square, that is the mgf of X. 

Similarly, e to the power mu2 t plus half sigma square t square denotes themgf of Y. So, 

we have these terms and an additional term coming here. So, using this we can prove 

certain more properties regarding the bivariate normal distribution.  
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Let X Yfollow a bivariate normal distribution with parameters mu1, mu2, sigma1 square, 

sigma2 square and rho.Then, X and Y are independent if and only if rho is equal to 

0.Now, we already know that if X and Y are independent, then correlation is 0, so, rho 



will be equal to 0 will be true,to prove the reverse we make use of the joint mgf. So, X 

and Y are independent, this is equivalent to the statementMXYst is equal to MXs MYt 

for all s t; now, this is equivalent to e to the power mu1 s plus mu2 t plus half sigma1 

square s square plus half sigm2 square t square plus rho sigma1 sigma2 s t equal to e to 

the mu1 s plus half sigma1 squares square e to the power mu2 t plus half sigma2 square t 

square. So, this is equivalent to the statement that rho is equal to 0.  

 

So, although in general correlation 0 does not imply independence, but in the case 

ofBivariate normal distribution independence and correlation is equal to 0 is equivalent. 

We prove another property of bivariate normal distribution using the moment generating 

function.  
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X Y follow a bivariate normal distribution with parameters mu1, mu2, sigma1 square, 

sigma2 square,rho if and only if aX plus bY follows a univariate normal distribution with 

parameters amu1 plus bmu2 a square sigma1 square plus b square sigma2 square plus 

twice abrho sigma1 sigma2 for all a b real of course, both a and b not simultaneously 

0.This is a very strong property because it says that given that joint distribution is 

bivariate normal any linear combination will be univariate normal conversely, given 

every linear combination is a univariate normal the joint distribution will be bivariate 

normal. 



 

So, in order to prove this statement, let X Y have bivariate normal distribution with the 

given parameters mu1, mu2, sigma1 square sigma2 square and rho.Let us write the 

random variable say Q as aX plus b Y then, the moment generating function of Q, that is 

equal to expectation of e to the power tQ, that is equal to expectation of e to the power 

taX plus bY, that is equal to expectation of e to the power at X plus bt Y, this is the joint 

mgf of X Y at at,bt-since X Y has a joint bivariate normal distribution the form of the 

joint mgf of X Y at at,bt can be obtained by substituting s is equal to at and t is equal to 

bt in the expression given just now- so, this becomes e to the power mu1 t plus mu2 bt 

plus half sigma1 square a square t square plus half sigma2 square b square t square plus 

rho sigma1 sigma2 abt square; so, after combining the coefficients we get it as t amu1 

plus bmu2 plus half t square a square sigma1 square plus b square sigma2 square plus 

twice abrho sigma1 sigma2. Now, this is nothing, but the mgf of a normal distribution 

with the mean this term and variance this term 
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So, because of the uniqueness of the mgf we prove that aX plus bY is having this 

particular normal distribution,which is the mgf of a normal amu1 plus bmu2 and a square 

sigma1 square plus b square sigma2 square plus twice abrho sigma1 sigma2 distribution. 

So, by the uniqueness property of the mgf, we conclude that aX plus bYhas a normal 

distribution with given parameters. 



 

Now, conversely, assume that let aX plus bY have normal distribution with the desired 

setup.Now, consider the joint mgf of X Y that is, MXYst that is, expectation of e to the 

power sXplustY, now, notice here that this is nothing but a linear combination of X and 

Y, we are assuming that every linear combination has a univariate normal distribution 

with desired parameters, so this becomes nothing but the moment generating function of 

sXplus tYat the point 1, which is known to us, because the distribution of s x plus t y is 

assumed to be normal with mean s mu1 plus t mu2 and s square sigma1 square plus t 

square sigma2 square plus twice strho sigma1 sigma2; so, since the m g f of the normal 

distribution is known we substitute this here and it becomes equal to e to the power s 

mu1 plus t mu2 plus half s square sigma1 square plus halft square sigma2 square plus 

strho sigma1 sigma2, which is the mgf of a bivariate normal distribution with the 

parameters mu1, mu2, sigma1 square, sigma2 square and rho.  

 

So, once again the uniqueness of the mgf proves that XY must have a bivariate normal 

distribution. So, notice here that this joint mgf is extremely useful in proving certain 

characterization properties of the bivariate normal distribution.  
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We also look at the generalization ofthe concept of joint distributions to more than 2. So, 

in general we may consider a K dimensional random variable, so, we call it random 



vectors in general. So, X is equal to X1, X2, Xk, so, this is a k dimensional random 

vector, it is defined to be a measurable function from omega intoRk and of course, the 

function should be measurable.Now, you may have the random variables,some of the 

Random variables xis as discrete, some of them is continuous, we may have some of 

them as mixtures, so, all types of possibilities of the type of the random variables are 

there. We may make use of the joint cdf, joint c f of X is defined asFXx as probability of 

X1 less than or equal to x1, Xk less than or equal toxk, where this point x is equal to x1, 

x2, xk belongs toRk. 

 

Now, this function, as in the case of two variables, this is giving complete information 

about the types of random variables xis are and also the probability distributions of 

individual xisor conditionals.For example, if I take limit as xi tending to minus infinity in 

any I, thenthis will be 0; if we take limit as say xi tending to plus infinity, then that will 

yield the cdf of all the variables except the ith one; we may also obtain the marginal 

distributions of only x1 or only x2 by taking the limits of all other variables tending to 

infinity. The function FX is continuous from rightin each of its argument and also non 

decreasing. 
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Making use of this a joint cdf, we can define the concept of independence, X1, X2, Xk 

are independently distributed if the joint cdf can be written as the product of individual 



cdfs for all x belonging toRk. Now, we can take the particular cases that are when all of 

the xis are discrete, or all of the xis are continuous, because in that case we can define a 

joint probability mass function and joint probability density function respectively. So, let 

us take up these two cases. 

 

Let X1, X2, Xk be discrete that means, all of the components are discrete. So, we have a 

probability mass function that is, probability of X1 is equal to X1 and so on, Xk is equal 

toXk- it will satisfy the usual properties that is, it should be non negative function, and if 

we sum over all possibilities of X1, X2, Xk, it should add up to 1. So, this is the joint 

probability mass function, it will satisfy the propertiesthatpXx is greater than or equal to 

0 and the sum over all the components must be 1, where x is the set of values of x.The 

marginal distribution of any subset of X1, X2, Xk can be obtained by summing over the 

remaining variables. For example if we want the marginal distribution of X1, then we 

will sum over the joint pmf over X2,X3 up toXk;suppose we want the marginal pmf of 

say, Xk minus 1 andXk, then we will sum over the variables X1, X2, Xk minus 

2.Likewise we can define the conditional probability mass functionsof any subset of X1, 

X2,Xn given any other subset of X1, X2, Xn. So, the conditional and marginal pmfs of 

any subsets of X1, X2, Xk can be obtained from the joint pmf.  
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In a similar way, we may talk about the case when both, when all of the xis are 

continuous.In this case, we will have a joint probability density function and it will have 

the properties that the function is non-negative, the integral over the entire space must 

give 1 and if I take A to be any subset of the k dimensional Euclidean space, then 

probability of X belonging to A is where the integrant is integrated over the range A. 

Once again, themarginal or conditionals of any subset of X1, X2, Xk can be obtained by 

integrating over the remaining variables.For example, if I want the marginal distribution 

of x1 and x3, then leaving only x1 and x3, we will integrate the joint distribution with 

respect to x2,x4,x5 and so on. 

 

Similarly, we may talk about say conditional distribution of X3,X 5 given X2, so, that 

will require the joint distribution of x2,x3 and x5 and the marginal distribution of X 2.  
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We can define the joint moment generating function of X1, X2, Xk as MXt, where t is 

the point t1, t2,tk, asexpectation of e to the power sigma tiXi, i is equal to 1 to k, that is 

expectation of e to the power tprime x, where tprime denotes the transpose of the vector 

t.  
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Using this we can prove the theorems, as in the case of bivariate that X1, X2, Xk are 

independent if and only if the joint mgf is the product of the individual mgfs for all t. 

Similarly, if the random variables X1, X2, X k are independent, thenthe mgf of the sum 

is the product of the mgfs.Now, this is a very useful tool in evaluating the distributions of 

the sums of random variables, given that certain random variables are independently 

distributed if we are interested in the distribution of the sum, then we simply multiply the 

mgfs of the individuals and notice that what is the form of that, if it is identifiable with 

certain distribution, then we know the distribution of the sum going through the, without 

going through the usual procedure of transformations, from mgfs itself we can derive the 

joint mgf .Using this we will show the additive properties of certain distributions in 

thenext lecture and we will also see some for special joint distributions. So, today we 

will stop today’s class here. 


